ppc patch queue 2021-07-09

Here's a (probably) final pull request before the qemu-6.1 soft
 freeze.  Includes:
   * Implementation of the new H_RPT_INVALIDATE hypercall
   * Virtual Open Firmware for pSeries and pegasos2 machine types.
     This is an experimental minimal Open Firmware implementation which
     works by delegating nearly everything to qemu itself via a special
     hypercall.
   * A number of cleanups to the ppc soft MMU code
   * Fix to handling of two-level radix mode translations for the
     powernv machine type
   * Update the H_GET_CPU_CHARACTERISTICS call with newly defined bits.
     This will allow more flexible handling of possible future CPU
     Spectre-like flaws
   * Correctly treat mtmsrd as an illegal instruction on BookE cpus
   * Firmware update for the ppce500 machine type
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEdfRlhq5hpmzETofcbDjKyiDZs5IFAmDn27oACgkQbDjKyiDZ
 s5I3eRAA2q76JMP1wH/orAS4gwgJVKxpdQ8F29xgtUnmL1w5RlVs2E0gXSEHYdt2
 8rwmxtaz2iCzvc3hv6jZMjFz6A+otrEPFUqlE030mruxQDj2JXFnNLQP2dir3ZPg
 Nn0K2U+ChSr2MXjSyUzbB0vQJSVyLxFmR43MsyCbeHSxq2kfSuZ2dNfclzUJ0IXD
 8QtCnjZrnOLHtaJ2Vkr/11Yb7rFmbDVZkA1c/ljE3NHGiYjWyZBgSG/Mk/SLeEZe
 7wVblUFKZtuiqGCyg2BBAnoWJXPDzDO/ZHFsn5NeUf2d5KTgoeKO3MYfVKQLv3d2
 W8JdI09S1OL6g1XEMWvm80S8NPCi0YxUGBXCJaKnuofiU+qwzBMUoj7Xk/2gheT3
 uWZCSATUWiKLmOzksR4PbKmHCG9J1EiEMLma7IoNuVw6+pLwMgurM3hlYZtrXGSh
 35oBsUT5fMkAM3BtkKh/ZKOfvKfgb1M5FmickI9O0L9BXbzPrmXre5fENhI0ROVs
 JeKNPjk/QUG1ftEMqpoYms+JR1rUiUN+jQBh+sFfJTi3CJFAbomoPitV6iGGPWZR
 sbDCRqkOyqZ9fR3hEXHzO+ThhwoI2xJPIs6+3/8XbVnFd74siqxOornWJZPpKjcf
 CSuOL2n81KJab8h/ERnb9QmJJWb9IJGv6YgZ5E4EFARDWvdSE3c=
 =9cX3
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/dg-gitlab/tags/ppc-for-6.1-20210709' into staging

ppc patch queue 2021-07-09

Here's a (probably) final pull request before the qemu-6.1 soft
freeze.  Includes:
  * Implementation of the new H_RPT_INVALIDATE hypercall
  * Virtual Open Firmware for pSeries and pegasos2 machine types.
    This is an experimental minimal Open Firmware implementation which
    works by delegating nearly everything to qemu itself via a special
    hypercall.
  * A number of cleanups to the ppc soft MMU code
  * Fix to handling of two-level radix mode translations for the
    powernv machine type
  * Update the H_GET_CPU_CHARACTERISTICS call with newly defined bits.
    This will allow more flexible handling of possible future CPU
    Spectre-like flaws
  * Correctly treat mtmsrd as an illegal instruction on BookE cpus
  * Firmware update for the ppce500 machine type

# gpg: Signature made Fri 09 Jul 2021 06:16:42 BST
# gpg:                using RSA key 75F46586AE61A66CC44E87DC6C38CACA20D9B392
# gpg: Good signature from "David Gibson <david@gibson.dropbear.id.au>" [full]
# gpg:                 aka "David Gibson (Red Hat) <dgibson@redhat.com>" [full]
# gpg:                 aka "David Gibson (ozlabs.org) <dgibson@ozlabs.org>" [full]
# gpg:                 aka "David Gibson (kernel.org) <dwg@kernel.org>" [unknown]
# Primary key fingerprint: 75F4 6586 AE61 A66C C44E  87DC 6C38 CACA 20D9 B392

* remotes/dg-gitlab/tags/ppc-for-6.1-20210709: (33 commits)
  target/ppc: Support for H_RPT_INVALIDATE hcall
  linux-headers: Update
  spapr: Fix implementation of Open Firmware client interface
  target/ppc: Don't compile ppc_tlb_invalid_all without TCG
  ppc/pegasos2: Implement some RTAS functions with VOF
  ppc/pegasos2: Fix use of && instead of &
  ppc/pegasos2: Use Virtual Open Firmware as firmware replacement
  target/ppc/spapr: Update H_GET_CPU_CHARACTERISTICS L1D cache flush bits
  target/ppc: Allow virtual hypervisor on CPU without HV
  ppc/pegasos2: Introduce Pegasos2MachineState structure
  target/ppc: mtmsrd is an illegal instruction on BookE
  spapr: Implement Open Firmware client interface
  docs/system: ppc: Update ppce500 documentation with eTSEC support
  roms/u-boot: Bump ppce500 u-boot to v2021.07 to add eTSEC support
  target/ppc: change ppc_hash32_xlate to use mmu_idx
  target/ppc: introduce mmu-books.h
  target/ppc: changed ppc_hash64_xlate to use mmu_idx
  target/ppc: fix address translation bug for radix mmus
  target/ppc: Fix compilation with DEBUG_BATS debug option
  target/ppc: Fix compilation with FLUSH_ALL_TLBS debug option
  ...

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Peter Maydell 2021-07-10 16:06:24 +01:00
commit fc32b91a88
70 changed files with 3257 additions and 604 deletions

View File

@ -1360,6 +1360,18 @@ F: hw/pci-host/mv64361.c
F: hw/pci-host/mv643xx.h
F: include/hw/pci-host/mv64361.h
Virtual Open Firmware (VOF)
M: Alexey Kardashevskiy <aik@ozlabs.ru>
R: David Gibson <david@gibson.dropbear.id.au>
R: Greg Kurz <groug@kaod.org>
L: qemu-ppc@nongnu.org
S: Maintained
F: hw/ppc/spapr_vof*
F: hw/ppc/vof*
F: include/hw/ppc/vof*
F: pc-bios/vof/*
F: pc-bios/vof*
RISC-V Machines
---------------
OpenTitan

View File

@ -14,7 +14,7 @@ CONFIG_SAM460EX=y
CONFIG_MAC_OLDWORLD=y
CONFIG_MAC_NEWWORLD=y
CONFIG_PEGASOS2=n
CONFIG_PEGASOS2=y
# For PReP
CONFIG_PREP=y

View File

@ -19,6 +19,7 @@ The ``ppce500`` machine supports the following devices:
* Power-off functionality via one GPIO pin
* 1 Freescale MPC8xxx PCI host controller
* VirtIO devices via PCI bus
* 1 Freescale Enhanced Triple Speed Ethernet controller (eTSEC)
Hardware configuration information
----------------------------------
@ -121,7 +122,7 @@ To boot the 32-bit Linux kernel:
Running U-Boot
--------------
U-Boot mainline v2021.04 release is tested at the time of writing. To build a
U-Boot mainline v2021.07 release is tested at the time of writing. To build a
U-Boot mainline bootloader that can be booted by the ``ppce500`` machine, use
the qemu-ppce500_defconfig with similar commands as described above for Linux:
@ -154,3 +155,10 @@ interface at PCI address 0.1.0, but we can switch that to an e1000 NIC by:
-display none -serial stdio \
-bios u-boot \
-nic tap,ifname=tap0,script=no,downscript=no,model=e1000
The QEMU ``ppce500`` machine can also dynamically instantiate an eTSEC device
if “-device eTSEC” is given to QEMU:
.. code-block:: bash
-netdev tap,ifname=tap0,script=no,downscript=no,id=net0 -device eTSEC,netdev=net0

View File

@ -13,6 +13,7 @@ config PSERIES
select MSI_NONBROKEN
select FDT_PPC
select CHRP_NVRAM
select VOF
config SPAPR_RNG
bool
@ -75,6 +76,7 @@ config PEGASOS2
select VT82C686
select IDE_VIA
select SMBUS_EEPROM
select VOF
# This should come with VT82C686
select ACPI_X86
@ -144,3 +146,6 @@ config FW_CFG_PPC
config FDT_PPC
bool
config VOF
bool

View File

@ -84,4 +84,7 @@ ppc_ss.add(when: 'CONFIG_VIRTEX', if_true: files('virtex_ml507.c'))
# Pegasos2
ppc_ss.add(when: 'CONFIG_PEGASOS2', if_true: files('pegasos2.c'))
ppc_ss.add(when: 'CONFIG_VOF', if_true: files('vof.c'))
ppc_ss.add(when: ['CONFIG_VOF', 'CONFIG_PSERIES'], if_true: files('spapr_vof.c'))
hw_arch += {'ppc': ppc_ss}

