linux-headers: Update to v5.18-rc6

Update to c5eb0a61238d ("Linux 5.18-rc6").  Mechanical search and
replace of vfio defines with white space massaging.

Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
This commit is contained in:
Alex Williamson 2022-05-13 08:20:08 -06:00
parent 9de5f2b408
commit e4082063e4
13 changed files with 383 additions and 235 deletions

View File

@ -355,7 +355,7 @@ static bool vfio_devices_all_dirty_tracking(VFIOContainer *container)
} }
if ((vbasedev->pre_copy_dirty_page_tracking == ON_OFF_AUTO_OFF) if ((vbasedev->pre_copy_dirty_page_tracking == ON_OFF_AUTO_OFF)
&& (migration->device_state & VFIO_DEVICE_STATE_RUNNING)) { && (migration->device_state & VFIO_DEVICE_STATE_V1_RUNNING)) {
return false; return false;
} }
} }
@ -381,8 +381,8 @@ static bool vfio_devices_all_running_and_saving(VFIOContainer *container)
return false; return false;
} }
if ((migration->device_state & VFIO_DEVICE_STATE_SAVING) && if ((migration->device_state & VFIO_DEVICE_STATE_V1_SAVING) &&
(migration->device_state & VFIO_DEVICE_STATE_RUNNING)) { (migration->device_state & VFIO_DEVICE_STATE_V1_RUNNING)) {
continue; continue;
} else { } else {
return false; return false;

View File

@ -432,7 +432,7 @@ static int vfio_save_setup(QEMUFile *f, void *opaque)
} }
ret = vfio_migration_set_state(vbasedev, VFIO_DEVICE_STATE_MASK, ret = vfio_migration_set_state(vbasedev, VFIO_DEVICE_STATE_MASK,
VFIO_DEVICE_STATE_SAVING); VFIO_DEVICE_STATE_V1_SAVING);
if (ret) { if (ret) {
error_report("%s: Failed to set state SAVING", vbasedev->name); error_report("%s: Failed to set state SAVING", vbasedev->name);
return ret; return ret;
@ -531,8 +531,8 @@ static int vfio_save_complete_precopy(QEMUFile *f, void *opaque)
uint64_t data_size; uint64_t data_size;
int ret; int ret;
ret = vfio_migration_set_state(vbasedev, ~VFIO_DEVICE_STATE_RUNNING, ret = vfio_migration_set_state(vbasedev, ~VFIO_DEVICE_STATE_V1_RUNNING,
VFIO_DEVICE_STATE_SAVING); VFIO_DEVICE_STATE_V1_SAVING);
if (ret) { if (ret) {
error_report("%s: Failed to set state STOP and SAVING", error_report("%s: Failed to set state STOP and SAVING",
vbasedev->name); vbasedev->name);
@ -569,7 +569,7 @@ static int vfio_save_complete_precopy(QEMUFile *f, void *opaque)
return ret; return ret;
} }
ret = vfio_migration_set_state(vbasedev, ~VFIO_DEVICE_STATE_SAVING, 0); ret = vfio_migration_set_state(vbasedev, ~VFIO_DEVICE_STATE_V1_SAVING, 0);
if (ret) { if (ret) {
error_report("%s: Failed to set state STOPPED", vbasedev->name); error_report("%s: Failed to set state STOPPED", vbasedev->name);
return ret; return ret;
@ -609,7 +609,7 @@ static int vfio_load_setup(QEMUFile *f, void *opaque)
} }
ret = vfio_migration_set_state(vbasedev, ~VFIO_DEVICE_STATE_MASK, ret = vfio_migration_set_state(vbasedev, ~VFIO_DEVICE_STATE_MASK,
VFIO_DEVICE_STATE_RESUMING); VFIO_DEVICE_STATE_V1_RESUMING);
if (ret) { if (ret) {
error_report("%s: Failed to set state RESUMING", vbasedev->name); error_report("%s: Failed to set state RESUMING", vbasedev->name);
if (migration->region.mmaps) { if (migration->region.mmaps) {
@ -717,20 +717,20 @@ static void vfio_vmstate_change(void *opaque, bool running, RunState state)
* In both the above cases, set _RUNNING bit. * In both the above cases, set _RUNNING bit.
*/ */
mask = ~VFIO_DEVICE_STATE_MASK; mask = ~VFIO_DEVICE_STATE_MASK;
value = VFIO_DEVICE_STATE_RUNNING; value = VFIO_DEVICE_STATE_V1_RUNNING;
} else { } else {
/* /*
* Here device state could be either _RUNNING or _SAVING|_RUNNING. Reset * Here device state could be either _RUNNING or _SAVING|_RUNNING. Reset
* _RUNNING bit * _RUNNING bit
*/ */
mask = ~VFIO_DEVICE_STATE_RUNNING; mask = ~VFIO_DEVICE_STATE_V1_RUNNING;
/* /*
* When VM state transition to stop for savevm command, device should * When VM state transition to stop for savevm command, device should
* start saving data. * start saving data.
*/ */
if (state == RUN_STATE_SAVE_VM) { if (state == RUN_STATE_SAVE_VM) {
value = VFIO_DEVICE_STATE_SAVING; value = VFIO_DEVICE_STATE_V1_SAVING;
} else { } else {
value = 0; value = 0;
} }
@ -768,8 +768,9 @@ static void vfio_migration_state_notifier(Notifier *notifier, void *data)
case MIGRATION_STATUS_FAILED: case MIGRATION_STATUS_FAILED:
bytes_transferred = 0; bytes_transferred = 0;
ret = vfio_migration_set_state(vbasedev, ret = vfio_migration_set_state(vbasedev,
~(VFIO_DEVICE_STATE_SAVING | VFIO_DEVICE_STATE_RESUMING), ~(VFIO_DEVICE_STATE_V1_SAVING |
VFIO_DEVICE_STATE_RUNNING); VFIO_DEVICE_STATE_V1_RESUMING),
VFIO_DEVICE_STATE_V1_RUNNING);
if (ret) { if (ret) {
error_report("%s: Failed to set state RUNNING", vbasedev->name); error_report("%s: Failed to set state RUNNING", vbasedev->name);
} }
@ -864,8 +865,10 @@ int vfio_migration_probe(VFIODevice *vbasedev, Error **errp)
goto add_blocker; goto add_blocker;
} }
ret = vfio_get_dev_region_info(vbasedev, VFIO_REGION_TYPE_MIGRATION, ret = vfio_get_dev_region_info(vbasedev,
VFIO_REGION_SUBTYPE_MIGRATION, &info); VFIO_REGION_TYPE_MIGRATION_DEPRECATED,
VFIO_REGION_SUBTYPE_MIGRATION_DEPRECATED,
&info);
if (ret) { if (ret) {
goto add_blocker; goto add_blocker;
} }

