target/arm: Move TLB related routines to tlb_helper.c
These routines are TCG specific. The arm_deliver_fault() function is only used within the new helper. Make it static. Suggested-by: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com> Message-id: 20190701132516.26392-13-philmd@redhat.com Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
parent
ebae861fc6
commit
e21b551cb6
@ -32,6 +32,7 @@ target/arm/translate-sve.o: target/arm/decode-sve.inc.c
|
||||
target/arm/translate.o: target/arm/decode-vfp.inc.c
|
||||
target/arm/translate.o: target/arm/decode-vfp-uncond.inc.c
|
||||
|
||||
obj-y += tlb_helper.o
|
||||
obj-y += translate.o op_helper.o
|
||||
obj-y += crypto_helper.o
|
||||
obj-y += iwmmxt_helper.o vec_helper.o neon_helper.o
|
||||
|
@ -2566,8 +2566,6 @@ static void arm_cpu_class_init(ObjectClass *oc, void *data)
|
||||
cc->gdb_write_register = arm_cpu_gdb_write_register;
|
||||
#ifndef CONFIG_USER_ONLY
|
||||
cc->do_interrupt = arm_cpu_do_interrupt;
|
||||
cc->do_unaligned_access = arm_cpu_do_unaligned_access;
|
||||
cc->do_transaction_failed = arm_cpu_do_transaction_failed;
|
||||
cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
|
||||
cc->asidx_from_attrs = arm_asidx_from_attrs;
|
||||
cc->vmsd = &vmstate_arm_cpu;
|
||||
@ -2590,6 +2588,10 @@ static void arm_cpu_class_init(ObjectClass *oc, void *data)
|
||||
#ifdef CONFIG_TCG
|
||||
cc->tcg_initialize = arm_translate_init;
|
||||
cc->tlb_fill = arm_cpu_tlb_fill;
|
||||
#if !defined(CONFIG_USER_ONLY)
|
||||
cc->do_unaligned_access = arm_cpu_do_unaligned_access;
|
||||
cc->do_transaction_failed = arm_cpu_do_transaction_failed;
|
||||
#endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -13244,59 +13244,6 @@ uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
|
||||
|
||||
#endif
|
||||
|
||||
bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
|
||||
MMUAccessType access_type, int mmu_idx,
|
||||
bool probe, uintptr_t retaddr)
|
||||
{
|
||||
ARMCPU *cpu = ARM_CPU(cs);
|
||||
|
||||
#ifdef CONFIG_USER_ONLY
|
||||
cpu->env.exception.vaddress = address;
|
||||
if (access_type == MMU_INST_FETCH) {
|
||||
cs->exception_index = EXCP_PREFETCH_ABORT;
|
||||
} else {
|
||||
cs->exception_index = EXCP_DATA_ABORT;
|
||||
}
|
||||
cpu_loop_exit_restore(cs, retaddr);
|
||||
#else
|
||||
hwaddr phys_addr;
|
||||
target_ulong page_size;
|
||||
int prot, ret;
|
||||
MemTxAttrs attrs = {};
|
||||
ARMMMUFaultInfo fi = {};
|
||||
|
||||
/*
|
||||
* Walk the page table and (if the mapping exists) add the page
|
||||
* to the TLB. On success, return true. Otherwise, if probing,
|
||||
* return false. Otherwise populate fsr with ARM DFSR/IFSR fault
|
||||
* register format, and signal the fault.
|
||||
*/
|
||||
ret = get_phys_addr(&cpu->env, address, access_type,
|
||||
core_to_arm_mmu_idx(&cpu->env, mmu_idx),
|
||||
&phys_addr, &attrs, &prot, &page_size, &fi, NULL);
|
||||
if (likely(!ret)) {
|
||||
/*
|
||||
* Map a single [sub]page. Regions smaller than our declared
|
||||
* target page size are handled specially, so for those we
|
||||
* pass in the exact addresses.