View File

@ -1,7 +1,7 @@
/*
* QEMU PowerPC CHRP (Genesi/bPlan Pegasos II) hardware System Emulator
*
* Copyright (c) 2018-2020 BALATON Zoltan
* Copyright (c) 2018-2021 BALATON Zoltan
*
* This work is licensed under the GNU GPL license version 2 or later.
*
@ -34,26 +34,68 @@
#include "trace.h"
#include "qemu/datadir.h"
#include "sysemu/device_tree.h"
#include "hw/ppc/vof.h"
#define PROM_FILENAME "pegasos2.rom"
#include <libfdt.h>
#define PROM_FILENAME "vof.bin"
#define PROM_ADDR 0xfff00000
#define PROM_SIZE 0x80000
#define KVMPPC_HCALL_BASE 0xf000
#define KVMPPC_H_RTAS (KVMPPC_HCALL_BASE + 0x0)
#define KVMPPC_H_VOF_CLIENT (KVMPPC_HCALL_BASE + 0x5)
#define H_SUCCESS 0
#define H_PRIVILEGE -3 /* Caller not privileged */
#define H_PARAMETER -4 /* Parameter invalid, out-of-range or conflicting */
#define BUS_FREQ_HZ 133333333
#define PCI0_MEM_BASE 0xc0000000
#define PCI0_MEM_SIZE 0x20000000
#define PCI0_IO_BASE 0xf8000000
#define PCI0_IO_SIZE 0x10000
#define PCI1_MEM_BASE 0x80000000
#define PCI1_MEM_SIZE 0x40000000
#define PCI1_IO_BASE 0xfe000000
#define PCI1_IO_SIZE 0x10000
#define TYPE_PEGASOS2_MACHINE MACHINE_TYPE_NAME("pegasos2")
OBJECT_DECLARE_TYPE(Pegasos2MachineState, MachineClass, PEGASOS2_MACHINE)
struct Pegasos2MachineState {
MachineState parent_obj;
PowerPCCPU *cpu;
DeviceState *mv;
Vof *vof;
void *fdt_blob;
uint64_t kernel_addr;
uint64_t kernel_entry;
uint64_t kernel_size;
};
static void *build_fdt(MachineState *machine, int *fdt_size);
static void pegasos2_cpu_reset(void *opaque)
{
PowerPCCPU *cpu = opaque;
Pegasos2MachineState *pm = PEGASOS2_MACHINE(current_machine);
cpu_reset(CPU(cpu));
cpu->env.spr[SPR_HID1] = 7ULL << 28;
if (pm->vof) {
cpu->env.gpr[1] = 2 * VOF_STACK_SIZE - 0x20;
cpu->env.nip = 0x100;
}
}
static void pegasos2_init(MachineState *machine)
{
PowerPCCPU *cpu = NULL;
Pegasos2MachineState *pm = PEGASOS2_MACHINE(machine);
CPUPPCState *env;
MemoryRegion *rom = g_new(MemoryRegion, 1);
DeviceState *mv;
PCIBus *pci_bus;
PCIDevice *dev;
I2CBus *i2c_bus;
@ -63,15 +105,16 @@ static void pegasos2_init(MachineState *machine)
uint8_t *spd_data;
/* init CPU */
cpu = POWERPC_CPU(cpu_create(machine->cpu_type));
if (PPC_INPUT(&cpu->env) != PPC_FLAGS_INPUT_6xx) {
pm->cpu = POWERPC_CPU(cpu_create(machine->cpu_type));
env = &pm->cpu->env;
if (PPC_INPUT(env) != PPC_FLAGS_INPUT_6xx) {
error_report("Incompatible CPU, only 6xx bus supported");
exit(1);
}
/* Set time-base frequency */
cpu_ppc_tb_init(&cpu->env, BUS_FREQ_HZ / 4);
qemu_register_reset(pegasos2_cpu_reset, cpu);
cpu_ppc_tb_init(env, BUS_FREQ_HZ / 4);
qemu_register_reset(pegasos2_cpu_reset, pm->cpu);
/* RAM */
memory_region_add_subregion(get_system_memory(), 0, machine->ram);
@ -82,30 +125,36 @@ static void pegasos2_init(MachineState *machine)
error_report("Could not find firmware '%s'", fwname);
exit(1);
}
if (!machine->firmware && !pm->vof) {
pm->vof = g_malloc0(sizeof(*pm->vof));
}
memory_region_init_rom(rom, NULL, "pegasos2.rom", PROM_SIZE, &error_fatal);
memory_region_add_subregion(get_system_memory(), PROM_ADDR, rom);
sz = load_elf(filename, NULL, NULL, NULL, NULL, NULL, NULL, NULL, 1,
PPC_ELF_MACHINE, 0, 0);
if (sz <= 0) {
sz = load_image_targphys(filename, PROM_ADDR, PROM_SIZE);
sz = load_image_targphys(filename, pm->vof ? 0 : PROM_ADDR, PROM_SIZE);
}
if (sz <= 0 || sz > PROM_SIZE) {
error_report("Could not load firmware '%s'", filename);
exit(1);
}
g_free(filename);
if (pm->vof) {
pm->vof->fw_size = sz;
}
/* Marvell Discovery II system controller */
mv = DEVICE(sysbus_create_simple(TYPE_MV64361, -1,
((qemu_irq *)cpu->env.irq_inputs)[PPC6xx_INPUT_INT]));
pci_bus = mv64361_get_pci_bus(mv, 1);
pm->mv = DEVICE(sysbus_create_simple(TYPE_MV64361, -1,
((qemu_irq *)env->irq_inputs)[PPC6xx_INPUT_INT]));
pci_bus = mv64361_get_pci_bus(pm->mv, 1);
/* VIA VT8231 South Bridge (multifunction PCI device) */
/* VT8231 function 0: PCI-to-ISA Bridge */
dev = pci_create_simple_multifunction(pci_bus, PCI_DEVFN(12, 0), true,
TYPE_VT8231_ISA);
qdev_connect_gpio_out(DEVICE(dev), 0,
qdev_get_gpio_in_named(mv, "gpp", 31));
qdev_get_gpio_in_named(pm->mv, "gpp", 31));
/* VT8231 function 1: IDE Controller */
dev = pci_create_simple(pci_bus, PCI_DEVFN(12, 1), "via-ide");
@ -127,18 +176,728 @@ static void pegasos2_init(MachineState *machine)
/* other PC hardware */
pci_vga_init(pci_bus);
if (machine->kernel_filename) {
sz = load_elf(machine->kernel_filename, NULL, NULL, NULL,
&pm->kernel_entry, &pm->kernel_addr, NULL, NULL, 1,
PPC_ELF_MACHINE, 0, 0);
if (sz <= 0) {
error_report("Could not load kernel '%s'",
machine->kernel_filename);
exit(1);
}
pm->kernel_size = sz;
if (!pm->vof) {
warn_report("Option -kernel may be ineffective with -bios.");
}
}
if (machine->kernel_cmdline && !pm->vof) {
warn_report("Option -append may be ineffective with -bios.");
}
}
static void pegasos2_machine(MachineClass *mc)
static uint32_t pegasos2_pci_config_read(AddressSpace *as, int bus,
uint32_t addr, uint32_t len)
{
hwaddr pcicfg = (bus ? 0xf1000c78 : 0xf1000cf8);
uint32_t val = 0xffffffff;
stl_le_phys(as, pcicfg, addr | BIT(31));
switch (len) {
case 4:
val = ldl_le_phys(as, pcicfg + 4);
break;
case 2:
val = lduw_le_phys(as, pcicfg + 4);
break;
case 1:
val = ldub_phys(as, pcicfg + 4);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid length\n", __func__);
break;
}
return val;
}
static void pegasos2_pci_config_write(AddressSpace *as, int bus, uint32_t addr,
uint32_t len, uint32_t val)
{
hwaddr pcicfg = (bus ? 0xf1000c78 : 0xf1000cf8);
stl_le_phys(as, pcicfg, addr | BIT(31));
switch (len) {
case 4:
stl_le_phys(as, pcicfg + 4, val);
break;
case 2:
stw_le_phys(as, pcicfg + 4, val);
break;
case 1:
stb_phys(as, pcicfg + 4, val);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid length\n", __func__);
break;
}
}
static void pegasos2_machine_reset(MachineState *machine)
{
Pegasos2MachineState *pm = PEGASOS2_MACHINE(machine);
AddressSpace *as = CPU(pm->cpu)->as;
void *fdt;
uint64_t d[2];
int sz;
qemu_devices_reset();
if (!pm->vof) {
return; /* Firmware should set up machine so nothing to do */
}
/* Otherwise, set up devices that board firmware would normally do */
stl_le_phys(as, 0xf1000000, 0x28020ff);
stl_le_phys(as, 0xf1000278, 0xa31fc);
stl_le_phys(as, 0xf100f300, 0x11ff0400);
stl_le_phys(as, 0xf100f10c, 0x80000000);
stl_le_phys(as, 0xf100001c, 0x8000000);
pegasos2_pci_config_write(as, 0, PCI_COMMAND, 2, PCI_COMMAND_IO |
PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
pegasos2_pci_config_write(as, 1, PCI_COMMAND, 2, PCI_COMMAND_IO |
PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
pegasos2_pci_config_write(as, 1, (PCI_DEVFN(12, 0) << 8) |
PCI_INTERRUPT_LINE, 2, 0x9);
pegasos2_pci_config_write(as, 1, (PCI_DEVFN(12, 0) << 8) |
0x50, 1, 0x2);
pegasos2_pci_config_write(as, 1, (PCI_DEVFN(12, 1) << 8) |
PCI_INTERRUPT_LINE, 2, 0x109);
pegasos2_pci_config_write(as, 1, (PCI_DEVFN(12, 1) << 8) |
PCI_CLASS_PROG, 1, 0xf);
pegasos2_pci_config_write(as, 1, (PCI_DEVFN(12, 1) << 8) |
0x40, 1, 0xb);
pegasos2_pci_config_write(as, 1, (PCI_DEVFN(12, 1) << 8) |
0x50, 4, 0x17171717);
pegasos2_pci_config_write(as, 1, (PCI_DEVFN(12, 1) << 8) |
PCI_COMMAND, 2, 0x87);