View File

@ -278,7 +278,8 @@
#define KEY_PAUSECD 201 #define KEY_PAUSECD 201
#define KEY_PROG3 202 #define KEY_PROG3 202
#define KEY_PROG4 203 #define KEY_PROG4 203
#define KEY_DASHBOARD 204 /* AL Dashboard */ #define KEY_ALL_APPLICATIONS 204 /* AC Desktop Show All Applications */
#define KEY_DASHBOARD KEY_ALL_APPLICATIONS
#define KEY_SUSPEND 205 #define KEY_SUSPEND 205
#define KEY_CLOSE 206 /* AC Close */ #define KEY_CLOSE 206 /* AC Close */
#define KEY_PLAY 207 #define KEY_PLAY 207
@ -612,6 +613,7 @@
#define KEY_ASSISTANT 0x247 /* AL Context-aware desktop assistant */ #define KEY_ASSISTANT 0x247 /* AL Context-aware desktop assistant */
#define KEY_KBD_LAYOUT_NEXT 0x248 /* AC Next Keyboard Layout Select */ #define KEY_KBD_LAYOUT_NEXT 0x248 /* AC Next Keyboard Layout Select */
#define KEY_EMOJI_PICKER 0x249 /* Show/hide emoji picker (HUTRR101) */ #define KEY_EMOJI_PICKER 0x249 /* Show/hide emoji picker (HUTRR101) */
#define KEY_DICTATE 0x24a /* Start or Stop Voice Dictation Session (HUTRR99) */
#define KEY_BRIGHTNESS_MIN 0x250 /* Set Brightness to Minimum */ #define KEY_BRIGHTNESS_MIN 0x250 /* Set Brightness to Minimum */
#define KEY_BRIGHTNESS_MAX 0x251 /* Set Brightness to Maximum */ #define KEY_BRIGHTNESS_MAX 0x251 /* Set Brightness to Maximum */
@ -660,6 +662,27 @@
/* Select an area of screen to be copied */ /* Select an area of screen to be copied */
#define KEY_SELECTIVE_SCREENSHOT 0x27a #define KEY_SELECTIVE_SCREENSHOT 0x27a
/* Move the focus to the next or previous user controllable element within a UI container */
#define KEY_NEXT_ELEMENT 0x27b
#define KEY_PREVIOUS_ELEMENT 0x27c
/* Toggle Autopilot engagement */
#define KEY_AUTOPILOT_ENGAGE_TOGGLE 0x27d
/* Shortcut Keys */
#define KEY_MARK_WAYPOINT 0x27e
#define KEY_SOS 0x27f
#define KEY_NAV_CHART 0x280
#define KEY_FISHING_CHART 0x281
#define KEY_SINGLE_RANGE_RADAR 0x282
#define KEY_DUAL_RANGE_RADAR 0x283
#define KEY_RADAR_OVERLAY 0x284
#define KEY_TRADITIONAL_SONAR 0x285
#define KEY_CLEARVU_SONAR 0x286
#define KEY_SIDEVU_SONAR 0x287
#define KEY_NAV_INFO 0x288
#define KEY_BRIGHTNESS_MENU 0x289
/* /*
* Some keyboards have keys which do not have a defined meaning, these keys * Some keyboards have keys which do not have a defined meaning, these keys
* are intended to be programmed / bound to macros by the user. For most * are intended to be programmed / bound to macros by the user. For most

View File

@ -80,6 +80,12 @@
/* This feature indicates support for the packed virtqueue layout. */ /* This feature indicates support for the packed virtqueue layout. */
#define VIRTIO_F_RING_PACKED 34 #define VIRTIO_F_RING_PACKED 34
/*
* Inorder feature indicates that all buffers are used by the device
* in the same order in which they have been made available.
*/
#define VIRTIO_F_IN_ORDER 35
/* /*
* This feature indicates that memory accesses by the driver and the * This feature indicates that memory accesses by the driver and the
* device are ordered in a way described by the platform. * device are ordered in a way described by the platform.

