target-alpha: Tidy FPCR representation

Store the fpcr as the hardware represents it.  Convert the softfpu
representation of exceptions into the fpcr representation.

Signed-off-by: Richard Henderson <rth@twiddle.net>
This commit is contained in:
Richard Henderson 2014-08-08 12:17:07 -10:00
parent ba9c5de5f2
commit f3d3aad4a9
5 changed files with 158 additions and 242 deletions

View File

@ -150,54 +150,54 @@ enum {
FP_ROUND_DYNAMIC = 0x3,
};
/* FPCR bits */
#define FPCR_SUM (1ULL << 63)
#define FPCR_INED (1ULL << 62)
#define FPCR_UNFD (1ULL << 61)
#define FPCR_UNDZ (1ULL << 60)
#define FPCR_DYN_SHIFT 58
#define FPCR_DYN_CHOPPED (0ULL << FPCR_DYN_SHIFT)
#define FPCR_DYN_MINUS (1ULL << FPCR_DYN_SHIFT)
#define FPCR_DYN_NORMAL (2ULL << FPCR_DYN_SHIFT)
#define FPCR_DYN_PLUS (3ULL << FPCR_DYN_SHIFT)
#define FPCR_DYN_MASK (3ULL << FPCR_DYN_SHIFT)
#define FPCR_IOV (1ULL << 57)
#define FPCR_INE (1ULL << 56)
#define FPCR_UNF (1ULL << 55)
#define FPCR_OVF (1ULL << 54)
#define FPCR_DZE (1ULL << 53)
#define FPCR_INV (1ULL << 52)
#define FPCR_OVFD (1ULL << 51)
#define FPCR_DZED (1ULL << 50)
#define FPCR_INVD (1ULL << 49)
#define FPCR_DNZ (1ULL << 48)
#define FPCR_DNOD (1ULL << 47)
#define FPCR_STATUS_MASK (FPCR_IOV | FPCR_INE | FPCR_UNF \
| FPCR_OVF | FPCR_DZE | FPCR_INV)
/* FPCR bits -- right-shifted 32 so we can use a uint32_t. */
#define FPCR_SUM (1U << (63 - 32))
#define FPCR_INED (1U << (62 - 32))
#define FPCR_UNFD (1U << (61 - 32))
#define FPCR_UNDZ (1U << (60 - 32))
#define FPCR_DYN_SHIFT (58 - 32)
#define FPCR_DYN_CHOPPED (0U << FPCR_DYN_SHIFT)
#define FPCR_DYN_MINUS (1U << FPCR_DYN_SHIFT)
#define FPCR_DYN_NORMAL (2U << FPCR_DYN_SHIFT)
#define FPCR_DYN_PLUS (3U << FPCR_DYN_SHIFT)
#define FPCR_DYN_MASK (3U << FPCR_DYN_SHIFT)
#define FPCR_IOV (1U << (57 - 32))
#define FPCR_INE (1U << (56 - 32))
#define FPCR_UNF (1U << (55 - 32))
#define FPCR_OVF (1U << (54 - 32))
#define FPCR_DZE (1U << (53 - 32))
#define FPCR_INV (1U << (52 - 32))
#define FPCR_OVFD (1U << (51 - 32))
#define FPCR_DZED (1U << (50 - 32))
#define FPCR_INVD (1U << (49 - 32))
#define FPCR_DNZ (1U << (48 - 32))
#define FPCR_DNOD (1U << (47 - 32))
#define FPCR_STATUS_MASK (FPCR_IOV | FPCR_INE | FPCR_UNF \
| FPCR_OVF | FPCR_DZE | FPCR_INV)
/* The silly software trap enables implemented by the kernel emulation.
These are more or less architecturally required, since the real hardware
has read-as-zero bits in the FPCR when the features aren't implemented.