pegasos2_pci_config_write(as, 1, (PCI_DEVFN(12, 2) << 8) |
PCI_INTERRUPT_LINE, 2, 0x409);
pegasos2_pci_config_write(as, 1, (PCI_DEVFN(12, 3) << 8) |
PCI_INTERRUPT_LINE, 2, 0x409);
pegasos2_pci_config_write(as, 1, (PCI_DEVFN(12, 4) << 8) |
PCI_INTERRUPT_LINE, 2, 0x9);
pegasos2_pci_config_write(as, 1, (PCI_DEVFN(12, 4) << 8) |
0x48, 4, 0xf00);
pegasos2_pci_config_write(as, 1, (PCI_DEVFN(12, 4) << 8) |
0x40, 4, 0x558020);
pegasos2_pci_config_write(as, 1, (PCI_DEVFN(12, 4) << 8) |
0x90, 4, 0xd00);
pegasos2_pci_config_write(as, 1, (PCI_DEVFN(12, 5) << 8) |
PCI_INTERRUPT_LINE, 2, 0x309);
pegasos2_pci_config_write(as, 1, (PCI_DEVFN(12, 6) << 8) |
PCI_INTERRUPT_LINE, 2, 0x309);
/* Device tree and VOF set up */
vof_init(pm->vof, machine->ram_size, &error_fatal);
if (vof_claim(pm->vof, 0, VOF_STACK_SIZE, VOF_STACK_SIZE) == -1) {
error_report("Memory allocation for stack failed");
exit(1);
}
if (pm->kernel_size &&
vof_claim(pm->vof, pm->kernel_addr, pm->kernel_size, 0) == -1) {
error_report("Memory for kernel is in use");
exit(1);
}
fdt = build_fdt(machine, &sz);
/* FIXME: VOF assumes entry is same as load address */
d[0] = cpu_to_be64(pm->kernel_entry);
d[1] = cpu_to_be64(pm->kernel_size - (pm->kernel_entry - pm->kernel_addr));
qemu_fdt_setprop(fdt, "/chosen", "qemu,boot-kernel", d, sizeof(d));
qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
g_free(pm->fdt_blob);
pm->fdt_blob = fdt;
vof_build_dt(fdt, pm->vof);
vof_client_open_store(fdt, pm->vof, "/chosen", "stdout", "/failsafe");
pm->cpu->vhyp = PPC_VIRTUAL_HYPERVISOR(machine);
}
enum pegasos2_rtas_tokens {
RTAS_RESTART_RTAS = 0,
RTAS_NVRAM_FETCH = 1,
RTAS_NVRAM_STORE = 2,
RTAS_GET_TIME_OF_DAY = 3,
RTAS_SET_TIME_OF_DAY = 4,
RTAS_EVENT_SCAN = 6,
RTAS_CHECK_EXCEPTION = 7,
RTAS_READ_PCI_CONFIG = 8,
RTAS_WRITE_PCI_CONFIG = 9,
RTAS_DISPLAY_CHARACTER = 10,
RTAS_SET_INDICATOR = 11,
RTAS_POWER_OFF = 17,
RTAS_SUSPEND = 18,
RTAS_HIBERNATE = 19,
RTAS_SYSTEM_REBOOT = 20,
};
static target_ulong pegasos2_rtas(PowerPCCPU *cpu, Pegasos2MachineState *pm,
target_ulong args_real)
{
AddressSpace *as = CPU(cpu)->as;
uint32_t token = ldl_be_phys(as, args_real);
uint32_t nargs = ldl_be_phys(as, args_real + 4);
uint32_t nrets = ldl_be_phys(as, args_real + 8);
uint32_t args = args_real + 12;
uint32_t rets = args_real + 12 + nargs * 4;
if (nrets < 1) {
qemu_log_mask(LOG_GUEST_ERROR, "Too few return values in RTAS call\n");
return H_PARAMETER;
}
switch (token) {
case RTAS_READ_PCI_CONFIG:
{
uint32_t addr, len, val;
if (nargs != 2 || nrets != 2) {
stl_be_phys(as, rets, -1);
return H_PARAMETER;
}
addr = ldl_be_phys(as, args);
len = ldl_be_phys(as, args + 4);
val = pegasos2_pci_config_read(as, !(addr >> 24),
addr & 0x0fffffff, len);
stl_be_phys(as, rets, 0);
stl_be_phys(as, rets + 4, val);
return H_SUCCESS;
}
case RTAS_WRITE_PCI_CONFIG:
{
uint32_t addr, len, val;
if (nargs != 3 || nrets != 1) {
stl_be_phys(as, rets, -1);
return H_PARAMETER;
}
addr = ldl_be_phys(as, args);
len = ldl_be_phys(as, args + 4);
val = ldl_be_phys(as, args + 8);
pegasos2_pci_config_write(as, !(addr >> 24),
addr & 0x0fffffff, len, val);
stl_be_phys(as, rets, 0);
return H_SUCCESS;
}
case RTAS_DISPLAY_CHARACTER:
if (nargs != 1 || nrets != 1) {
stl_be_phys(as, rets, -1);
return H_PARAMETER;
}
qemu_log_mask(LOG_UNIMP, "%c", ldl_be_phys(as, args));
stl_be_phys(as, rets, 0);
return H_SUCCESS;
default:
qemu_log_mask(LOG_UNIMP, "Unknown RTAS token %u (args=%u, rets=%u)\n",
token, nargs, nrets);
stl_be_phys(as, rets, 0);
return H_SUCCESS;
}
}
static void pegasos2_hypercall(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
{
Pegasos2MachineState *pm = PEGASOS2_MACHINE(vhyp);
CPUPPCState *env = &cpu->env;
/* The TCG path should also be holding the BQL at this point */
g_assert(qemu_mutex_iothread_locked());
if (msr_pr) {
qemu_log_mask(LOG_GUEST_ERROR, "Hypercall made with MSR[PR]=1\n");
env->gpr[3] = H_PRIVILEGE;
} else if (env->gpr[3] == KVMPPC_H_RTAS) {
env->gpr[3] = pegasos2_rtas(cpu, pm, env->gpr[4]);
} else if (env->gpr[3] == KVMPPC_H_VOF_CLIENT) {
int ret = vof_client_call(MACHINE(pm), pm->vof, pm->fdt_blob,
env->gpr[4]);
env->gpr[3] = (ret ? H_PARAMETER : H_SUCCESS);
} else {
qemu_log_mask(LOG_GUEST_ERROR, "Unsupported hypercall " TARGET_FMT_lx
"\n", env->gpr[3]);
env->gpr[3] = -1;
}
}
static void vhyp_nop(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
{
}
static target_ulong vhyp_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
{
return POWERPC_CPU(current_cpu)->env.spr[SPR_SDR1];
}
static void pegasos2_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
mc->desc = "Genesi/bPlan Pegasos II";
mc->init = pegasos2_init;
mc->reset = pegasos2_machine_reset;
mc->block_default_type = IF_IDE;
mc->default_boot_order = "cd";
mc->default_display = "std";
mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("7400_v2.9");
mc->default_ram_id = "pegasos2.ram";
mc->default_ram_size = 512 * MiB;
vhc->hypercall = pegasos2_hypercall;
vhc->cpu_exec_enter = vhyp_nop;
vhc->cpu_exec_exit = vhyp_nop;
vhc->encode_hpt_for_kvm_pr = vhyp_encode_hpt_for_kvm_pr;
}
DEFINE_MACHINE("pegasos2", pegasos2_machine)
static const TypeInfo pegasos2_machine_info = {
.name = TYPE_PEGASOS2_MACHINE,
.parent = TYPE_MACHINE,
.class_init = pegasos2_machine_class_init,
.instance_size = sizeof(Pegasos2MachineState),
.interfaces = (InterfaceInfo[]) {
{ TYPE_PPC_VIRTUAL_HYPERVISOR },
{ }
},
};
static void pegasos2_machine_register_types(void)
{
type_register_static(&pegasos2_machine_info);
}
type_init(pegasos2_machine_register_types)
/* FDT creation for passing to firmware */
typedef struct {
void *fdt;
const char *path;
} FDTInfo;
/* We do everything in reverse order so it comes out right in the tree */
static void dt_ide(PCIBus *bus, PCIDevice *d, FDTInfo *fi)
{
qemu_fdt_setprop_string(fi->fdt, fi->path, "device_type", "spi");
}
static void dt_usb(PCIBus *bus, PCIDevice *d, FDTInfo *fi)
{
qemu_fdt_setprop_cell(fi->fdt, fi->path, "#size-cells", 0);
qemu_fdt_setprop_cell(fi->fdt, fi->path, "#address-cells", 1);
qemu_fdt_setprop_string(fi->fdt, fi->path, "device_type", "usb");
}
static void dt_isa(PCIBus *bus, PCIDevice *d, FDTInfo *fi)
{
GString *name = g_string_sized_new(64);
uint32_t cells[3];
qemu_fdt_setprop_cell(fi->fdt, fi->path, "#size-cells", 1);
qemu_fdt_setprop_cell(fi->fdt, fi->path, "#address-cells", 2);
qemu_fdt_setprop_string(fi->fdt, fi->path, "device_type", "isa");
qemu_fdt_setprop_string(fi->fdt, fi->path, "name", "isa");
/* addional devices */
g_string_printf(name, "%s/lpt@i3bc", fi->path);
qemu_fdt_add_subnode(fi->fdt, name->str);
qemu_fdt_setprop_cell(fi->fdt, name->str, "clock-frequency", 0);
cells[0] = cpu_to_be32(7);
cells[1] = 0;
qemu_fdt_setprop(fi->fdt, name->str, "interrupts",
cells, 2 * sizeof(cells[0]));
cells[0] = cpu_to_be32(1);
cells[1] = cpu_to_be32(0x3bc);
cells[2] = cpu_to_be32(8);
qemu_fdt_setprop(fi->fdt, name->str, "reg", cells, 3 * sizeof(cells[0]));
qemu_fdt_setprop_string(fi->fdt, name->str, "device_type", "lpt");
qemu_fdt_setprop_string(fi->fdt, name->str, "name", "lpt");
g_string_printf(name, "%s/fdc@i3f0", fi->path);
qemu_fdt_add_subnode(fi->fdt, name->str);