View File

@ -37,6 +37,7 @@
#define VIRTIO_CRYPTO_SERVICE_HASH 1 #define VIRTIO_CRYPTO_SERVICE_HASH 1
#define VIRTIO_CRYPTO_SERVICE_MAC 2 #define VIRTIO_CRYPTO_SERVICE_MAC 2
#define VIRTIO_CRYPTO_SERVICE_AEAD 3 #define VIRTIO_CRYPTO_SERVICE_AEAD 3
#define VIRTIO_CRYPTO_SERVICE_AKCIPHER 4
#define VIRTIO_CRYPTO_OPCODE(service, op) (((service) << 8) | (op)) #define VIRTIO_CRYPTO_OPCODE(service, op) (((service) << 8) | (op))
@ -57,6 +58,10 @@ struct virtio_crypto_ctrl_header {
VIRTIO_CRYPTO_OPCODE(VIRTIO_CRYPTO_SERVICE_AEAD, 0x02) VIRTIO_CRYPTO_OPCODE(VIRTIO_CRYPTO_SERVICE_AEAD, 0x02)
#define VIRTIO_CRYPTO_AEAD_DESTROY_SESSION \ #define VIRTIO_CRYPTO_AEAD_DESTROY_SESSION \
VIRTIO_CRYPTO_OPCODE(VIRTIO_CRYPTO_SERVICE_AEAD, 0x03) VIRTIO_CRYPTO_OPCODE(VIRTIO_CRYPTO_SERVICE_AEAD, 0x03)
#define VIRTIO_CRYPTO_AKCIPHER_CREATE_SESSION \
VIRTIO_CRYPTO_OPCODE(VIRTIO_CRYPTO_SERVICE_AKCIPHER, 0x04)
#define VIRTIO_CRYPTO_AKCIPHER_DESTROY_SESSION \
VIRTIO_CRYPTO_OPCODE(VIRTIO_CRYPTO_SERVICE_AKCIPHER, 0x05)
uint32_t opcode; uint32_t opcode;
uint32_t algo; uint32_t algo;
uint32_t flag; uint32_t flag;
@ -180,6 +185,58 @@ struct virtio_crypto_aead_create_session_req {
uint8_t padding[32]; uint8_t padding[32];
}; };
struct virtio_crypto_rsa_session_para {
#define VIRTIO_CRYPTO_RSA_RAW_PADDING 0
#define VIRTIO_CRYPTO_RSA_PKCS1_PADDING 1
uint32_t padding_algo;
#define VIRTIO_CRYPTO_RSA_NO_HASH 0
#define VIRTIO_CRYPTO_RSA_MD2 1
#define VIRTIO_CRYPTO_RSA_MD3 2
#define VIRTIO_CRYPTO_RSA_MD4 3
#define VIRTIO_CRYPTO_RSA_MD5 4
#define VIRTIO_CRYPTO_RSA_SHA1 5
#define VIRTIO_CRYPTO_RSA_SHA256 6
#define VIRTIO_CRYPTO_RSA_SHA384 7
#define VIRTIO_CRYPTO_RSA_SHA512 8
#define VIRTIO_CRYPTO_RSA_SHA224 9
uint32_t hash_algo;
};
struct virtio_crypto_ecdsa_session_para {
#define VIRTIO_CRYPTO_CURVE_UNKNOWN 0
#define VIRTIO_CRYPTO_CURVE_NIST_P192 1
#define VIRTIO_CRYPTO_CURVE_NIST_P224 2
#define VIRTIO_CRYPTO_CURVE_NIST_P256 3
#define VIRTIO_CRYPTO_CURVE_NIST_P384 4
#define VIRTIO_CRYPTO_CURVE_NIST_P521 5
uint32_t curve_id;
uint32_t padding;
};
struct virtio_crypto_akcipher_session_para {
#define VIRTIO_CRYPTO_NO_AKCIPHER 0
#define VIRTIO_CRYPTO_AKCIPHER_RSA 1
#define VIRTIO_CRYPTO_AKCIPHER_DSA 2
#define VIRTIO_CRYPTO_AKCIPHER_ECDSA 3
uint32_t algo;
#define VIRTIO_CRYPTO_AKCIPHER_KEY_TYPE_PUBLIC 1
#define VIRTIO_CRYPTO_AKCIPHER_KEY_TYPE_PRIVATE 2
uint32_t keytype;
uint32_t keylen;
union {
struct virtio_crypto_rsa_session_para rsa;
struct virtio_crypto_ecdsa_session_para ecdsa;
} u;
};
struct virtio_crypto_akcipher_create_session_req {
struct virtio_crypto_akcipher_session_para para;
uint8_t padding[36];
};
struct virtio_crypto_alg_chain_session_para { struct virtio_crypto_alg_chain_session_para {
#define VIRTIO_CRYPTO_SYM_ALG_CHAIN_ORDER_HASH_THEN_CIPHER 1 #define VIRTIO_CRYPTO_SYM_ALG_CHAIN_ORDER_HASH_THEN_CIPHER 1
#define VIRTIO_CRYPTO_SYM_ALG_CHAIN_ORDER_CIPHER_THEN_HASH 2 #define VIRTIO_CRYPTO_SYM_ALG_CHAIN_ORDER_CIPHER_THEN_HASH 2
@ -247,6 +304,8 @@ struct virtio_crypto_op_ctrl_req {
mac_create_session; mac_create_session;
struct virtio_crypto_aead_create_session_req struct virtio_crypto_aead_create_session_req
aead_create_session; aead_create_session;
struct virtio_crypto_akcipher_create_session_req
akcipher_create_session;
struct virtio_crypto_destroy_session_req struct virtio_crypto_destroy_session_req
destroy_session; destroy_session;
uint8_t padding[56]; uint8_t padding[56];
@ -266,6 +325,14 @@ struct virtio_crypto_op_header {
VIRTIO_CRYPTO_OPCODE(VIRTIO_CRYPTO_SERVICE_AEAD, 0x00) VIRTIO_CRYPTO_OPCODE(VIRTIO_CRYPTO_SERVICE_AEAD, 0x00)
#define VIRTIO_CRYPTO_AEAD_DECRYPT \ #define VIRTIO_CRYPTO_AEAD_DECRYPT \
VIRTIO_CRYPTO_OPCODE(VIRTIO_CRYPTO_SERVICE_AEAD, 0x01) VIRTIO_CRYPTO_OPCODE(VIRTIO_CRYPTO_SERVICE_AEAD, 0x01)
#define VIRTIO_CRYPTO_AKCIPHER_ENCRYPT \
VIRTIO_CRYPTO_OPCODE(VIRTIO_CRYPTO_SERVICE_AKCIPHER, 0x00)
#define VIRTIO_CRYPTO_AKCIPHER_DECRYPT \
VIRTIO_CRYPTO_OPCODE(VIRTIO_CRYPTO_SERVICE_AKCIPHER, 0x01)
#define VIRTIO_CRYPTO_AKCIPHER_SIGN \
VIRTIO_CRYPTO_OPCODE(VIRTIO_CRYPTO_SERVICE_AKCIPHER, 0x02)
#define VIRTIO_CRYPTO_AKCIPHER_VERIFY \
VIRTIO_CRYPTO_OPCODE(VIRTIO_CRYPTO_SERVICE_AKCIPHER, 0x03)
uint32_t opcode; uint32_t opcode;
/* algo should be service-specific algorithms */ /* algo should be service-specific algorithms */
uint32_t algo; uint32_t algo;
@ -390,6 +457,16 @@ struct virtio_crypto_aead_data_req {
uint8_t padding[32]; uint8_t padding[32];
}; };
struct virtio_crypto_akcipher_para {
uint32_t src_data_len;
uint32_t dst_data_len;
};
struct virtio_crypto_akcipher_data_req {
struct virtio_crypto_akcipher_para para;
uint8_t padding[40];
};
/* The request of the data virtqueue's packet */ /* The request of the data virtqueue's packet */
struct virtio_crypto_op_data_req { struct virtio_crypto_op_data_req {
struct virtio_crypto_op_header header; struct virtio_crypto_op_header header;
@ -399,6 +476,7 @@ struct virtio_crypto_op_data_req {
struct virtio_crypto_hash_data_req hash_req; struct virtio_crypto_hash_data_req hash_req;
struct virtio_crypto_mac_data_req mac_req; struct virtio_crypto_mac_data_req mac_req;
struct virtio_crypto_aead_data_req aead_req; struct virtio_crypto_aead_data_req aead_req;
struct virtio_crypto_akcipher_data_req akcipher_req;
uint8_t padding[48]; uint8_t padding[48];
} u; } u;
}; };
@ -408,6 +486,8 @@ struct virtio_crypto_op_data_req {
#define VIRTIO_CRYPTO_BADMSG 2 #define VIRTIO_CRYPTO_BADMSG 2
#define VIRTIO_CRYPTO_NOTSUPP 3 #define VIRTIO_CRYPTO_NOTSUPP 3
#define VIRTIO_CRYPTO_INVSESS 4 /* Invalid session id */ #define VIRTIO_CRYPTO_INVSESS 4 /* Invalid session id */
#define VIRTIO_CRYPTO_NOSPC 5 /* no free session ID */
#define VIRTIO_CRYPTO_KEY_REJECTED 6 /* Signature verification failed */
/* The accelerator hardware is ready */ /* The accelerator hardware is ready */
#define VIRTIO_CRYPTO_S_HW_READY (1 << 0) #define VIRTIO_CRYPTO_S_HW_READY (1 << 0)
@ -438,7 +518,7 @@ struct virtio_crypto_config {
uint32_t max_cipher_key_len; uint32_t max_cipher_key_len;
/* Maximum length of authenticated key */ /* Maximum length of authenticated key */
uint32_t max_auth_key_len; uint32_t max_auth_key_len;
uint32_t reserve; uint32_t akcipher_algo;
/* Maximum size of each crypto request's content */ /* Maximum size of each crypto request's content */
uint64_t max_size; uint64_t max_size;
}; };