For the purposes of QEMU, we pretend the FPCR can hold everything. */
#define SWCR_TRAP_ENABLE_INV (1ULL << 1)
#define SWCR_TRAP_ENABLE_DZE (1ULL << 2)
#define SWCR_TRAP_ENABLE_OVF (1ULL << 3)
#define SWCR_TRAP_ENABLE_UNF (1ULL << 4)
#define SWCR_TRAP_ENABLE_INE (1ULL << 5)
#define SWCR_TRAP_ENABLE_DNO (1ULL << 6)
#define SWCR_TRAP_ENABLE_MASK ((1ULL << 7) - (1ULL << 1))
#define SWCR_TRAP_ENABLE_INV (1U << 1)
#define SWCR_TRAP_ENABLE_DZE (1U << 2)
#define SWCR_TRAP_ENABLE_OVF (1U << 3)
#define SWCR_TRAP_ENABLE_UNF (1U << 4)
#define SWCR_TRAP_ENABLE_INE (1U << 5)
#define SWCR_TRAP_ENABLE_DNO (1U << 6)
#define SWCR_TRAP_ENABLE_MASK ((1U << 7) - (1U << 1))
#define SWCR_MAP_DMZ (1ULL << 12)
#define SWCR_MAP_UMZ (1ULL << 13)
#define SWCR_MAP_MASK (SWCR_MAP_DMZ | SWCR_MAP_UMZ)
#define SWCR_MAP_DMZ (1U << 12)
#define SWCR_MAP_UMZ (1U << 13)
#define SWCR_MAP_MASK (SWCR_MAP_DMZ | SWCR_MAP_UMZ)
#define SWCR_STATUS_INV (1ULL << 17)
#define SWCR_STATUS_DZE (1ULL << 18)
#define SWCR_STATUS_OVF (1ULL << 19)
#define SWCR_STATUS_UNF (1ULL << 20)
#define SWCR_STATUS_INE (1ULL << 21)
#define SWCR_STATUS_DNO (1ULL << 22)
#define SWCR_STATUS_MASK ((1ULL << 23) - (1ULL << 17))
#define SWCR_STATUS_INV (1U << 17)
#define SWCR_STATUS_DZE (1U << 18)
#define SWCR_STATUS_OVF (1U << 19)
#define SWCR_STATUS_UNF (1U << 20)
#define SWCR_STATUS_INE (1U << 21)
#define SWCR_STATUS_DNO (1U << 22)
#define SWCR_STATUS_MASK ((1U << 23) - (1U << 17))
#define SWCR_MASK (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK | SWCR_STATUS_MASK)
@ -238,14 +238,13 @@ struct CPUAlphaState {
uint64_t lock_addr;
uint64_t lock_st_addr;
uint64_t lock_value;
/* The FPCR, and disassembled portions thereof. */
uint32_t fpcr;
uint32_t fpcr_exc_enable;
float_status fp_status;
/* The following fields make up the FPCR, but in FP_STATUS format. */
uint8_t fpcr_exc_status;
uint8_t fpcr_exc_mask;
uint8_t fpcr_dyn_round;
uint8_t fpcr_flush_to_zero;
uint8_t fpcr_dnod;
uint8_t fpcr_undz;
/* The Internal Processor Registers. Some of these we assume always
exist for use in user-mode. */

View File

@ -34,37 +34,38 @@ void helper_setflushzero(CPUAlphaState *env, uint32_t val)
set_flush_to_zero(val, &FP_STATUS);
}
void helper_fp_exc_clear(CPUAlphaState *env)
#define CONVERT_BIT(X, SRC, DST) \
(SRC > DST ? (X) / (SRC / DST) & (DST) : ((X) & SRC) * (DST / SRC))
static uint32_t soft_to_fpcr_exc(CPUAlphaState *env)
{
set_float_exception_flags(0, &FP_STATUS);
uint8_t exc = get_float_exception_flags(&FP_STATUS);
uint32_t ret = 0;
if (unlikely(exc)) {
set_float_exception_flags(0, &FP_STATUS);
ret |= CONVERT_BIT(exc, float_flag_invalid, FPCR_INV);
ret |= CONVERT_BIT(exc, float_flag_divbyzero, FPCR_DZE);
ret |= CONVERT_BIT(exc, float_flag_overflow, FPCR_OVF);
ret |= CONVERT_BIT(exc, float_flag_underflow, FPCR_UNF);
ret |= CONVERT_BIT(exc, float_flag_inexact, FPCR_INE);
}
return ret;
}