qemu_fdt_setprop_cell(fi->fdt, name->str, "clock-frequency", 0);
cells[0] = cpu_to_be32(6);
cells[1] = 0;
qemu_fdt_setprop(fi->fdt, name->str, "interrupts",
cells, 2 * sizeof(cells[0]));
cells[0] = cpu_to_be32(1);
cells[1] = cpu_to_be32(0x3f0);
cells[2] = cpu_to_be32(8);
qemu_fdt_setprop(fi->fdt, name->str, "reg", cells, 3 * sizeof(cells[0]));
qemu_fdt_setprop_string(fi->fdt, name->str, "device_type", "fdc");
qemu_fdt_setprop_string(fi->fdt, name->str, "name", "fdc");
g_string_printf(name, "%s/timer@i40", fi->path);
qemu_fdt_add_subnode(fi->fdt, name->str);
qemu_fdt_setprop_cell(fi->fdt, name->str, "clock-frequency", 0);
cells[0] = cpu_to_be32(1);
cells[1] = cpu_to_be32(0x40);
cells[2] = cpu_to_be32(8);
qemu_fdt_setprop(fi->fdt, name->str, "reg", cells, 3 * sizeof(cells[0]));
qemu_fdt_setprop_string(fi->fdt, name->str, "device_type", "timer");
qemu_fdt_setprop_string(fi->fdt, name->str, "name", "timer");
g_string_printf(name, "%s/rtc@i70", fi->path);
qemu_fdt_add_subnode(fi->fdt, name->str);
qemu_fdt_setprop_string(fi->fdt, name->str, "compatible", "ds1385-rtc");
qemu_fdt_setprop_cell(fi->fdt, name->str, "clock-frequency", 0);
cells[0] = cpu_to_be32(8);
cells[1] = 0;
qemu_fdt_setprop(fi->fdt, name->str, "interrupts",
cells, 2 * sizeof(cells[0]));
cells[0] = cpu_to_be32(1);
cells[1] = cpu_to_be32(0x70);
cells[2] = cpu_to_be32(2);
qemu_fdt_setprop(fi->fdt, name->str, "reg", cells, 3 * sizeof(cells[0]));
qemu_fdt_setprop_string(fi->fdt, name->str, "device_type", "rtc");
qemu_fdt_setprop_string(fi->fdt, name->str, "name", "rtc");
g_string_printf(name, "%s/keyboard@i60", fi->path);
qemu_fdt_add_subnode(fi->fdt, name->str);
cells[0] = cpu_to_be32(1);
cells[1] = 0;
qemu_fdt_setprop(fi->fdt, name->str, "interrupts",
cells, 2 * sizeof(cells[0]));
cells[0] = cpu_to_be32(1);
cells[1] = cpu_to_be32(0x60);
cells[2] = cpu_to_be32(5);
qemu_fdt_setprop(fi->fdt, name->str, "reg", cells, 3 * sizeof(cells[0]));
qemu_fdt_setprop_string(fi->fdt, name->str, "device_type", "keyboard");
qemu_fdt_setprop_string(fi->fdt, name->str, "name", "keyboard");
g_string_printf(name, "%s/8042@i60", fi->path);
qemu_fdt_add_subnode(fi->fdt, name->str);
qemu_fdt_setprop_cell(fi->fdt, name->str, "#interrupt-cells", 2);
qemu_fdt_setprop_cell(fi->fdt, name->str, "#size-cells", 0);
qemu_fdt_setprop_cell(fi->fdt, name->str, "#address-cells", 1);
qemu_fdt_setprop_string(fi->fdt, name->str, "interrupt-controller", "");
qemu_fdt_setprop_cell(fi->fdt, name->str, "clock-frequency", 0);
cells[0] = cpu_to_be32(1);
cells[1] = cpu_to_be32(0x60);
cells[2] = cpu_to_be32(5);
qemu_fdt_setprop(fi->fdt, name->str, "reg", cells, 3 * sizeof(cells[0]));
qemu_fdt_setprop_string(fi->fdt, name->str, "device_type", "");
qemu_fdt_setprop_string(fi->fdt, name->str, "name", "8042");
g_string_printf(name, "%s/serial@i2f8", fi->path);
qemu_fdt_add_subnode(fi->fdt, name->str);
qemu_fdt_setprop_cell(fi->fdt, name->str, "clock-frequency", 0);
cells[0] = cpu_to_be32(3);
cells[1] = 0;
qemu_fdt_setprop(fi->fdt, name->str, "interrupts",
cells, 2 * sizeof(cells[0]));
cells[0] = cpu_to_be32(1);
cells[1] = cpu_to_be32(0x2f8);
cells[2] = cpu_to_be32(8);
qemu_fdt_setprop(fi->fdt, name->str, "reg", cells, 3 * sizeof(cells[0]));
qemu_fdt_setprop_string(fi->fdt, name->str, "device_type", "serial");
qemu_fdt_setprop_string(fi->fdt, name->str, "name", "serial");
g_string_free(name, TRUE);
}
static struct {
const char *id;
const char *name;
void (*dtf)(PCIBus *bus, PCIDevice *d, FDTInfo *fi);
} device_map[] = {
{ "pci11ab,6460", "host", NULL },
{ "pci1106,8231", "isa", dt_isa },
{ "pci1106,571", "ide", dt_ide },
{ "pci1106,3044", "firewire", NULL },
{ "pci1106,3038", "usb", dt_usb },
{ "pci1106,8235", "other", NULL },
{ "pci1106,3058", "sound", NULL },
{ NULL, NULL }
};
static void add_pci_device(PCIBus *bus, PCIDevice *d, void *opaque)
{
FDTInfo *fi = opaque;
GString *node = g_string_new(NULL);
uint32_t cells[(PCI_NUM_REGIONS + 1) * 5];
int i, j;
const char *name = NULL;
g_autofree const gchar *pn = g_strdup_printf("pci%x,%x",
pci_get_word(&d->config[PCI_VENDOR_ID]),
pci_get_word(&d->config[PCI_DEVICE_ID]));
for (i = 0; device_map[i].id; i++) {
if (!strcmp(pn, device_map[i].id)) {
name = device_map[i].name;
break;
}
}
g_string_printf(node, "%s/%s@%x", fi->path, (name ?: pn),
PCI_SLOT(d->devfn));
if (PCI_FUNC(d->devfn)) {
g_string_append_printf(node, ",%x", PCI_FUNC(d->devfn));
}
qemu_fdt_add_subnode(fi->fdt, node->str);
if (device_map[i].dtf) {
FDTInfo cfi = { fi->fdt, node->str };
device_map[i].dtf(bus, d, &cfi);
}
cells[0] = cpu_to_be32(d->devfn << 8);
cells[1] = 0;
cells[2] = 0;
cells[3] = 0;
cells[4] = 0;
j = 5;
for (i = 0; i < PCI_NUM_REGIONS; i++) {
if (!d->io_regions[i].size) {
continue;
}
cells[j] = cpu_to_be32(d->devfn << 8 | (PCI_BASE_ADDRESS_0 + i * 4));
if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
cells[j] |= cpu_to_be32(1 << 24);
} else {
cells[j] |= cpu_to_be32(2 << 24);
if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_PREFETCH) {
cells[j] |= cpu_to_be32(4 << 28);
}
}
cells[j + 1] = 0;
cells[j + 2] = 0;
cells[j + 3] = cpu_to_be32(d->io_regions[i].size >> 32);
cells[j + 4] = cpu_to_be32(d->io_regions[i].size);
j += 5;
}
qemu_fdt_setprop(fi->fdt, node->str, "reg", cells, j * sizeof(cells[0]));
qemu_fdt_setprop_string(fi->fdt, node->str, "name", name ?: pn);
if (pci_get_byte(&d->config[PCI_INTERRUPT_PIN])) {
qemu_fdt_setprop_cell(fi->fdt, node->str, "interrupts",
pci_get_byte(&d->config[PCI_INTERRUPT_PIN]));
}
/* Pegasos2 firmware has subsystem-id amd subsystem-vendor-id swapped */
qemu_fdt_setprop_cell(fi->fdt, node->str, "subsystem-vendor-id",
pci_get_word(&d->config[PCI_SUBSYSTEM_ID]));
qemu_fdt_setprop_cell(fi->fdt, node->str, "subsystem-id",
pci_get_word(&d->config[PCI_SUBSYSTEM_VENDOR_ID]));
cells[0] = pci_get_long(&d->config[PCI_CLASS_REVISION]);
qemu_fdt_setprop_cell(fi->fdt, node->str, "class-code", cells[0] >> 8);
qemu_fdt_setprop_cell(fi->fdt, node->str, "revision-id", cells[0] & 0xff);
qemu_fdt_setprop_cell(fi->fdt, node->str, "device-id",
pci_get_word(&d->config[PCI_DEVICE_ID]));
qemu_fdt_setprop_cell(fi->fdt, node->str, "vendor-id",
pci_get_word(&d->config[PCI_VENDOR_ID]));
g_string_free(node, TRUE);
}
static void *build_fdt(MachineState *machine, int *fdt_size)
{
Pegasos2MachineState *pm = PEGASOS2_MACHINE(machine);
PowerPCCPU *cpu = pm->cpu;
PCIBus *pci_bus;
FDTInfo fi;
uint32_t cells[16];
void *fdt = create_device_tree(fdt_size);
fi.fdt = fdt;
/* root node */
qemu_fdt_setprop_string(fdt, "/", "CODEGEN,description",
"Pegasos CHRP PowerPC System");
qemu_fdt_setprop_string(fdt, "/", "CODEGEN,board", "Pegasos2");
qemu_fdt_setprop_string(fdt, "/", "CODEGEN,vendor", "bplan GmbH");
qemu_fdt_setprop_string(fdt, "/", "revision", "2B");
qemu_fdt_setprop_string(fdt, "/", "model", "Pegasos2");
qemu_fdt_setprop_string(fdt, "/", "device_type", "chrp");
qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 1);
qemu_fdt_setprop_string(fdt, "/", "name", "bplan,Pegasos2");
/* pci@c0000000 */
qemu_fdt_add_subnode(fdt, "/pci@c0000000");
cells[0] = 0;
cells[1] = 0;
qemu_fdt_setprop(fdt, "/pci@c0000000", "bus-range",
cells, 2 * sizeof(cells[0]));