View File

@ -281,6 +281,11 @@ struct kvm_arm_copy_mte_tags {
#define KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED 3 #define KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED 3
#define KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED (1U << 4) #define KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED (1U << 4)
#define KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3 KVM_REG_ARM_FW_REG(3)
#define KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_AVAIL 0
#define KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_AVAIL 1
#define KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_REQUIRED 2
/* SVE registers */ /* SVE registers */
#define KVM_REG_ARM64_SVE (0x15 << KVM_REG_ARM_COPROC_SHIFT) #define KVM_REG_ARM64_SVE (0x15 << KVM_REG_ARM_COPROC_SHIFT)
@ -362,6 +367,7 @@ struct kvm_arm_copy_mte_tags {
#define KVM_ARM_VCPU_PMU_V3_IRQ 0 #define KVM_ARM_VCPU_PMU_V3_IRQ 0
#define KVM_ARM_VCPU_PMU_V3_INIT 1 #define KVM_ARM_VCPU_PMU_V3_INIT 1
#define KVM_ARM_VCPU_PMU_V3_FILTER 2 #define KVM_ARM_VCPU_PMU_V3_FILTER 2
#define KVM_ARM_VCPU_PMU_V3_SET_PMU 3
#define KVM_ARM_VCPU_TIMER_CTRL 1 #define KVM_ARM_VCPU_TIMER_CTRL 1
#define KVM_ARM_VCPU_TIMER_IRQ_VTIMER 0 #define KVM_ARM_VCPU_TIMER_IRQ_VTIMER 0
#define KVM_ARM_VCPU_TIMER_IRQ_PTIMER 1 #define KVM_ARM_VCPU_TIMER_IRQ_PTIMER 1
@ -411,6 +417,16 @@ struct kvm_arm_copy_mte_tags {
#define KVM_PSCI_RET_INVAL PSCI_RET_INVALID_PARAMS #define KVM_PSCI_RET_INVAL PSCI_RET_INVALID_PARAMS
#define KVM_PSCI_RET_DENIED PSCI_RET_DENIED #define KVM_PSCI_RET_DENIED PSCI_RET_DENIED
/* arm64-specific kvm_run::system_event flags */
/*
* Reset caused by a PSCI v1.1 SYSTEM_RESET2 call.
* Valid only when the system event has a type of KVM_SYSTEM_EVENT_RESET.
*/
#define KVM_SYSTEM_EVENT_RESET_FLAG_PSCI_RESET2 (1ULL << 0)
/* run->fail_entry.hardware_entry_failure_reason codes. */
#define KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED (1ULL << 0)
#endif #endif
#endif /* __ARM_KVM_H__ */ #endif /* __ARM_KVM_H__ */

View File

@ -75,6 +75,8 @@
#define MADV_POPULATE_READ 22 /* populate (prefault) page tables readable */ #define MADV_POPULATE_READ 22 /* populate (prefault) page tables readable */
#define MADV_POPULATE_WRITE 23 /* populate (prefault) page tables writable */ #define MADV_POPULATE_WRITE 23 /* populate (prefault) page tables writable */
#define MADV_DONTNEED_LOCKED 24 /* like DONTNEED, but drop locked pages too */
/* compatibility flags */ /* compatibility flags */
#define MAP_FILE 0 #define MAP_FILE 0

View File

@ -101,6 +101,8 @@
#define MADV_POPULATE_READ 22 /* populate (prefault) page tables readable */ #define MADV_POPULATE_READ 22 /* populate (prefault) page tables readable */
#define MADV_POPULATE_WRITE 23 /* populate (prefault) page tables writable */ #define MADV_POPULATE_WRITE 23 /* populate (prefault) page tables writable */
#define MADV_DONTNEED_LOCKED 24 /* like DONTNEED, but drop locked pages too */
/* compatibility flags */ /* compatibility flags */
#define MAP_FILE 0 #define MAP_FILE 0