uint32_t helper_fp_exc_get(CPUAlphaState *env)
{
return get_float_exception_flags(&FP_STATUS);
}
static inline void inline_fp_exc_raise(CPUAlphaState *env, uintptr_t retaddr,
uint32_t exc, uint32_t regno)
static void fp_exc_raise1(CPUAlphaState *env, uintptr_t retaddr,
uint32_t exc, uint32_t regno)
{
if (exc) {
uint32_t hw_exc = 0;
if (exc & float_flag_invalid) {
hw_exc |= EXC_M_INV;
}
if (exc & float_flag_divbyzero) {
hw_exc |= EXC_M_DZE;
}
if (exc & float_flag_overflow) {
hw_exc |= EXC_M_FOV;
}
if (exc & float_flag_underflow) {
hw_exc |= EXC_M_UNF;
}
if (exc & float_flag_inexact) {
hw_exc |= EXC_M_INE;
}
hw_exc |= CONVERT_BIT(exc, FPCR_INV, EXC_M_INV);
hw_exc |= CONVERT_BIT(exc, FPCR_DZE, EXC_M_DZE);
hw_exc |= CONVERT_BIT(exc, FPCR_OVF, EXC_M_FOV);
hw_exc |= CONVERT_BIT(exc, FPCR_UNF, EXC_M_UNF);
hw_exc |= CONVERT_BIT(exc, FPCR_INE, EXC_M_INE);
hw_exc |= CONVERT_BIT(exc, FPCR_IOV, EXC_M_IOV);
arith_excp(env, retaddr, hw_exc, 1ull << regno);
}
@ -73,18 +74,20 @@ static inline void inline_fp_exc_raise(CPUAlphaState *env, uintptr_t retaddr,
/* Raise exceptions for ieee fp insns without software completion.
In that case there are no exceptions that don't trap; the mask
doesn't apply. */
void helper_fp_exc_raise(CPUAlphaState *env, uint32_t exc, uint32_t regno)
void helper_fp_exc_raise(CPUAlphaState *env, uint32_t ignore, uint32_t regno)
{
inline_fp_exc_raise(env, GETPC(), exc, regno);
uint32_t exc = env->error_code & ~ignore;
fp_exc_raise1(env, GETPC(), exc, regno);
}
/* Raise exceptions for ieee fp insns with software completion. */
void helper_fp_exc_raise_s(CPUAlphaState *env, uint32_t exc, uint32_t regno)
void helper_fp_exc_raise_s(CPUAlphaState *env, uint32_t ignore, uint32_t regno)
{
uint32_t exc = env->error_code & ~ignore;
if (exc) {
env->fpcr_exc_status |= exc;
exc &= ~env->fpcr_exc_mask;
inline_fp_exc_raise(env, GETPC(), exc, regno);
env->fpcr |= exc;
exc &= env->fpcr_exc_enable;
fp_exc_raise1(env, GETPC(), exc, regno);
}
}
@ -190,6 +193,8 @@ uint64_t helper_adds(CPUAlphaState *env, uint64_t a, uint64_t b)
fa = s_to_float32(a);
fb = s_to_float32(b);
fr = float32_add(fa, fb, &FP_STATUS);
env->error_code = soft_to_fpcr_exc(env);
return float32_to_s(fr);
}
@ -200,6 +205,8 @@ uint64_t helper_subs(CPUAlphaState *env, uint64_t a, uint64_t b)
fa = s_to_float32(a);
fb = s_to_float32(b);
fr = float32_sub(fa, fb, &FP_STATUS);
env->error_code = soft_to_fpcr_exc(env);
return float32_to_s(fr);
}
@ -210,6 +217,8 @@ uint64_t helper_muls(CPUAlphaState *env, uint64_t a, uint64_t b)
fa = s_to_float32(a);
fb = s_to_float32(b);
fr = float32_mul(fa, fb, &FP_STATUS);
env->error_code = soft_to_fpcr_exc(env);
return float32_to_s(fr);
}
@ -220,6 +229,8 @@ uint64_t helper_divs(CPUAlphaState *env, uint64_t a, uint64_t b)
fa = s_to_float32(a);
fb = s_to_float32(b);
fr = float32_div(fa, fb, &FP_STATUS);
env->error_code = soft_to_fpcr_exc(env);