qemu_fdt_setprop_cell(fdt, "/pci@c0000000", "pci-bridge-number", 1);
cells[0] = cpu_to_be32(PCI0_MEM_BASE);
cells[1] = cpu_to_be32(PCI0_MEM_SIZE);
qemu_fdt_setprop(fdt, "/pci@c0000000", "reg", cells, 2 * sizeof(cells[0]));
cells[0] = cpu_to_be32(0x01000000);
cells[1] = 0;
cells[2] = 0;
cells[3] = cpu_to_be32(PCI0_IO_BASE);
cells[4] = 0;
cells[5] = cpu_to_be32(PCI0_IO_SIZE);
cells[6] = cpu_to_be32(0x02000000);
cells[7] = 0;
cells[8] = cpu_to_be32(PCI0_MEM_BASE);
cells[9] = cpu_to_be32(PCI0_MEM_BASE);
cells[10] = 0;
cells[11] = cpu_to_be32(PCI0_MEM_SIZE);
qemu_fdt_setprop(fdt, "/pci@c0000000", "ranges",
cells, 12 * sizeof(cells[0]));
qemu_fdt_setprop_cell(fdt, "/pci@c0000000", "#size-cells", 2);
qemu_fdt_setprop_cell(fdt, "/pci@c0000000", "#address-cells", 3);
qemu_fdt_setprop_string(fdt, "/pci@c0000000", "device_type", "pci");
qemu_fdt_setprop_string(fdt, "/pci@c0000000", "name", "pci");
fi.path = "/pci@c0000000";
pci_bus = mv64361_get_pci_bus(pm->mv, 0);
pci_for_each_device_reverse(pci_bus, 0, add_pci_device, &fi);
/* pci@80000000 */
qemu_fdt_add_subnode(fdt, "/pci@80000000");
cells[0] = 0;
cells[1] = 0;
qemu_fdt_setprop(fdt, "/pci@80000000", "bus-range",
cells, 2 * sizeof(cells[0]));
qemu_fdt_setprop_cell(fdt, "/pci@80000000", "pci-bridge-number", 0);
cells[0] = cpu_to_be32(PCI1_MEM_BASE);
cells[1] = cpu_to_be32(PCI1_MEM_SIZE);
qemu_fdt_setprop(fdt, "/pci@80000000", "reg", cells, 2 * sizeof(cells[0]));
qemu_fdt_setprop_cell(fdt, "/pci@80000000", "8259-interrupt-acknowledge",
0xf1000cb4);
cells[0] = cpu_to_be32(0x01000000);
cells[1] = 0;
cells[2] = 0;
cells[3] = cpu_to_be32(PCI1_IO_BASE);
cells[4] = 0;
cells[5] = cpu_to_be32(PCI1_IO_SIZE);
cells[6] = cpu_to_be32(0x02000000);
cells[7] = 0;
cells[8] = cpu_to_be32(PCI1_MEM_BASE);
cells[9] = cpu_to_be32(PCI1_MEM_BASE);
cells[10] = 0;
cells[11] = cpu_to_be32(PCI1_MEM_SIZE);
qemu_fdt_setprop(fdt, "/pci@80000000", "ranges",
cells, 12 * sizeof(cells[0]));
qemu_fdt_setprop_cell(fdt, "/pci@80000000", "#size-cells", 2);
qemu_fdt_setprop_cell(fdt, "/pci@80000000", "#address-cells", 3);
qemu_fdt_setprop_string(fdt, "/pci@80000000", "device_type", "pci");
qemu_fdt_setprop_string(fdt, "/pci@80000000", "name", "pci");
fi.path = "/pci@80000000";
pci_bus = mv64361_get_pci_bus(pm->mv, 1);
pci_for_each_device_reverse(pci_bus, 0, add_pci_device, &fi);
qemu_fdt_add_subnode(fdt, "/failsafe");
qemu_fdt_setprop_string(fdt, "/failsafe", "device_type", "serial");
qemu_fdt_setprop_string(fdt, "/failsafe", "name", "failsafe");
qemu_fdt_add_subnode(fdt, "/rtas");
qemu_fdt_setprop_cell(fdt, "/rtas", "system-reboot", RTAS_SYSTEM_REBOOT);
qemu_fdt_setprop_cell(fdt, "/rtas", "hibernate", RTAS_HIBERNATE);
qemu_fdt_setprop_cell(fdt, "/rtas", "suspend", RTAS_SUSPEND);
qemu_fdt_setprop_cell(fdt, "/rtas", "power-off", RTAS_POWER_OFF);
qemu_fdt_setprop_cell(fdt, "/rtas", "set-indicator", RTAS_SET_INDICATOR);
qemu_fdt_setprop_cell(fdt, "/rtas", "display-character",
RTAS_DISPLAY_CHARACTER);
qemu_fdt_setprop_cell(fdt, "/rtas", "write-pci-config",
RTAS_WRITE_PCI_CONFIG);
qemu_fdt_setprop_cell(fdt, "/rtas", "read-pci-config",
RTAS_READ_PCI_CONFIG);
/* Pegasos2 firmware misspells check-exception and guests use that */
qemu_fdt_setprop_cell(fdt, "/rtas", "check-execption",
RTAS_CHECK_EXCEPTION);
qemu_fdt_setprop_cell(fdt, "/rtas", "event-scan", RTAS_EVENT_SCAN);
qemu_fdt_setprop_cell(fdt, "/rtas", "set-time-of-day",
RTAS_SET_TIME_OF_DAY);
qemu_fdt_setprop_cell(fdt, "/rtas", "get-time-of-day",
RTAS_GET_TIME_OF_DAY);
qemu_fdt_setprop_cell(fdt, "/rtas", "nvram-store", RTAS_NVRAM_STORE);
qemu_fdt_setprop_cell(fdt, "/rtas", "nvram-fetch", RTAS_NVRAM_FETCH);
qemu_fdt_setprop_cell(fdt, "/rtas", "restart-rtas", RTAS_RESTART_RTAS);
qemu_fdt_setprop_cell(fdt, "/rtas", "rtas-error-log-max", 0);
qemu_fdt_setprop_cell(fdt, "/rtas", "rtas-event-scan-rate", 0);
qemu_fdt_setprop_cell(fdt, "/rtas", "rtas-display-device", 0);
qemu_fdt_setprop_cell(fdt, "/rtas", "rtas-size", 20);
qemu_fdt_setprop_cell(fdt, "/rtas", "rtas-version", 1);
/* cpus */
qemu_fdt_add_subnode(fdt, "/cpus");
qemu_fdt_setprop_cell(fdt, "/cpus", "#cpus", 1);
qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 1);
qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0);
qemu_fdt_setprop_string(fdt, "/cpus", "name", "cpus");
/* FIXME Get CPU name from CPU object */
const char *cp = "/cpus/PowerPC,G4";
qemu_fdt_add_subnode(fdt, cp);
qemu_fdt_setprop_cell(fdt, cp, "l2cr", 0);
qemu_fdt_setprop_cell(fdt, cp, "d-cache-size", 0x8000);
qemu_fdt_setprop_cell(fdt, cp, "d-cache-block-size",
cpu->env.dcache_line_size);
qemu_fdt_setprop_cell(fdt, cp, "d-cache-line-size",
cpu->env.dcache_line_size);
qemu_fdt_setprop_cell(fdt, cp, "i-cache-size", 0x8000);
qemu_fdt_setprop_cell(fdt, cp, "i-cache-block-size",
cpu->env.icache_line_size);
qemu_fdt_setprop_cell(fdt, cp, "i-cache-line-size",
cpu->env.icache_line_size);
if (cpu->env.id_tlbs) {
qemu_fdt_setprop_cell(fdt, cp, "i-tlb-sets", cpu->env.nb_ways);
qemu_fdt_setprop_cell(fdt, cp, "i-tlb-size", cpu->env.tlb_per_way);
qemu_fdt_setprop_cell(fdt, cp, "d-tlb-sets", cpu->env.nb_ways);
qemu_fdt_setprop_cell(fdt, cp, "d-tlb-size", cpu->env.tlb_per_way);
qemu_fdt_setprop_string(fdt, cp, "tlb-split", "");
}
qemu_fdt_setprop_cell(fdt, cp, "tlb-sets", cpu->env.nb_ways);
qemu_fdt_setprop_cell(fdt, cp, "tlb-size", cpu->env.nb_tlb);
qemu_fdt_setprop_string(fdt, cp, "state", "running");
if (cpu->env.insns_flags & PPC_ALTIVEC) {
qemu_fdt_setprop_string(fdt, cp, "altivec", "");
qemu_fdt_setprop_string(fdt, cp, "data-streams", "");
}
/*
* FIXME What flags do data-streams, external-control and
* performance-monitor depend on?
*/
qemu_fdt_setprop_string(fdt, cp, "external-control", "");
if (cpu->env.insns_flags & PPC_FLOAT_FSQRT) {
qemu_fdt_setprop_string(fdt, cp, "general-purpose", "");
}
qemu_fdt_setprop_string(fdt, cp, "performance-monitor", "");
if (cpu->env.insns_flags & PPC_FLOAT_FRES) {
qemu_fdt_setprop_string(fdt, cp, "graphics", "");
}
qemu_fdt_setprop_cell(fdt, cp, "reservation-granule-size", 4);
qemu_fdt_setprop_cell(fdt, cp, "timebase-frequency",
cpu->env.tb_env->tb_freq);
qemu_fdt_setprop_cell(fdt, cp, "bus-frequency", BUS_FREQ_HZ);
qemu_fdt_setprop_cell(fdt, cp, "clock-frequency", BUS_FREQ_HZ * 7.5);
qemu_fdt_setprop_cell(fdt, cp, "cpu-version", cpu->env.spr[SPR_PVR]);
cells[0] = 0;
cells[1] = 0;
qemu_fdt_setprop(fdt, cp, "reg", cells, 2 * sizeof(cells[0]));
qemu_fdt_setprop_string(fdt, cp, "device_type", "cpu");
qemu_fdt_setprop_string(fdt, cp, "name", strrchr(cp, '/') + 1);
/* memory */
qemu_fdt_add_subnode(fdt, "/memory@0");
cells[0] = 0;
cells[1] = cpu_to_be32(machine->ram_size);
qemu_fdt_setprop(fdt, "/memory@0", "reg", cells, 2 * sizeof(cells[0]));
qemu_fdt_setprop_string(fdt, "/memory@0", "device_type", "memory");
qemu_fdt_setprop_string(fdt, "/memory@0", "name", "memory");
qemu_fdt_add_subnode(fdt, "/chosen");
qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
machine->kernel_cmdline ?: "");
qemu_fdt_setprop_string(fdt, "/chosen", "name", "chosen");
qemu_fdt_add_subnode(fdt, "/openprom");
qemu_fdt_setprop_string(fdt, "/openprom", "model", "Pegasos2,1.1");
return fdt;
}