|
||||
*/
|
||||
if (page_size >= TARGET_PAGE_SIZE) {
|
||||
phys_addr &= TARGET_PAGE_MASK;
|
||||
address &= TARGET_PAGE_MASK;
|
||||
}
|
||||
tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
|
||||
prot, mmu_idx, page_size);
|
||||
return true;
|
||||
} else if (probe) {
|
||||
return false;
|
||||
} else {
|
||||
/* now we have a real cpu fault */
|
||||
cpu_restore_state(cs, retaddr, true);
|
||||
arm_deliver_fault(cpu, address, access_type, mmu_idx, &fi);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Note that signed overflow is undefined in C. The following routines are
|
||||
careful to use unsigned types where modulo arithmetic is required.
|
||||
Failure to do so _will_ break on newer gcc. */
|
||||
|
@ -765,9 +765,6 @@ bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
|
||||
MMUAccessType access_type, int mmu_idx,
|
||||
bool probe, uintptr_t retaddr);
|
||||
|
||||
void arm_deliver_fault(ARMCPU *cpu, vaddr addr, MMUAccessType access_type,
|
||||
int mmu_idx, ARMMMUFaultInfo *fi) QEMU_NORETURN;
|
||||
|
||||
/* Return true if the stage 1 translation regime is using LPAE format page
|
||||
* tables */
|
||||
bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
|
||||
|
@ -88,141 +88,6 @@ uint32_t HELPER(neon_tbl)(uint32_t ireg, uint32_t def, void *vn,
|
||||
return val;
|
||||
}
|
||||
|
||||
#if !defined(CONFIG_USER_ONLY)
|
||||
|
||||
static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
|
||||
unsigned int target_el,
|
||||
bool same_el, bool ea,
|
||||
bool s1ptw, bool is_write,
|
||||
int fsc)
|
||||
{
|
||||
uint32_t syn;
|
||||
|
||||
/*
|
||||
* ISV is only set for data aborts routed to EL2 and
|
||||
* never for stage-1 page table walks faulting on stage 2.
|
||||
*
|
||||
* Furthermore, ISV is only set for certain kinds of load/stores.
|
||||
* If the template syndrome does not have ISV set, we should leave
|
||||
* it cleared.
|
||||
*
|
||||
* See ARMv8 specs, D7-1974:
|
||||
* ISS encoding for an exception from a Data Abort, the
|
||||
* ISV field.
|
||||
*/
|
||||
if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) {
|
||||
syn = syn_data_abort_no_iss(same_el,
|
||||
ea, 0, s1ptw, is_write, fsc);
|
||||
} else {
|
||||
/*
|
||||
* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
|
||||
* syndrome created at translation time.
|
||||
* Now we create the runtime syndrome with the remaining fields.
|
||||
*/
|
||||
syn = syn_data_abort_with_iss(same_el,
|
||||
0, 0, 0, 0, 0,
|
||||
ea, 0, s1ptw, is_write, fsc,
|
||||
false);
|
||||
/* Merge the runtime syndrome with the template syndrome. */
|
||||
syn |= template_syn;
|
||||
}
|
||||
return syn;
|
||||
}
|
||||
|
||||
void arm_deliver_fault(ARMCPU *cpu, vaddr addr, MMUAccessType access_type,
|
||||
int mmu_idx, ARMMMUFaultInfo *fi)
|
||||
{
|
||||
CPUARMState *env = &cpu->env;
|
||||
int target_el;
|
||||
bool same_el;
|
||||
uint32_t syn, exc, fsr, fsc;
|
||||
ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
|
||||
|
||||
target_el = exception_target_el(env);
|
||||
if (fi->stage2) {
|
||||
target_el = 2;
|
||||
env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4;
|
||||
}
|
||||
same_el = (arm_current_el(env) == target_el);
|
||||
|
||||
if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
|
||||
arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) {
|
||||
/*
|
||||
* LPAE format fault status register : bottom 6 bits are
|
||||
* status code in the same form as needed for syndrome
|
||||
*/
|
||||
fsr = arm_fi_to_lfsc(fi);
|
||||
fsc = extract32(fsr, 0, 6);
|
||||
} else {
|
||||
fsr = arm_fi_to_sfsc(fi);
|
||||
/*
|
||||
* Short format FSR : this fault will never actually be reported
|
||||
* to an EL that uses a syndrome register. Use a (currently)
|
||||
* reserved FSR code in case the constructed syndrome does leak
|
||||
* into the guest somehow.