View File

@ -445,7 +445,11 @@ struct kvm_run {
#define KVM_SYSTEM_EVENT_RESET 2 #define KVM_SYSTEM_EVENT_RESET 2
#define KVM_SYSTEM_EVENT_CRASH 3 #define KVM_SYSTEM_EVENT_CRASH 3
__u32 type; __u32 type;
__u64 flags; __u32 ndata;
union {
__u64 flags;
__u64 data[16];
};
} system_event; } system_event;
/* KVM_EXIT_S390_STSI */ /* KVM_EXIT_S390_STSI */
struct { struct {
@ -562,9 +566,12 @@ struct kvm_s390_mem_op {
__u32 op; /* type of operation */ __u32 op; /* type of operation */
__u64 buf; /* buffer in userspace */ __u64 buf; /* buffer in userspace */
union { union {
__u8 ar; /* the access register number */ struct {
__u8 ar; /* the access register number */
__u8 key; /* access key, ignored if flag unset */
};
__u32 sida_offset; /* offset into the sida */ __u32 sida_offset; /* offset into the sida */
__u8 reserved[32]; /* should be set to 0 */ __u8 reserved[32]; /* ignored */
}; };
}; };
/* types for kvm_s390_mem_op->op */ /* types for kvm_s390_mem_op->op */
@ -572,9 +579,12 @@ struct kvm_s390_mem_op {
#define KVM_S390_MEMOP_LOGICAL_WRITE 1 #define KVM_S390_MEMOP_LOGICAL_WRITE 1
#define KVM_S390_MEMOP_SIDA_READ 2 #define KVM_S390_MEMOP_SIDA_READ 2
#define KVM_S390_MEMOP_SIDA_WRITE 3 #define KVM_S390_MEMOP_SIDA_WRITE 3
#define KVM_S390_MEMOP_ABSOLUTE_READ 4
#define KVM_S390_MEMOP_ABSOLUTE_WRITE 5
/* flags for kvm_s390_mem_op->flags */ /* flags for kvm_s390_mem_op->flags */
#define KVM_S390_MEMOP_F_CHECK_ONLY (1ULL << 0) #define KVM_S390_MEMOP_F_CHECK_ONLY (1ULL << 0)
#define KVM_S390_MEMOP_F_INJECT_EXCEPTION (1ULL << 1) #define KVM_S390_MEMOP_F_INJECT_EXCEPTION (1ULL << 1)
#define KVM_S390_MEMOP_F_SKEY_PROTECTION (1ULL << 2)
/* for KVM_INTERRUPT */ /* for KVM_INTERRUPT */
struct kvm_interrupt { struct kvm_interrupt {
@ -1134,6 +1144,12 @@ struct kvm_ppc_resize_hpt {
#define KVM_CAP_VM_GPA_BITS 207 #define KVM_CAP_VM_GPA_BITS 207
#define KVM_CAP_XSAVE2 208 #define KVM_CAP_XSAVE2 208
#define KVM_CAP_SYS_ATTRIBUTES 209 #define KVM_CAP_SYS_ATTRIBUTES 209
#define KVM_CAP_PPC_AIL_MODE_3 210
#define KVM_CAP_S390_MEM_OP_EXTENSION 211
#define KVM_CAP_PMU_CAPABILITY 212
#define KVM_CAP_DISABLE_QUIRKS2 213
/* #define KVM_CAP_VM_TSC_CONTROL 214 */
#define KVM_CAP_SYSTEM_EVENT_DATA 215
#ifdef KVM_CAP_IRQ_ROUTING #ifdef KVM_CAP_IRQ_ROUTING
@ -1624,9 +1640,6 @@ struct kvm_enc_region {
#define KVM_S390_NORMAL_RESET _IO(KVMIO, 0xc3) #define KVM_S390_NORMAL_RESET _IO(KVMIO, 0xc3)
#define KVM_S390_CLEAR_RESET _IO(KVMIO, 0xc4) #define KVM_S390_CLEAR_RESET _IO(KVMIO, 0xc4)
/* Available with KVM_CAP_XSAVE2 */
#define KVM_GET_XSAVE2 _IOR(KVMIO, 0xcf, struct kvm_xsave)
struct kvm_s390_pv_sec_parm { struct kvm_s390_pv_sec_parm {
__u64 origin; __u64 origin;
__u64 length; __u64 length;
@ -1973,6 +1986,8 @@ struct kvm_dirty_gfn {
#define KVM_BUS_LOCK_DETECTION_OFF (1 << 0) #define KVM_BUS_LOCK_DETECTION_OFF (1 << 0)
#define KVM_BUS_LOCK_DETECTION_EXIT (1 << 1) #define KVM_BUS_LOCK_DETECTION_EXIT (1 << 1)
#define KVM_PMU_CAP_DISABLE (1 << 0)
/** /**
* struct kvm_stats_header - Header of per vm/vcpu binary statistics data. * struct kvm_stats_header - Header of per vm/vcpu binary statistics data.
* @flags: Some extra information for header, always 0 for now. * @flags: Some extra information for header, always 0 for now.

View File

@ -82,6 +82,10 @@
#define PSCI_0_2_TOS_UP_NO_MIGRATE 1 #define PSCI_0_2_TOS_UP_NO_MIGRATE 1
#define PSCI_0_2_TOS_MP 2 #define PSCI_0_2_TOS_MP 2
/* PSCI v1.1 reset type encoding for SYSTEM_RESET2 */
#define PSCI_1_1_RESET_TYPE_SYSTEM_WARM_RESET 0
#define PSCI_1_1_RESET_TYPE_VENDOR_START 0x80000000U
/* PSCI version decoding (independent of PSCI version) */ /* PSCI version decoding (independent of PSCI version) */
#define PSCI_VERSION_MAJOR_SHIFT 16 #define PSCI_VERSION_MAJOR_SHIFT 16
#define PSCI_VERSION_MINOR_MASK \ #define PSCI_VERSION_MINOR_MASK \

View File

@ -32,7 +32,8 @@
UFFD_FEATURE_SIGBUS | \ UFFD_FEATURE_SIGBUS | \
UFFD_FEATURE_THREAD_ID | \ UFFD_FEATURE_THREAD_ID | \
UFFD_FEATURE_MINOR_HUGETLBFS | \ UFFD_FEATURE_MINOR_HUGETLBFS | \
UFFD_FEATURE_MINOR_SHMEM) UFFD_FEATURE_MINOR_SHMEM | \
UFFD_FEATURE_EXACT_ADDRESS)
#define UFFD_API_IOCTLS \ #define UFFD_API_IOCTLS \
((__u64)1 << _UFFDIO_REGISTER | \ ((__u64)1 << _UFFDIO_REGISTER | \
(__u64)1 << _UFFDIO_UNREGISTER | \ (__u64)1 << _UFFDIO_UNREGISTER | \
@ -189,6 +190,10 @@ struct uffdio_api {
* *
* UFFD_FEATURE_MINOR_SHMEM indicates the same support as * UFFD_FEATURE_MINOR_SHMEM indicates the same support as
* UFFD_FEATURE_MINOR_HUGETLBFS, but for shmem-backed pages instead. * UFFD_FEATURE_MINOR_HUGETLBFS, but for shmem-backed pages instead.
*
* UFFD_FEATURE_EXACT_ADDRESS indicates that the exact address of page
* faults would be provided and the offset within the page would not be
* masked.
*/ */
#define UFFD_FEATURE_PAGEFAULT_FLAG_WP (1<<0) #define UFFD_FEATURE_PAGEFAULT_FLAG_WP (1<<0)
#define UFFD_FEATURE_EVENT_FORK (1<<1) #define UFFD_FEATURE_EVENT_FORK (1<<1)
@ -201,6 +206,7 @@ struct uffdio_api {
#define UFFD_FEATURE_THREAD_ID (1<<8) #define UFFD_FEATURE_THREAD_ID (1<<8)
#define UFFD_FEATURE_MINOR_HUGETLBFS (1<<9) #define UFFD_FEATURE_MINOR_HUGETLBFS (1<<9)
#define UFFD_FEATURE_MINOR_SHMEM (1<<10) #define UFFD_FEATURE_MINOR_SHMEM (1<<10)
#define UFFD_FEATURE_EXACT_ADDRESS (1<<11)
__u64 features; __u64 features;
__u64 ioctls; __u64 ioctls;