View File

@ -101,6 +101,7 @@
#define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */
#define FW_MAX_SIZE 0x400000
#define FW_FILE_NAME "slof.bin"
#define FW_FILE_NAME_VOF "vof.bin"
#define FW_OVERHEAD 0x2800000
#define KERNEL_LOAD_ADDR FW_MAX_SIZE
@ -880,6 +881,10 @@ static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
add_str(hypertas, "hcall-copy");
add_str(hypertas, "hcall-debug");
add_str(hypertas, "hcall-vphn");
if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
add_str(hypertas, "hcall-rpt-invalidate");
}
add_str(qemu_hypertas, "hcall-memop1");
if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
@ -919,9 +924,13 @@ static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
*
* The extra 8 bytes is required because Linux's FWNMI error log check
* is off-by-one.
*
* RTAS_MIN_SIZE is required for the RTAS blob itself.
*/
_FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX +
ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t)));
_FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
RTAS_ERROR_LOG_MAX +
ms->smp.max_cpus * sizeof(uint64_t) * 2 +
sizeof(uint64_t)));
_FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
RTAS_ERROR_LOG_MAX));
_FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
@ -1639,22 +1648,29 @@ static void spapr_machine_reset(MachineState *machine)
fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
if (spapr->vof) {
spapr_vof_reset(spapr, fdt, &error_fatal);
/*
* Do not pack the FDT as the client may change properties.
* VOF client does not expect the FDT so we do not load it to the VM.
*/
} else {
rc = fdt_pack(fdt);
/* Should only fail if we've built a corrupted tree */
assert(rc == 0);
rc = fdt_pack(fdt);
/* Should only fail if we've built a corrupted tree */
assert(rc == 0);
/* Load the fdt */
spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
0, fdt_addr, 0);
cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
}
qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
g_free(spapr->fdt_blob);
spapr->fdt_size = fdt_totalsize(fdt);
spapr->fdt_initial_size = spapr->fdt_size;
spapr->fdt_blob = fdt;
/* Set up the entry state */
spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
first_ppc_cpu->env.gpr[5] = 0;
spapr->fwnmi_system_reset_addr = -1;
@ -2018,6 +2034,7 @@ static const VMStateDescription vmstate_spapr = {
&vmstate_spapr_cap_ccf_assist,
&vmstate_spapr_cap_fwnmi,
&vmstate_spapr_fwnmi,
&vmstate_spapr_cap_rpt_invalidate,
NULL
}
};
@ -2657,7 +2674,8 @@ static void spapr_machine_init(MachineState *machine)
SpaprMachineState *spapr = SPAPR_MACHINE(machine);
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
MachineClass *mc = MACHINE_GET_CLASS(machine);
const char *bios_name = machine->firmware ?: FW_FILE_NAME;
const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
const char *bios_name = machine->firmware ?: bios_default;
const char *kernel_filename = machine->kernel_filename;
const char *initrd_filename = machine->initrd_filename;
PCIHostState *phb;
@ -3014,6 +3032,10 @@ static void spapr_machine_init(MachineState *machine)
}
qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
if (spapr->vof) {
spapr->vof->fw_size = fw_size; /* for claim() on itself */
spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
}
}
#define DEFAULT_KVM_TYPE "auto"
@ -3204,6 +3226,28 @@ static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
}
}
static bool spapr_get_vof(Object *obj, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
return spapr->vof != NULL;
}
static void spapr_set_vof(Object *obj, bool value, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
if (spapr->vof) {
vof_cleanup(spapr->vof);
g_free(spapr->vof);
spapr->vof = NULL;
}
if (!value) {
return;
}
spapr->vof = g_malloc0(sizeof(*spapr->vof));
}
static char *spapr_get_ic_mode(Object *obj, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
@ -3329,6 +3373,11 @@ static void spapr_instance_init(Object *obj)
stringify(KERNEL_LOAD_ADDR)
" for -kernel is the default");
spapr->kernel_addr = KERNEL_LOAD_ADDR;
object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
object_property_set_description(obj, "x-vof",
"Enable Virtual Open Firmware (experimental)");
/* The machine class defines the default interrupt controller mode */
spapr->irq = smc->irq;
object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
@ -4492,6 +4541,7 @@ static void spapr_machine_class_init(ObjectClass *oc, void *data)
XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
mc->desc = "pSeries Logical Partition (PAPR compliant)";
mc->ignore_boot_device_suffixes = true;
@ -4573,6 +4623,7 @@ static void spapr_machine_class_init(ObjectClass *oc, void *data)
smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
spapr_caps_add_properties(smc);
smc->irq = &spapr_irq_dual;
smc->dr_phb_enabled = true;
@ -4580,6 +4631,9 @@ static void spapr_machine_class_init(ObjectClass *oc, void *data)
smc->smp_threads_vsmt = true;
smc->nr_xirqs = SPAPR_NR_XIRQS;
xfc->match_nvt = spapr_match_nvt;
vmc->client_architecture_support = spapr_vof_client_architecture_support;
vmc->quiesce = spapr_vof_quiesce;
vmc->setprop = spapr_vof_setprop;
}
static const TypeInfo spapr_machine_info = {
@ -4599,6 +4653,7 @@ static const TypeInfo spapr_machine_info = {
{ TYPE_XICS_FABRIC },
{ TYPE_INTERRUPT_STATS_PROVIDER },
{ TYPE_XIVE_FABRIC },
{ TYPE_VOF_MACHINE_IF },
{ }
},
};

View File

@ -582,6 +582,37 @@ static void cap_fwnmi_apply(SpaprMachineState *spapr, uint8_t val,
}
}
static void cap_rpt_invalidate_apply(SpaprMachineState *spapr,
uint8_t val, Error **errp)
{
ERRP_GUARD();
if (!val) {
/* capability disabled by default */
return;
}
if (tcg_enabled()) {
error_setg(errp, "No H_RPT_INVALIDATE support in TCG");
error_append_hint(errp,
"Try appending -machine cap-rpt-invalidate=off\n");
} else if (kvm_enabled()) {
if (!kvmppc_has_cap_mmu_radix()) {
error_setg(errp, "H_RPT_INVALIDATE only supported on Radix");
return;
}
if (!kvmppc_has_cap_rpt_invalidate()) {
error_setg(errp,
"KVM implementation does not support H_RPT_INVALIDATE");
error_append_hint(errp,
"Try appending -machine cap-rpt-invalidate=off\n");
} else {
kvmppc_enable_h_rpt_invalidate();
}
}
}
SpaprCapabilityInfo capability_table[SPAPR_CAP_NUM] = {
[SPAPR_CAP_HTM] = {
.name = "htm",
@ -690,6 +721,15 @@ SpaprCapabilityInfo capability_table[SPAPR_CAP_NUM] = {
.type = "bool",
.apply = cap_fwnmi_apply,
},
[SPAPR_CAP_RPT_INVALIDATE] = {
.name = "rpt-invalidate",
.description = "Allow H_RPT_INVALIDATE",
.index = SPAPR_CAP_RPT_INVALIDATE,
.get = spapr_cap_get_bool,
.set = spapr_cap_set_bool,
.type = "bool",
.apply = cap_rpt_invalidate_apply,
},
};
static SpaprCapabilities default_caps_with_cpu(SpaprMachineState *spapr,
@ -830,6 +870,7 @@ SPAPR_CAP_MIG_STATE(nested_kvm_hv, SPAPR_CAP_NESTED_KVM_HV);
SPAPR_CAP_MIG_STATE(large_decr, SPAPR_CAP_LARGE_DECREMENTER);
SPAPR_CAP_MIG_STATE(ccf_assist, SPAPR_CAP_CCF_ASSIST);
SPAPR_CAP_MIG_STATE(fwnmi, SPAPR_CAP_FWNMI);
SPAPR_CAP_MIG_STATE(rpt_invalidate, SPAPR_CAP_RPT_INVALIDATE);
void spapr_caps_init(SpaprMachineState *spapr)
{