return float32_to_s(fr);
}
@ -229,6 +240,8 @@ uint64_t helper_sqrts(CPUAlphaState *env, uint64_t a)
fa = s_to_float32(a);
fr = float32_sqrt(fa, &FP_STATUS);
env->error_code = soft_to_fpcr_exc(env);
return float32_to_s(fr);
}
@ -257,6 +270,8 @@ uint64_t helper_addt(CPUAlphaState *env, uint64_t a, uint64_t b)
fa = t_to_float64(a);
fb = t_to_float64(b);
fr = float64_add(fa, fb, &FP_STATUS);
env->error_code = soft_to_fpcr_exc(env);
return float64_to_t(fr);
}
@ -267,6 +282,8 @@ uint64_t helper_subt(CPUAlphaState *env, uint64_t a, uint64_t b)
fa = t_to_float64(a);
fb = t_to_float64(b);
fr = float64_sub(fa, fb, &FP_STATUS);
env->error_code = soft_to_fpcr_exc(env);
return float64_to_t(fr);
}
@ -277,6 +294,8 @@ uint64_t helper_mult(CPUAlphaState *env, uint64_t a, uint64_t b)
fa = t_to_float64(a);
fb = t_to_float64(b);
fr = float64_mul(fa, fb, &FP_STATUS);
env->error_code = soft_to_fpcr_exc(env);
return float64_to_t(fr);
}
@ -287,6 +306,8 @@ uint64_t helper_divt(CPUAlphaState *env, uint64_t a, uint64_t b)
fa = t_to_float64(a);
fb = t_to_float64(b);
fr = float64_div(fa, fb, &FP_STATUS);
env->error_code = soft_to_fpcr_exc(env);
return float64_to_t(fr);
}
@ -296,6 +317,8 @@ uint64_t helper_sqrtt(CPUAlphaState *env, uint64_t a)
fa = t_to_float64(a);
fr = float64_sqrt(fa, &FP_STATUS);
env->error_code = soft_to_fpcr_exc(env);
return float64_to_t(fr);
}
@ -303,57 +326,65 @@ uint64_t helper_sqrtt(CPUAlphaState *env, uint64_t a)
uint64_t helper_cmptun(CPUAlphaState *env, uint64_t a, uint64_t b)
{
float64 fa, fb;
uint64_t ret = 0;
fa = t_to_float64(a);
fb = t_to_float64(b);
if (float64_unordered_quiet(fa, fb, &FP_STATUS)) {
return 0x4000000000000000ULL;
} else {
return 0;
ret = 0x4000000000000000ULL;
}
env->error_code = soft_to_fpcr_exc(env);
return ret;
}
uint64_t helper_cmpteq(CPUAlphaState *env, uint64_t a, uint64_t b)
{
float64 fa, fb;
uint64_t ret = 0;
fa = t_to_float64(a);
fb = t_to_float64(b);
if (float64_eq_quiet(fa, fb, &FP_STATUS)) {
return 0x4000000000000000ULL;
} else {
return 0;
ret = 0x4000000000000000ULL;
}
env->error_code = soft_to_fpcr_exc(env);
return ret;
}
uint64_t helper_cmptle(CPUAlphaState *env, uint64_t a, uint64_t b)
{
float64 fa, fb;
uint64_t ret = 0;
fa = t_to_float64(a);
fb = t_to_float64(b);
if (float64_le(fa, fb, &FP_STATUS)) {
return 0x4000000000000000ULL;
} else {
return 0;
ret = 0x4000000000000000ULL;
}
env->error_code = soft_to_fpcr_exc(env);
return ret;
}
uint64_t helper_cmptlt(CPUAlphaState *env, uint64_t a, uint64_t b)
{
float64 fa, fb;
uint64_t ret = 0;
fa = t_to_float64(a);
fb = t_to_float64(b);
if (float64_lt(fa, fb, &FP_STATUS)) {
return 0x4000000000000000ULL;
} else {
return 0;
ret = 0x4000000000000000ULL;
}
env->error_code = soft_to_fpcr_exc(env);
return ret;
}
/* Floating point format conversion */
@ -364,6 +395,8 @@ uint64_t helper_cvtts(CPUAlphaState *env, uint64_t a)