View File

@ -323,7 +323,7 @@ struct vfio_region_info_cap_type {
#define VFIO_REGION_TYPE_PCI_VENDOR_MASK (0xffff) #define VFIO_REGION_TYPE_PCI_VENDOR_MASK (0xffff)
#define VFIO_REGION_TYPE_GFX (1) #define VFIO_REGION_TYPE_GFX (1)
#define VFIO_REGION_TYPE_CCW (2) #define VFIO_REGION_TYPE_CCW (2)
#define VFIO_REGION_TYPE_MIGRATION (3) #define VFIO_REGION_TYPE_MIGRATION_DEPRECATED (3)
/* sub-types for VFIO_REGION_TYPE_PCI_* */ /* sub-types for VFIO_REGION_TYPE_PCI_* */
@ -405,225 +405,29 @@ struct vfio_region_gfx_edid {
#define VFIO_REGION_SUBTYPE_CCW_CRW (3) #define VFIO_REGION_SUBTYPE_CCW_CRW (3)
/* sub-types for VFIO_REGION_TYPE_MIGRATION */ /* sub-types for VFIO_REGION_TYPE_MIGRATION */
#define VFIO_REGION_SUBTYPE_MIGRATION (1) #define VFIO_REGION_SUBTYPE_MIGRATION_DEPRECATED (1)
/*
* The structure vfio_device_migration_info is placed at the 0th offset of
* the VFIO_REGION_SUBTYPE_MIGRATION region to get and set VFIO device related
* migration information. Field accesses from this structure are only supported
* at their native width and alignment. Otherwise, the result is undefined and
* vendor drivers should return an error.
*
* device_state: (read/write)
* - The user application writes to this field to inform the vendor driver
* about the device state to be transitioned to.
* - The vendor driver should take the necessary actions to change the
* device state. After successful transition to a given state, the
* vendor driver should return success on write(device_state, state)
* system call. If the device state transition fails, the vendor driver
* should return an appropriate -errno for the fault condition.
* - On the user application side, if the device state transition fails,
* that is, if write(device_state, state) returns an error, read
* device_state again to determine the current state of the device from
* the vendor driver.
* - The vendor driver should return previous state of the device unless
* the vendor driver has encountered an internal error, in which case
* the vendor driver may report the device_state VFIO_DEVICE_STATE_ERROR.
* - The user application must use the device reset ioctl to recover the
* device from VFIO_DEVICE_STATE_ERROR state. If the device is
* indicated to be in a valid device state by reading device_state, the
* user application may attempt to transition the device to any valid
* state reachable from the current state or terminate itself.
*
* device_state consists of 3 bits:
* - If bit 0 is set, it indicates the _RUNNING state. If bit 0 is clear,
* it indicates the _STOP state. When the device state is changed to
* _STOP, driver should stop the device before write() returns.
* - If bit 1 is set, it indicates the _SAVING state, which means that the
* driver should start gathering device state information that will be
* provided to the VFIO user application to save the device's state.
* - If bit 2 is set, it indicates the _RESUMING state, which means that
* the driver should prepare to resume the device. Data provided through
* the migration region should be used to resume the device.
* Bits 3 - 31 are reserved for future use. To preserve them, the user
* application should perform a read-modify-write operation on this
* field when modifying the specified bits.
*
* +------- _RESUMING
* |+------ _SAVING
* ||+----- _RUNNING
* |||
* 000b => Device Stopped, not saving or resuming
* 001b => Device running, which is the default state
* 010b => Stop the device & save the device state, stop-and-copy state
* 011b => Device running and save the device state, pre-copy state
* 100b => Device stopped and the device state is resuming
* 101b => Invalid state
* 110b => Error state
* 111b => Invalid state
*
* State transitions:
*
* _RESUMING _RUNNING Pre-copy Stop-and-copy _STOP
* (100b) (001b) (011b) (010b) (000b)
* 0. Running or default state
* |
*
* 1. Normal Shutdown (optional)
* |------------------------------------->|
*
* 2. Save the state or suspend
* |------------------------->|---------->|
*
* 3. Save the state during live migration
* |----------->|------------>|---------->|
*
* 4. Resuming
* |<---------|
*
* 5. Resumed
* |--------->|
*
* 0. Default state of VFIO device is _RUNNING when the user application starts.
* 1. During normal shutdown of the user application, the user application may
* optionally change the VFIO device state from _RUNNING to _STOP. This
* transition is optional. The vendor driver must support this transition but
* must not require it.
* 2. When the user application saves state or suspends the application, the
* device state transitions from _RUNNING to stop-and-copy and then to _STOP.
* On state transition from _RUNNING to stop-and-copy, driver must stop the
* device, save the device state and send it to the application through the
* migration region. The sequence to be followed for such transition is given
* below.
* 3. In live migration of user application, the state transitions from _RUNNING
* to pre-copy, to stop-and-copy, and to _STOP.
* On state transition from _RUNNING to pre-copy, the driver should start
* gathering the device state while the application is still running and send
* the device state data to application through the migration region.
* On state transition from pre-copy to stop-and-copy, the driver must stop
* the device, save the device state and send it to the user application
* through the migration region.
* Vendor drivers must support the pre-copy state even for implementations
* where no data is provided to the user before the stop-and-copy state. The
* user must not be required to consume all migration data before the device
* transitions to a new state, including the stop-and-copy state.
* The sequence to be followed for above two transitions is given below.
* 4. To start the resuming phase, the device state should be transitioned from
* the _RUNNING to the _RESUMING state.
* In the _RESUMING state, the driver should use the device state data
* received through the migration region to resume the device.
* 5. After providing saved device data to the driver, the application should
* change the state from _RESUMING to _RUNNING.
*
* reserved:
* Reads on this field return zero and writes are ignored.
*
* pending_bytes: (read only)
* The number of pending bytes still to be migrated from the vendor driver.
*
* data_offset: (read only)
* The user application should read data_offset field from the migration
* region. The user application should read the device data from this
* offset within the migration region during the _SAVING state or write
* the device data during the _RESUMING state. See below for details of
* sequence to be followed.
*
* data_size: (read/write)
* The user application should read data_size to get the size in bytes of
* the data copied in the migration region during the _SAVING state and
* write the size in bytes of the data copied in the migration region
* during the _RESUMING state.
*
* The format of the migration region is as follows:
* ------------------------------------------------------------------
* |vfio_device_migration_info| data section |
* | | /////////////////////////////// |
* ------------------------------------------------------------------