|
||||
*/
|
||||
fsc = 0x3f;
|
||||
}
|
||||
|
||||
if (access_type == MMU_INST_FETCH) {
|
||||
syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc);
|
||||
exc = EXCP_PREFETCH_ABORT;
|
||||
} else {
|
||||
syn = merge_syn_data_abort(env->exception.syndrome, target_el,
|
||||
same_el, fi->ea, fi->s1ptw,
|
||||
access_type == MMU_DATA_STORE,
|
||||
fsc);
|
||||
if (access_type == MMU_DATA_STORE
|
||||
&& arm_feature(env, ARM_FEATURE_V6)) {
|
||||
fsr |= (1 << 11);
|
||||
}
|
||||
exc = EXCP_DATA_ABORT;
|
||||
}
|
||||
|
||||
env->exception.vaddress = addr;
|
||||
env->exception.fsr = fsr;
|
||||
raise_exception(env, exc, syn, target_el);
|
||||
}
|
||||
|
||||
/* Raise a data fault alignment exception for the specified virtual address */
|
||||
void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
|
||||
MMUAccessType access_type,
|
||||
int mmu_idx, uintptr_t retaddr)
|
||||
{
|
||||
ARMCPU *cpu = ARM_CPU(cs);
|
||||
ARMMMUFaultInfo fi = {};
|
||||
|
||||
/* now we have a real cpu fault */
|
||||
cpu_restore_state(cs, retaddr, true);
|
||||
|
||||
fi.type = ARMFault_Alignment;
|
||||
arm_deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi);
|
||||
}
|
||||
|
||||
/*
|
||||
* arm_cpu_do_transaction_failed: handle a memory system error response
|
||||
* (eg "no device/memory present at address") by raising an external abort
|
||||
* exception
|
||||
*/
|
||||
void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
|
||||
vaddr addr, unsigned size,
|
||||
MMUAccessType access_type,
|
||||
int mmu_idx, MemTxAttrs attrs,
|
||||
MemTxResult response, uintptr_t retaddr)
|
||||
{
|
||||
ARMCPU *cpu = ARM_CPU(cs);
|
||||
ARMMMUFaultInfo fi = {};
|
||||
|
||||
/* now we have a real cpu fault */
|
||||
cpu_restore_state(cs, retaddr, true);
|
||||
|
||||
fi.ea = arm_extabort_type(response);
|
||||
fi.type = ARMFault_SyncExternal;
|
||||
arm_deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
|
||||
}
|
||||
|
||||
#endif /* !defined(CONFIG_USER_ONLY) */
|
||||
|
||||
void HELPER(v8m_stackcheck)(CPUARMState *env, uint32_t newvalue)
|
||||
{
|
||||
/*
|
||||
|
200
target/arm/tlb_helper.c
Normal file
200
target/arm/tlb_helper.c
Normal file
@ -0,0 +1,200 @@
|
||||
/*
|
||||
* ARM TLB (Translation lookaside buffer) helpers.
|
||||
*
|
||||
* This code is licensed under the GNU GPL v2 or later.
|
||||
*
|
||||
* SPDX-License-Identifier: GPL-2.0-or-later
|
||||
*/
|
||||
#include "qemu/osdep.h"
|
||||
#include "cpu.h"
|
||||
#include "internals.h"
|
||||
#include "exec/exec-all.h"
|
||||
|
||||
#if !defined(CONFIG_USER_ONLY)
|
||||
|
||||
static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
|
||||
unsigned int target_el,
|
||||
bool same_el, bool ea,
|
||||
bool s1ptw, bool is_write,
|
||||
int fsc)
|
||||
{
|
||||
uint32_t syn;
|
||||
|
||||
/*
|
||||
* ISV is only set for data aborts routed to EL2 and
|
||||
* never for stage-1 page table walks faulting on stage 2.