View File

@ -1233,8 +1233,7 @@ target_ulong do_client_architecture_support(PowerPCCPU *cpu,
spapr_setup_hpt(spapr);
}
fdt = spapr_build_fdt(spapr, false, fdt_bufsize);
fdt = spapr_build_fdt(spapr, spapr->vof != NULL, fdt_bufsize);
g_free(spapr->fdt_blob);
spapr->fdt_size = fdt_totalsize(fdt);
spapr->fdt_initial_size = spapr->fdt_size;
@ -1277,6 +1276,25 @@ static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
return ret;
}
target_ulong spapr_vof_client_architecture_support(MachineState *ms,
CPUState *cs,
target_ulong ovec_addr)
{
SpaprMachineState *spapr = SPAPR_MACHINE(ms);
target_ulong ret = do_client_architecture_support(POWERPC_CPU(cs), spapr,
ovec_addr, FDT_MAX_SIZE);
/*
* This adds stdout and generates phandles for boottime and CAS FDTs.
* It is alright to update the FDT here as do_client_architecture_support()
* does not pack it.
*/
spapr_vof_client_dt_finalize(spapr, spapr->fdt_blob);
return ret;
}
static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong opcode,
@ -1299,6 +1317,8 @@ static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
break;
case SPAPR_CAP_FIXED:
behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY;
behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS;
break;
default: /* broken */
assert(safe_cache == SPAPR_CAP_BROKEN);

167
hw/ppc/spapr_vof.c Normal file
View File

@ -0,0 +1,167 @@
/*
* SPAPR machine hooks to Virtual Open Firmware,
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "qapi/error.h"
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "hw/ppc/spapr_cpu_core.h"
#include "hw/ppc/fdt.h"
#include "hw/ppc/vof.h"
#include "sysemu/sysemu.h"
#include "qom/qom-qobject.h"
#include "trace.h"
target_ulong spapr_h_vof_client(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *_args)
{
int ret = vof_client_call(MACHINE(spapr), spapr->vof, spapr->fdt_blob,
ppc64_phys_to_real(_args[0]));
if (ret) {
return H_PARAMETER;
}
return H_SUCCESS;
}
void spapr_vof_client_dt_finalize(SpaprMachineState *spapr, void *fdt)
{
char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
vof_build_dt(fdt, spapr->vof);
if (spapr->vof->bootargs) {
int chosen;
_FDT(chosen = fdt_path_offset(fdt, "/chosen"));
/*
* If the client did not change "bootargs", spapr_dt_chosen() must have
* stored machine->kernel_cmdline in it before getting here.
*/
_FDT(fdt_setprop_string(fdt, chosen, "bootargs", spapr->vof->bootargs));
}
/*
* SLOF-less setup requires an open instance of stdout for early
* kernel printk. By now all phandles are settled so we can open
* the default serial console.
*/
if (stdout_path) {
_FDT(vof_client_open_store(fdt, spapr->vof, "/chosen", "stdout",
stdout_path));
}
}
void spapr_vof_reset(SpaprMachineState *spapr, void *fdt, Error **errp)
{
target_ulong stack_ptr;
Vof *vof = spapr->vof;
PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
vof_init(vof, spapr->rma_size, errp);
stack_ptr = vof_claim(vof, 0, VOF_STACK_SIZE, VOF_STACK_SIZE);
if (stack_ptr == -1) {
error_setg(errp, "Memory allocation for stack failed");
return;
}
/* Stack grows downwards plus reserve space for the minimum stack frame */
stack_ptr += VOF_STACK_SIZE - 0x20;
if (spapr->kernel_size &&
vof_claim(vof, spapr->kernel_addr, spapr->kernel_size, 0) == -1) {
error_setg(errp, "Memory for kernel is in use");
return;
}
if (spapr->initrd_size &&
vof_claim(vof, spapr->initrd_base, spapr->initrd_size, 0) == -1) {
error_setg(errp, "Memory for initramdisk is in use");
return;
}
spapr_vof_client_dt_finalize(spapr, fdt);
spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
stack_ptr, spapr->initrd_base,
spapr->initrd_size);
/* VOF is 32bit BE so enforce MSR here */
first_ppc_cpu->env.msr &= ~((1ULL << MSR_SF) | (1ULL << MSR_LE));
/*
* At this point the expected allocation map is:
*
* 0..c38 - the initial firmware
* 8000..10000 - stack
* 400000.. - kernel
* 3ea0000.. - initramdisk
*
* We skip writing FDT as nothing expects it; OF client interface is
* going to be used for reading the device tree.
*/
}
void spapr_vof_quiesce(MachineState *ms)
{
SpaprMachineState *spapr = SPAPR_MACHINE(ms);
spapr->fdt_size = fdt_totalsize(spapr->fdt_blob);
spapr->fdt_initial_size = spapr->fdt_size;
}
bool spapr_vof_setprop(MachineState *ms, const char *path, const char *propname,
void *val, int vallen)
{
SpaprMachineState *spapr = SPAPR_MACHINE(ms);
/*
* We only allow changing properties which we know how to update in QEMU
* OR
* the ones which we know that they need to survive during "quiesce".
*/
if (strcmp(path, "/rtas") == 0) {
if (strcmp(propname, "linux,rtas-base") == 0 ||
strcmp(propname, "linux,rtas-entry") == 0) {
/* These need to survive quiesce so let them store in the FDT */
return true;
}
}
if (strcmp(path, "/chosen") == 0) {
if (strcmp(propname, "bootargs") == 0) {
Vof *vof = spapr->vof;
g_free(vof->bootargs);
vof->bootargs = g_strndup(val, vallen);
return true;
}
if (strcmp(propname, "linux,initrd-start") == 0) {
if (vallen == sizeof(uint32_t)) {
spapr->initrd_base = ldl_be_p(val);
return true;
}
if (vallen == sizeof(uint64_t)) {
spapr->initrd_base = ldq_be_p(val);
return true;
}
return false;
}
if (strcmp(propname, "linux,initrd-end") == 0) {
if (vallen == sizeof(uint32_t)) {
spapr->initrd_size = ldl_be_p(val) - spapr->initrd_base;
return true;
}
if (vallen == sizeof(uint64_t)) {
spapr->initrd_size = ldq_be_p(val) - spapr->initrd_base;
return true;
}
return false;
}
}
return true;
}

View File

@ -71,6 +71,30 @@ spapr_rtas_ibm_configure_connector_invalid(uint32_t index) "DRC index: 0x%"PRIx3
spapr_vio_h_reg_crq(uint64_t reg, uint64_t queue_addr, uint64_t queue_len) "CRQ for dev 0x%" PRIx64 " registered at 0x%" PRIx64 "/0x%" PRIx64
spapr_vio_free_crq(uint32_t reg) "CRQ for dev 0x%" PRIx32 " freed"
# vof.c
vof_error_str_truncated(const char *s, int len) "%s truncated to %d"
vof_error_param(const char *method, int nargscheck, int nretcheck, int nargs, int nret) "%s takes/returns %d/%d, not %d/%d"
vof_error_unknown_service(const char *service, int nargs, int nret) "\"%s\" args=%d rets=%d"
vof_error_unknown_method(const char *method) "\"%s\""
vof_error_unknown_ihandle_close(uint32_t ih) "ih=0x%x"
vof_error_unknown_path(const char *path) "\"%s\""
vof_error_write(uint32_t ih) "ih=0x%x"
vof_finddevice(const char *path, uint32_t ph) "\"%s\" => ph=0x%x"
vof_claim(uint32_t virt, uint32_t size, uint32_t align, uint32_t ret) "virt=0x%x size=0x%x align=0x%x => 0x%x"
vof_release(uint32_t virt, uint32_t size, uint32_t ret) "virt=0x%x size=0x%x => 0x%x"
vof_method(uint32_t ihandle, const char *method, uint32_t param, uint32_t ret, uint32_t ret2) "ih=0x%x \"%s\"(0x%x) => 0x%x 0x%x"
vof_getprop(uint32_t ph, const char *prop, uint32_t ret, const char *val) "ph=0x%x \"%s\" => len=%d [%s]"
vof_getproplen(uint32_t ph, const char *prop, uint32_t ret) "ph=0x%x \"%s\" => len=%d"
vof_setprop(uint32_t ph, const char *prop, const char *val, uint32_t vallen, uint32_t ret) "ph=0x%x \"%s\" [%s] len=%d => ret=%d"
vof_open(const char *path, uint32_t ph, uint32_t ih) "%s ph=0x%x => ih=0x%x"
vof_interpret(const char *cmd, uint32_t param1, uint32_t param2, uint32_t ret, uint32_t ret2) "[%s] 0x%x 0x%x => 0x%x 0x%x"
vof_package_to_path(uint32_t ph, const char *tmp, uint32_t ret) "ph=0x%x => %s len=%d"
vof_instance_to_path(uint32_t ih, uint32_t ph, const char *tmp, uint32_t ret) "ih=0x%x ph=0x%x => %s len=%d"
vof_instance_to_package(uint32_t ih, uint32_t ph) "ih=0x%x => ph=0x%x"
vof_write(uint32_t ih, unsigned cb, const char *msg) "ih=0x%x [%u] \"%s\""
vof_avail(uint64_t start, uint64_t end, uint64_t size) "0x%"PRIx64"..0x%"PRIx64" size=0x%"PRIx64
vof_claimed(uint64_t start, uint64_t end, uint64_t size) "0x%"PRIx64"..0x%"PRIx64" size=0x%"PRIx64
# ppc.c
ppc_tb_adjust(uint64_t offs1, uint64_t offs2, int64_t diff, int64_t seconds) "adjusted from 0x%"PRIx64" to 0x%"PRIx64", diff %"PRId64" (%"PRId64"s)"