* ^ ^
* offset 0-trapped part data_offset
*
* The structure vfio_device_migration_info is always followed by the data
* section in the region, so data_offset will always be nonzero. The offset
* from where the data is copied is decided by the kernel driver. The data
* section can be trapped, mmapped, or partitioned, depending on how the kernel
* driver defines the data section. The data section partition can be defined
* as mapped by the sparse mmap capability. If mmapped, data_offset must be
* page aligned, whereas initial section which contains the
* vfio_device_migration_info structure, might not end at the offset, which is
* page aligned. The user is not required to access through mmap regardless
* of the capabilities of the region mmap.
* The vendor driver should determine whether and how to partition the data
* section. The vendor driver should return data_offset accordingly.
*
* The sequence to be followed while in pre-copy state and stop-and-copy state
* is as follows:
* a. Read pending_bytes, indicating the start of a new iteration to get device
* data. Repeated read on pending_bytes at this stage should have no side
* effects.
* If pending_bytes == 0, the user application should not iterate to get data
* for that device.
* If pending_bytes > 0, perform the following steps.
* b. Read data_offset, indicating that the vendor driver should make data
* available through the data section. The vendor driver should return this
* read operation only after data is available from (region + data_offset)
* to (region + data_offset + data_size).
* c. Read data_size, which is the amount of data in bytes available through
* the migration region.
* Read on data_offset and data_size should return the offset and size of
* the current buffer if the user application reads data_offset and
* data_size more than once here.
* d. Read data_size bytes of data from (region + data_offset) from the
* migration region.
* e. Process the data.
* f. Read pending_bytes, which indicates that the data from the previous
* iteration has been read. If pending_bytes > 0, go to step b.
*
* The user application can transition from the _SAVING|_RUNNING
* (pre-copy state) to the _SAVING (stop-and-copy) state regardless of the
* number of pending bytes. The user application should iterate in _SAVING
* (stop-and-copy) until pending_bytes is 0.
*
* The sequence to be followed while _RESUMING device state is as follows:
* While data for this device is available, repeat the following steps:
* a. Read data_offset from where the user application should write data.
* b. Write migration data starting at the migration region + data_offset for
* the length determined by data_size from the migration source.
* c. Write data_size, which indicates to the vendor driver that data is
* written in the migration region. Vendor driver must return this write
* operations on consuming data. Vendor driver should apply the
* user-provided migration region data to the device resume state.
*
* If an error occurs during the above sequences, the vendor driver can return
* an error code for next read() or write() operation, which will terminate the
* loop. The user application should then take the next necessary action, for
* example, failing migration or terminating the user application.
*
* For the user application, data is opaque. The user application should write
* data in the same order as the data is received and the data should be of
* same transaction size at the source.
*/
struct vfio_device_migration_info { struct vfio_device_migration_info {
__u32 device_state; /* VFIO device state */ __u32 device_state; /* VFIO device state */
#define VFIO_DEVICE_STATE_STOP (0) #define VFIO_DEVICE_STATE_V1_STOP (0)
#define VFIO_DEVICE_STATE_RUNNING (1 << 0) #define VFIO_DEVICE_STATE_V1_RUNNING (1 << 0)
#define VFIO_DEVICE_STATE_SAVING (1 << 1) #define VFIO_DEVICE_STATE_V1_SAVING (1 << 1)
#define VFIO_DEVICE_STATE_RESUMING (1 << 2) #define VFIO_DEVICE_STATE_V1_RESUMING (1 << 2)
#define VFIO_DEVICE_STATE_MASK (VFIO_DEVICE_STATE_RUNNING | \ #define VFIO_DEVICE_STATE_MASK (VFIO_DEVICE_STATE_V1_RUNNING | \
VFIO_DEVICE_STATE_SAVING | \ VFIO_DEVICE_STATE_V1_SAVING | \
VFIO_DEVICE_STATE_RESUMING) VFIO_DEVICE_STATE_V1_RESUMING)
#define VFIO_DEVICE_STATE_VALID(state) \ #define VFIO_DEVICE_STATE_VALID(state) \
(state & VFIO_DEVICE_STATE_RESUMING ? \ (state & VFIO_DEVICE_STATE_V1_RESUMING ? \
(state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_RESUMING : 1) (state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_V1_RESUMING : 1)
#define VFIO_DEVICE_STATE_IS_ERROR(state) \ #define VFIO_DEVICE_STATE_IS_ERROR(state) \
((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_SAVING | \ ((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_V1_SAVING | \
VFIO_DEVICE_STATE_RESUMING)) VFIO_DEVICE_STATE_V1_RESUMING))
#define VFIO_DEVICE_STATE_SET_ERROR(state) \ #define VFIO_DEVICE_STATE_SET_ERROR(state) \
((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_SATE_SAVING | \ ((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_STATE_V1_SAVING | \
VFIO_DEVICE_STATE_RESUMING) VFIO_DEVICE_STATE_V1_RESUMING)
__u32 reserved; __u32 reserved;
__u64 pending_bytes; __u64 pending_bytes;
@ -1002,6 +806,186 @@ struct vfio_device_feature {
*/ */
#define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN (0) #define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN (0)
/*
* Indicates the device can support the migration API through
* VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE. If this GET succeeds, the RUNNING and
* ERROR states are always supported. Support for additional states is
* indicated via the flags field; at least VFIO_MIGRATION_STOP_COPY must be
* set.
*
* VFIO_MIGRATION_STOP_COPY means that STOP, STOP_COPY and
* RESUMING are supported.
*
* VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P means that RUNNING_P2P
* is supported in addition to the STOP_COPY states.
*
* Other combinations of flags have behavior to be defined in the future.
*/
struct vfio_device_feature_migration {
__aligned_u64 flags;
#define VFIO_MIGRATION_STOP_COPY (1 << 0)
#define VFIO_MIGRATION_P2P (1 << 1)
};
#define VFIO_DEVICE_FEATURE_MIGRATION 1
/*
* Upon VFIO_DEVICE_FEATURE_SET, execute a migration state change on the VFIO
* device. The new state is supplied in device_state, see enum
* vfio_device_mig_state for details
*
* The kernel migration driver must fully transition the device to the new state
* value before the operation returns to the user.
*
* The kernel migration driver must not generate asynchronous device state
* transitions outside of manipulation by the user or the VFIO_DEVICE_RESET
* ioctl as described above.
*
* If this function fails then current device_state may be the original
* operating state or some other state along the combination transition path.
* The user can then decide if it should execute a VFIO_DEVICE_RESET, attempt
* to return to the original state, or attempt to return to some other state
* such as RUNNING or STOP.
*
* If the new_state starts a new data transfer session then the FD associated
* with that session is returned in data_fd. The user is responsible to close