|
||||
*
|
||||
* Furthermore, ISV is only set for certain kinds of load/stores.
|
||||
* If the template syndrome does not have ISV set, we should leave
|
||||
* it cleared.
|
||||
*
|
||||
* See ARMv8 specs, D7-1974:
|
||||
* ISS encoding for an exception from a Data Abort, the
|
||||
* ISV field.
|
||||
*/
|
||||
if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) {
|
||||
syn = syn_data_abort_no_iss(same_el,
|
||||
ea, 0, s1ptw, is_write, fsc);
|
||||
} else {
|
||||
/*
|
||||
* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
|
||||
* syndrome created at translation time.
|
||||
* Now we create the runtime syndrome with the remaining fields.
|
||||
*/
|
||||
syn = syn_data_abort_with_iss(same_el,
|
||||
0, 0, 0, 0, 0,
|
||||
ea, 0, s1ptw, is_write, fsc,
|
||||
false);
|
||||
/* Merge the runtime syndrome with the template syndrome. */
|
||||
syn |= template_syn;
|
||||
}
|
||||
return syn;
|
||||
}
|
||||
|
||||
static void QEMU_NORETURN arm_deliver_fault(ARMCPU *cpu, vaddr addr,
|
||||
MMUAccessType access_type,
|
||||
int mmu_idx, ARMMMUFaultInfo *fi)
|
||||
{
|
||||
CPUARMState *env = &cpu->env;
|
||||
int target_el;
|
||||
bool same_el;
|
||||
uint32_t syn, exc, fsr, fsc;
|
||||
ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
|
||||
|
||||
target_el = exception_target_el(env);
|
||||
if (fi->stage2) {
|
||||
target_el = 2;
|
||||
env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4;
|
||||
}
|
||||
same_el = (arm_current_el(env) == target_el);
|
||||
|
||||
if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
|
||||
arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) {
|
||||
/*
|
||||
* LPAE format fault status register : bottom 6 bits are
|
||||
* status code in the same form as needed for syndrome
|
||||
*/
|
||||
fsr = arm_fi_to_lfsc(fi);
|
||||
fsc = extract32(fsr, 0, 6);
|
||||
} else {
|
||||
fsr = arm_fi_to_sfsc(fi);
|
||||
/*
|
||||
* Short format FSR : this fault will never actually be reported
|
||||
* to an EL that uses a syndrome register. Use a (currently)
|
||||
* reserved FSR code in case the constructed syndrome does leak
|
||||
* into the guest somehow.