fa = t_to_float64(a);
fr = float64_to_float32(fa, &FP_STATUS);
env->error_code = soft_to_fpcr_exc(env);
return float32_to_s(fr);
}
@ -374,12 +407,16 @@ uint64_t helper_cvtst(CPUAlphaState *env, uint64_t a)
fa = s_to_float32(a);
fr = float32_to_float64(fa, &FP_STATUS);
env->error_code = soft_to_fpcr_exc(env);
return float64_to_t(fr);
}
uint64_t helper_cvtqs(CPUAlphaState *env, uint64_t a)
{
float32 fr = int64_to_float32(a, &FP_STATUS);
env->error_code = soft_to_fpcr_exc(env);
return float32_to_s(fr);
}
@ -405,7 +442,7 @@ static inline uint64_t inline_cvttq(CPUAlphaState *env, uint64_t a,
goto do_underflow;
}
} else if (exp == 0x7ff) {
exc = (frac ? float_flag_invalid : VI ? float_flag_overflow : 0);
exc = (frac ? FPCR_INV : VI ? FPCR_OVF : 0);
} else {
/* Restore implicit bit. */
frac |= 0x10000000000000ull;
@ -417,7 +454,7 @@ static inline uint64_t inline_cvttq(CPUAlphaState *env, uint64_t a,
if (shift < 63) {
ret = frac << shift;
if (VI && (ret >> shift) != frac) {
exc = float_flag_overflow;
exc = FPCR_OVF;
}
}
} else {
@ -440,7 +477,7 @@ static inline uint64_t inline_cvttq(CPUAlphaState *env, uint64_t a,
}
if (round) {
exc = (VI ? float_flag_inexact : 0);
exc = (VI ? FPCR_INE : 0);
switch (roundmode) {
case float_round_nearest_even:
if (round == (1ull << 63)) {
@ -465,9 +502,7 @@ static inline uint64_t inline_cvttq(CPUAlphaState *env, uint64_t a,
ret = -ret;
}
}
if (unlikely(exc)) {
float_raise(exc, &FP_STATUS);
}
env->error_code = exc;
return ret;
}
@ -490,6 +525,7 @@ uint64_t helper_cvttq_svic(CPUAlphaState *env, uint64_t a)
uint64_t helper_cvtqt(CPUAlphaState *env, uint64_t a)
{
float64 fr = int64_to_float64(a, &FP_STATUS);
env->error_code = soft_to_fpcr_exc(env);
return float64_to_t(fr);
}

View File

@ -25,136 +25,48 @@
#include "fpu/softfloat.h"
#include "exec/helper-proto.h"
#define CONVERT_BIT(X, SRC, DST) \
(SRC > DST ? (X) / (SRC / DST) & (DST) : ((X) & SRC) * (DST / SRC))
uint64_t cpu_alpha_load_fpcr (CPUAlphaState *env)
{
uint64_t r = 0;
uint8_t t;
t = env->fpcr_exc_status;
if (t) {
r = FPCR_SUM;
if (t & float_flag_invalid) {
r |= FPCR_INV;
}
if (t & float_flag_divbyzero) {
r |= FPCR_DZE;
}
if (t & float_flag_overflow) {
r |= FPCR_OVF;
}
if (t & float_flag_underflow) {
r |= FPCR_UNF;
}
if (t & float_flag_inexact) {
r |= FPCR_INE;
}
}
t = env->fpcr_exc_mask;
if (t & float_flag_invalid) {
r |= FPCR_INVD;
}
if (t & float_flag_divbyzero) {
r |= FPCR_DZED;
}
if (t & float_flag_overflow) {
r |= FPCR_OVFD;
}
if (t & float_flag_underflow) {
r |= FPCR_UNFD;
}
if (t & float_flag_inexact) {
r |= FPCR_INED;
}
switch (env->fpcr_dyn_round) {
case float_round_nearest_even:
r |= FPCR_DYN_NORMAL;
break;
case float_round_down:
r |= FPCR_DYN_MINUS;
break;
case float_round_up:
r |= FPCR_DYN_PLUS;
break;
case float_round_to_zero:
r |= FPCR_DYN_CHOPPED;
break;
}
if (env->fp_status.flush_inputs_to_zero) {
r |= FPCR_DNZ;
}