* this FD when it is finished. The user must consider the migration data stream
* carried over the FD to be opaque and must preserve the byte order of the
* stream. The user is not required to preserve buffer segmentation when writing
* the data stream during the RESUMING operation.
*
* Upon VFIO_DEVICE_FEATURE_GET, get the current migration state of the VFIO
* device, data_fd will be -1.
*/
struct vfio_device_feature_mig_state {
__u32 device_state; /* From enum vfio_device_mig_state */
__s32 data_fd;
};
#define VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE 2
/*
* The device migration Finite State Machine is described by the enum
* vfio_device_mig_state. Some of the FSM arcs will create a migration data
* transfer session by returning a FD, in this case the migration data will
* flow over the FD using read() and write() as discussed below.
*
* There are 5 states to support VFIO_MIGRATION_STOP_COPY:
* RUNNING - The device is running normally
* STOP - The device does not change the internal or external state
* STOP_COPY - The device internal state can be read out
* RESUMING - The device is stopped and is loading a new internal state
* ERROR - The device has failed and must be reset
*
* And 1 optional state to support VFIO_MIGRATION_P2P:
* RUNNING_P2P - RUNNING, except the device cannot do peer to peer DMA
*
* The FSM takes actions on the arcs between FSM states. The driver implements
* the following behavior for the FSM arcs:
*
* RUNNING_P2P -> STOP
* STOP_COPY -> STOP
* While in STOP the device must stop the operation of the device. The device
* must not generate interrupts, DMA, or any other change to external state.
* It must not change its internal state. When stopped the device and kernel
* migration driver must accept and respond to interaction to support external
* subsystems in the STOP state, for example PCI MSI-X and PCI config space.
* Failure by the user to restrict device access while in STOP must not result
* in error conditions outside the user context (ex. host system faults).
*
* The STOP_COPY arc will terminate a data transfer session.
*
* RESUMING -> STOP
* Leaving RESUMING terminates a data transfer session and indicates the
* device should complete processing of the data delivered by write(). The
* kernel migration driver should complete the incorporation of data written
* to the data transfer FD into the device internal state and perform
* final validity and consistency checking of the new device state. If the
* user provided data is found to be incomplete, inconsistent, or otherwise
* invalid, the migration driver must fail the SET_STATE ioctl and
* optionally go to the ERROR state as described below.
*
* While in STOP the device has the same behavior as other STOP states
* described above.
*
* To abort a RESUMING session the device must be reset.
*
* RUNNING_P2P -> RUNNING
* While in RUNNING the device is fully operational, the device may generate
* interrupts, DMA, respond to MMIO, all vfio device regions are functional,
* and the device may advance its internal state.
*
* RUNNING -> RUNNING_P2P
* STOP -> RUNNING_P2P
* While in RUNNING_P2P the device is partially running in the P2P quiescent
* state defined below.
*
* STOP -> STOP_COPY
* This arc begin the process of saving the device state and will return a
* new data_fd.
*
* While in the STOP_COPY state the device has the same behavior as STOP
* with the addition that the data transfers session continues to stream the
* migration state. End of stream on the FD indicates the entire device
* state has been transferred.
*
* The user should take steps to restrict access to vfio device regions while
* the device is in STOP_COPY or risk corruption of the device migration data
* stream.
*
* STOP -> RESUMING
* Entering the RESUMING state starts a process of restoring the device state
* and will return a new data_fd. The data stream fed into the data_fd should
* be taken from the data transfer output of a single FD during saving from
* a compatible device. The migration driver may alter/reset the internal
* device state for this arc if required to prepare the device to receive the
* migration data.
*
* any -> ERROR
* ERROR cannot be specified as a device state, however any transition request
* can be failed with an errno return and may then move the device_state into
* ERROR. In this case the device was unable to execute the requested arc and
* was also unable to restore the device to any valid device_state.
* To recover from ERROR VFIO_DEVICE_RESET must be used to return the
* device_state back to RUNNING.
*
* The optional peer to peer (P2P) quiescent state is intended to be a quiescent
* state for the device for the purposes of managing multiple devices within a
* user context where peer-to-peer DMA between devices may be active. The
* RUNNING_P2P states must prevent the device from initiating
* any new P2P DMA transactions. If the device can identify P2P transactions
* then it can stop only P2P DMA, otherwise it must stop all DMA. The migration
* driver must complete any such outstanding operations prior to completing the
* FSM arc into a P2P state. For the purpose of specification the states
* behave as though the device was fully running if not supported. Like while in
* STOP or STOP_COPY the user must not touch the device, otherwise the state
* can be exited.
*
* The remaining possible transitions are interpreted as combinations of the
* above FSM arcs. As there are multiple paths through the FSM arcs the path
* should be selected based on the following rules:
* - Select the shortest path.
* Refer to vfio_mig_get_next_state() for the result of the algorithm.
*
* The automatic transit through the FSM arcs that make up the combination
* transition is invisible to the user. When working with combination arcs the
* user may see any step along the path in the device_state if SET_STATE
* fails. When handling these types of errors users should anticipate future
* revisions of this protocol using new states and those states becoming
* visible in this case.
*
* The optional states cannot be used with SET_STATE if the device does not
* support them. The user can discover if these states are supported by using
* VFIO_DEVICE_FEATURE_MIGRATION. By using combination transitions the user can
* avoid knowing about these optional states if the kernel driver supports them.
*/
enum vfio_device_mig_state {
VFIO_DEVICE_STATE_ERROR = 0,
VFIO_DEVICE_STATE_STOP = 1,
VFIO_DEVICE_STATE_RUNNING = 2,
VFIO_DEVICE_STATE_STOP_COPY = 3,
VFIO_DEVICE_STATE_RESUMING = 4,
VFIO_DEVICE_STATE_RUNNING_P2P = 5,
};
/* -------- API for Type1 VFIO IOMMU -------- */ /* -------- API for Type1 VFIO IOMMU -------- */
/** /**

View File

@ -150,4 +150,11 @@
/* Get the valid iova range */ /* Get the valid iova range */
#define VHOST_VDPA_GET_IOVA_RANGE _IOR(VHOST_VIRTIO, 0x78, \ #define VHOST_VDPA_GET_IOVA_RANGE _IOR(VHOST_VIRTIO, 0x78, \
struct vhost_vdpa_iova_range) struct vhost_vdpa_iova_range)
/* Get the config size */
#define VHOST_VDPA_GET_CONFIG_SIZE _IOR(VHOST_VIRTIO, 0x79, __u32)
/* Get the count of all virtqueues */
#define VHOST_VDPA_GET_VQS_COUNT _IOR(VHOST_VIRTIO, 0x80, __u32)
#endif #endif