|
||||
*/
|
||||
fsc = 0x3f;
|
||||
}
|
||||
|
||||
if (access_type == MMU_INST_FETCH) {
|
||||
syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc);
|
||||
exc = EXCP_PREFETCH_ABORT;
|
||||
} else {
|
||||
syn = merge_syn_data_abort(env->exception.syndrome, target_el,
|
||||
same_el, fi->ea, fi->s1ptw,
|
||||
access_type == MMU_DATA_STORE,
|
||||
fsc);
|
||||
if (access_type == MMU_DATA_STORE
|
||||
&& arm_feature(env, ARM_FEATURE_V6)) {
|
||||
fsr |= (1 << 11);
|
||||
}
|
||||
exc = EXCP_DATA_ABORT;
|
||||
}
|
||||
|
||||
env->exception.vaddress = addr;
|
||||
env->exception.fsr = fsr;
|
||||
raise_exception(env, exc, syn, target_el);
|
||||
}
|
||||
|
||||
/* Raise a data fault alignment exception for the specified virtual address */
|
||||
void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
|
||||
MMUAccessType access_type,
|
||||
int mmu_idx, uintptr_t retaddr)
|
||||
{
|
||||
ARMCPU *cpu = ARM_CPU(cs);
|
||||
ARMMMUFaultInfo fi = {};
|
||||
|
||||
/* now we have a real cpu fault */
|
||||
cpu_restore_state(cs, retaddr, true);
|
||||
|
||||
fi.type = ARMFault_Alignment;
|
||||
arm_deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi);
|
||||
}
|
||||
|
||||
/*
|
||||
* arm_cpu_do_transaction_failed: handle a memory system error response
|
||||
* (eg "no device/memory present at address") by raising an external abort
|
||||
* exception
|
||||
*/
|
||||
void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
|
||||
vaddr addr, unsigned size,
|
||||
MMUAccessType access_type,
|
||||
int mmu_idx, MemTxAttrs attrs,
|
||||
MemTxResult response, uintptr_t retaddr)
|
||||
{
|
||||
ARMCPU *cpu = ARM_CPU(cs);
|
||||
ARMMMUFaultInfo fi = {};
|
||||
|
||||
/* now we have a real cpu fault */
|
||||
cpu_restore_state(cs, retaddr, true);
|
||||
|
||||
fi.ea = arm_extabort_type(response);
|
||||
fi.type = ARMFault_SyncExternal;
|
||||
arm_deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
|
||||
}
|
||||
|
||||
#endif /* !defined(CONFIG_USER_ONLY) */
|
||||
|
||||
bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
|
||||
MMUAccessType access_type, int mmu_idx,
|
||||
bool probe, uintptr_t retaddr)
|
||||
{
|
||||
ARMCPU *cpu = ARM_CPU(cs);
|
||||
|
||||
#ifdef CONFIG_USER_ONLY
|
||||
cpu->env.exception.vaddress = address;
|
||||
if (access_type == MMU_INST_FETCH) {
|
||||
cs->exception_index = EXCP_PREFETCH_ABORT;
|
||||
} else {
|
||||
cs->exception_index = EXCP_DATA_ABORT;
|
||||
}
|
||||
cpu_loop_exit_restore(cs, retaddr);
|
||||
#else
|
||||
hwaddr phys_addr;
|
||||
target_ulong page_size;
|
||||
int prot, ret;
|
||||
MemTxAttrs attrs = {};
|
||||
ARMMMUFaultInfo fi = {};
|
||||
|
||||
/*
|
||||
* Walk the page table and (if the mapping exists) add the page
|
||||
* to the TLB. On success, return true. Otherwise, if probing,
|
||||
* return false. Otherwise populate fsr with ARM DFSR/IFSR fault
|
||||
* register format, and signal the fault.
|
||||
*/
|
||||
ret = get_phys_addr(&cpu->env, address, access_type,
|
||||
core_to_arm_mmu_idx(&cpu->env, mmu_idx),
|
||||
&phys_addr, &attrs, &prot, &page_size, &fi, NULL);
|
||||
if (likely(!ret)) {
|
||||
/*
|
||||
* Map a single [sub]page. Regions smaller than our declared
|
||||
* target page size are handled specially, so for those we
|
||||
* pass in the exact addresses.
|
||||
*/
|
||||
if (page_size >= TARGET_PAGE_SIZE) {
|
||||
phys_addr &= TARGET_PAGE_MASK;
|
||||
address &= TARGET_PAGE_MASK;
|
||||
}
|
||||
tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
|
||||
prot, mmu_idx, page_size);
|
||||
return true;
|
||||
} else if (probe) {
|
||||
return false;
|
||||
} else {
|
||||
/* now we have a real cpu fault */
|
||||
cpu_restore_state(cs, retaddr, true);
|
||||
arm_deliver_fault(cpu, address, access_type, mmu_idx, &fi);
|
||||
}
|
||||
#endif
|
||||
}
|
Loading…
Reference in New Issue
Block a user