if (env->fpcr_dnod) {
r |= FPCR_DNOD;
}
if (env->fpcr_undz) {
r |= FPCR_UNDZ;
}
return r;
return (uint64_t)env->fpcr << 32;
}
void cpu_alpha_store_fpcr (CPUAlphaState *env, uint64_t val)
{
uint8_t t;
uint32_t fpcr = val >> 32;
uint32_t t = 0;
t = 0;
if (val & FPCR_INV) {
t |= float_flag_invalid;
}
if (val & FPCR_DZE) {
t |= float_flag_divbyzero;
}
if (val & FPCR_OVF) {
t |= float_flag_overflow;
}
if (val & FPCR_UNF) {
t |= float_flag_underflow;
}
if (val & FPCR_INE) {
t |= float_flag_inexact;
}
env->fpcr_exc_status = t;
t |= CONVERT_BIT(fpcr, FPCR_INED, FPCR_INE);
t |= CONVERT_BIT(fpcr, FPCR_UNFD, FPCR_UNF);
t |= CONVERT_BIT(fpcr, FPCR_OVFD, FPCR_OVF);
t |= CONVERT_BIT(fpcr, FPCR_DZED, FPCR_DZE);
t |= CONVERT_BIT(fpcr, FPCR_INVD, FPCR_INV);
t = 0;
if (val & FPCR_INVD) {
t |= float_flag_invalid;
}
if (val & FPCR_DZED) {
t |= float_flag_divbyzero;
}
if (val & FPCR_OVFD) {
t |= float_flag_overflow;
}
if (val & FPCR_UNFD) {
t |= float_flag_underflow;
}
if (val & FPCR_INED) {
t |= float_flag_inexact;
}
env->fpcr_exc_mask = t;
env->fpcr = fpcr;
env->fpcr_exc_enable = ~t & FPCR_STATUS_MASK;
switch (val & FPCR_DYN_MASK) {
switch (fpcr & FPCR_DYN_MASK) {
case FPCR_DYN_NORMAL:
default:
t = float_round_nearest_even;
break;
case FPCR_DYN_CHOPPED:
t = float_round_to_zero;
break;
case FPCR_DYN_MINUS:
t = float_round_down;
break;
case FPCR_DYN_NORMAL:
t = float_round_nearest_even;
break;
case FPCR_DYN_PLUS:
t = float_round_up;
break;
}
env->fpcr_dyn_round = t;
env->fpcr_dnod = (val & FPCR_DNOD) != 0;
env->fpcr_undz = (val & FPCR_UNDZ) != 0;
env->fpcr_flush_to_zero = env->fpcr_dnod & env->fpcr_undz;
env->fp_status.flush_inputs_to_zero = (val & FPCR_DNZ) != 0;
env->fpcr_flush_to_zero = (fpcr & FPCR_UNFD) && (fpcr & FPCR_UNDZ);
env->fp_status.flush_inputs_to_zero = (fpcr & FPCR_DNZ) != 0;
}
uint64_t helper_load_fpcr(CPUAlphaState *env)

View File

@ -87,8 +87,6 @@ DEF_HELPER_FLAGS_2(cvttq_svic, TCG_CALL_NO_RWG, i64, env, i64)
DEF_HELPER_FLAGS_2(setroundmode, TCG_CALL_NO_RWG, void, env, i32)
DEF_HELPER_FLAGS_2(setflushzero, TCG_CALL_NO_RWG, void, env, i32)
DEF_HELPER_FLAGS_1(fp_exc_clear, TCG_CALL_NO_RWG, void, env)
DEF_HELPER_FLAGS_1(fp_exc_get, TCG_CALL_NO_RWG_SE, i32, env)
DEF_HELPER_FLAGS_3(fp_exc_raise, TCG_CALL_NO_WG, void, env, i32, i32)
DEF_HELPER_FLAGS_3(fp_exc_raise_s, TCG_CALL_NO_WG, void, env, i32, i32)

View File

@ -663,18 +663,6 @@ static TCGv gen_ieee_input(DisasContext *ctx, int reg, int fn11, int is_cmp)
return val;
}
static void gen_fp_exc_clear(void)
{
#if defined(CONFIG_SOFTFLOAT_INLINE)
TCGv_i32 zero = tcg_const_i32(0);
tcg_gen_st8_i32(zero, cpu_env,
offsetof(CPUAlphaState, fp_status.float_exception_flags));
tcg_temp_free_i32(zero);
#else
gen_helper_fp_exc_clear(cpu_env);
#endif
}
static void gen_fp_exc_raise_ignore(int rc, int fn11, int ignore)
{
/* ??? We ought to be able to do something with imprecise exceptions.
@ -682,20 +670,9 @@ static void gen_fp_exc_raise_ignore(int rc, int fn11, int ignore)
TB and do not generate the code to signal the exception; end the TB
when an exception is forced to arrive, either by consumption of a
register value or TRAPB or EXCB. */
TCGv_i32 exc = tcg_temp_new_i32();
TCGv_i32 ign = tcg_const_i32(ignore);
TCGv_i32 reg;
#if defined(CONFIG_SOFTFLOAT_INLINE)
tcg_gen_ld8u_i32(exc, cpu_env,
offsetof(CPUAlphaState, fp_status.float_exception_flags));
#else
gen_helper_fp_exc_get(exc, cpu_env);
#endif
if (ignore) {
tcg_gen_andi_i32(exc, exc, ~ignore);
}
/* ??? Pass in the regno of the destination so that the helper can
set EXC_MASK, which contains a bitmask of destination registers
that have caused arithmetic traps. A simple userspace emulation
@ -704,18 +681,18 @@ static void gen_fp_exc_raise_ignore(int rc, int fn11, int ignore)
reg = tcg_const_i32(rc + 32);
if (fn11 & QUAL_S) {
gen_helper_fp_exc_raise_s(cpu_env, exc, reg);
gen_helper_fp_exc_raise_s(cpu_env, ign, reg);
} else {
gen_helper_fp_exc_raise(cpu_env, exc, reg);
gen_helper_fp_exc_raise(cpu_env, ign, reg);
}
tcg_temp_free_i32(reg);
tcg_temp_free_i32(exc);
tcg_temp_free_i32(ign);
}
static inline void gen_fp_exc_raise(int rc, int fn11)
{
gen_fp_exc_raise_ignore(rc, fn11, fn11 & QUAL_I ? 0 : float_flag_inexact);
gen_fp_exc_raise_ignore(rc, fn11, fn11 & QUAL_I ? 0 : FPCR_INE);
}
static void gen_cvtlq(TCGv vc, TCGv vb)
@ -754,7 +731,6 @@ static void gen_ieee_arith2(DisasContext *ctx,
gen_qual_roundmode(ctx, fn11);
gen_qual_flushzero(ctx, fn11);
gen_fp_exc_clear();
vb = gen_ieee_input(ctx, rb, fn11, 0);
helper(dest_fpr(ctx, rc), cpu_env, vb);
@ -779,7 +755,6 @@ static void gen_cvttq(DisasContext *ctx, int rb, int rc, int fn11)
int ignore = 0;
/* No need to set flushzero, since we have an integer output. */
gen_fp_exc_clear();
vb = gen_ieee_input(ctx, rb, fn11, 0);
vc = dest_fpr(ctx, rc);
@ -791,7 +766,7 @@ static void gen_cvttq(DisasContext *ctx, int rb, int rc, int fn11)
break;
case QUAL_V | QUAL_RM_C:
case QUAL_S | QUAL_V | QUAL_RM_C:
ignore = float_flag_inexact;
ignore = FPCR_INE;
/* FALLTHRU */
case QUAL_S | QUAL_V | QUAL_I | QUAL_RM_C:
gen_helper_cvttq_svic(vc, cpu_env, vb);
@ -799,8 +774,8 @@ static void gen_cvttq(DisasContext *ctx, int rb, int rc, int fn11)
default:
gen_qual_roundmode(ctx, fn11);
gen_helper_cvttq(vc, cpu_env, vb);
ignore |= (fn11 & QUAL_V ? 0 : float_flag_overflow);
ignore |= (fn11 & QUAL_I ? 0 : float_flag_inexact);
ignore |= (fn11 & QUAL_V ? 0 : FPCR_IOV);
ignore |= (fn11 & QUAL_I ? 0 : FPCR_INE);
break;
}
@ -821,7 +796,6 @@ static void gen_ieee_intcvt(DisasContext *ctx,
is inexact. Thus we only need to worry about exceptions when
inexact handling is requested. */
if (fn11 & QUAL_I) {
gen_fp_exc_clear();
helper(vc, cpu_env, vb);
gen_fp_exc_raise(rc, fn11);
} else {
@ -864,7 +838,6 @@ static void gen_ieee_arith3(DisasContext *ctx,
gen_qual_roundmode(ctx, fn11);
gen_qual_flushzero(ctx, fn11);
gen_fp_exc_clear();
va = gen_ieee_input(ctx, ra, fn11, 0);
vb = gen_ieee_input(ctx, rb, fn11, 0);
@ -895,8 +868,6 @@ static void gen_ieee_compare(DisasContext *ctx,
{
TCGv va, vb, vc;
gen_fp_exc_clear();
va = gen_ieee_input(ctx, ra, fn11, 1);
vb = gen_ieee_input(ctx, rb, fn11, 1);
vc = dest_fpr(ctx, rc);