1053
hw/ppc/vof.c Normal file

File diff suppressed because it is too large Load Diff

View File

@ -12,6 +12,7 @@
#include "hw/ppc/spapr_xive.h" /* For SpaprXive */
#include "hw/ppc/xics.h" /* For ICSState */
#include "hw/ppc/spapr_tpm_proxy.h"
#include "hw/ppc/vof.h"
struct SpaprVioBus;
struct SpaprPhbState;
@ -74,8 +75,10 @@ typedef enum {
#define SPAPR_CAP_CCF_ASSIST 0x09
/* Implements PAPR FWNMI option */
#define SPAPR_CAP_FWNMI 0x0A
/* Support H_RPT_INVALIDATE */
#define SPAPR_CAP_RPT_INVALIDATE 0x0B
/* Num Caps */
#define SPAPR_CAP_NUM (SPAPR_CAP_FWNMI + 1)
#define SPAPR_CAP_NUM (SPAPR_CAP_RPT_INVALIDATE + 1)
/*
* Capability Values
@ -180,6 +183,7 @@ struct SpaprMachineState {
uint64_t kernel_addr;
uint32_t initrd_base;
long initrd_size;
Vof *vof;
uint64_t rtc_offset; /* Now used only during incoming migration */
struct PPCTimebase tb;
bool has_graphics;
@ -398,10 +402,13 @@ struct SpaprMachineState {
#define H_CPU_CHAR_THR_RECONF_TRIG PPC_BIT(6)
#define H_CPU_CHAR_CACHE_COUNT_DIS PPC_BIT(7)
#define H_CPU_CHAR_BCCTR_FLUSH_ASSIST PPC_BIT(9)
#define H_CPU_BEHAV_FAVOUR_SECURITY PPC_BIT(0)
#define H_CPU_BEHAV_L1D_FLUSH_PR PPC_BIT(1)
#define H_CPU_BEHAV_BNDS_CHK_SPEC_BAR PPC_BIT(2)
#define H_CPU_BEHAV_FLUSH_COUNT_CACHE PPC_BIT(5)
#define H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY PPC_BIT(7)
#define H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS PPC_BIT(8)
/* Each control block has to be on a 4K boundary */
#define H_CB_ALIGNMENT 4096
@ -542,8 +549,9 @@ struct SpaprMachineState {
#define H_SCM_UNBIND_MEM 0x3F0
#define H_SCM_UNBIND_ALL 0x3FC
#define H_SCM_HEALTH 0x400
#define H_RPT_INVALIDATE 0x448
#define MAX_HCALL_OPCODE H_SCM_HEALTH
#define MAX_HCALL_OPCODE H_RPT_INVALIDATE
/* The hcalls above are standardized in PAPR and implemented by pHyp
* as well.
@ -558,7 +566,9 @@ struct SpaprMachineState {
/* Client Architecture support */
#define KVMPPC_H_CAS (KVMPPC_HCALL_BASE + 0x2)
#define KVMPPC_H_UPDATE_DT (KVMPPC_HCALL_BASE + 0x3)
#define KVMPPC_HCALL_MAX KVMPPC_H_UPDATE_DT
/* 0x4 was used for KVMPPC_H_UPDATE_PHANDLE in SLOF */
#define KVMPPC_H_VOF_CLIENT (KVMPPC_HCALL_BASE + 0x5)
#define KVMPPC_HCALL_MAX KVMPPC_H_VOF_CLIENT
/*
* The hcall range 0xEF00 to 0xEF80 is reserved for use in facilitating
@ -770,7 +780,7 @@ void spapr_load_rtas(SpaprMachineState *spapr, void *fdt, hwaddr addr);
#define SPAPR_IS_PCI_LIOBN(liobn) (!!((liobn) & 0x80000000))
#define SPAPR_PCI_DMA_WINDOW_NUM(liobn) ((liobn) & 0xff)
#define RTAS_SIZE 2048
#define RTAS_MIN_SIZE 20 /* hv_rtas_size in SLOF */
#define RTAS_ERROR_LOG_MAX 2048
/* Offset from rtas-base where error log is placed */
@ -932,6 +942,7 @@ extern const VMStateDescription vmstate_spapr_cap_nested_kvm_hv;
extern const VMStateDescription vmstate_spapr_cap_large_decr;
extern const VMStateDescription vmstate_spapr_cap_ccf_assist;
extern const VMStateDescription vmstate_spapr_cap_fwnmi;
extern const VMStateDescription vmstate_spapr_cap_rpt_invalidate;
static inline uint8_t spapr_get_cap(SpaprMachineState *spapr, int cap)
{
@ -956,4 +967,16 @@ bool spapr_check_pagesize(SpaprMachineState *spapr, hwaddr pagesize,
void spapr_set_all_lpcrs(target_ulong value, target_ulong mask);
hwaddr spapr_get_rtas_addr(void);
bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr);
void spapr_vof_reset(SpaprMachineState *spapr, void *fdt, Error **errp);
void spapr_vof_quiesce(MachineState *ms);
bool spapr_vof_setprop(MachineState *ms, const char *path, const char *propname,
void *val, int vallen);
target_ulong spapr_h_vof_client(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args);
target_ulong spapr_vof_client_architecture_support(MachineState *ms,
CPUState *cs,
target_ulong ovec_addr);
void spapr_vof_client_dt_finalize(SpaprMachineState *spapr, void *fdt);
#endif /* HW_SPAPR_H */

58
include/hw/ppc/vof.h Normal file
View File

@ -0,0 +1,58 @@
/*
* Virtual Open Firmware
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#ifndef HW_VOF_H
#define HW_VOF_H
typedef struct Vof {
uint64_t top_addr; /* copied from rma_size */
GArray *claimed; /* array of SpaprOfClaimed */
uint64_t claimed_base;
GHashTable *of_instances; /* ihandle -> SpaprOfInstance */
uint32_t of_instance_last;
char *bootargs;
long fw_size;
} Vof;
int vof_client_call(MachineState *ms, Vof *vof, void *fdt,
target_ulong args_real);
uint64_t vof_claim(Vof *vof, uint64_t virt, uint64_t size, uint64_t align);
void vof_init(Vof *vof, uint64_t top_addr, Error **errp);
void vof_cleanup(Vof *vof);
void vof_build_dt(void *fdt, Vof *vof);
uint32_t vof_client_open_store(void *fdt, Vof *vof, const char *nodename,
const char *prop, const char *path);
#define TYPE_VOF_MACHINE_IF "vof-machine-if"
typedef struct VofMachineIfClass VofMachineIfClass;
DECLARE_CLASS_CHECKERS(VofMachineIfClass, VOF_MACHINE, TYPE_VOF_MACHINE_IF)
struct VofMachineIfClass {
InterfaceClass parent;
target_ulong (*client_architecture_support)(MachineState *ms, CPUState *cs,
target_ulong vec);
void (*quiesce)(MachineState *ms);
bool (*setprop)(MachineState *ms, const char *path, const char *propname,
void *val, int vallen);
};
/*
* Initial stack size is from
* https://www.devicetree.org/open-firmware/bindings/ppc/release/ppc-2_1.html#REF27292
*
* "Client programs shall be invoked with a valid stack pointer (r1) with
* at least 32K bytes of memory available for stack growth".
*/
#define VOF_STACK_SIZE 0x8000
#define VOF_MEM_READ(pa, buf, size) \
address_space_read(&address_space_memory, \
(pa), MEMTXATTRS_UNSPECIFIED, (buf), (size))
#define VOF_MEM_WRITE(pa, buf, size) \
address_space_write(&address_space_memory, \
(pa), MEMTXATTRS_UNSPECIFIED, (buf), (size))
#endif /* HW_VOF_H */

View File

@ -33,6 +33,8 @@
#define KVM_FEATURE_PV_SCHED_YIELD 13
#define KVM_FEATURE_ASYNC_PF_INT 14
#define KVM_FEATURE_MSI_EXT_DEST_ID 15
#define KVM_FEATURE_HC_MAP_GPA_RANGE 16
#define KVM_FEATURE_MIGRATION_CONTROL 17
#define KVM_HINTS_REALTIME 0
@ -54,6 +56,7 @@
#define MSR_KVM_POLL_CONTROL 0x4b564d05
#define MSR_KVM_ASYNC_PF_INT 0x4b564d06
#define MSR_KVM_ASYNC_PF_ACK 0x4b564d07
#define MSR_KVM_MIGRATION_CONTROL 0x4b564d08
struct kvm_steal_time {
uint64_t steal;
@ -90,6 +93,16 @@ struct kvm_clock_pairing {
/* MSR_KVM_ASYNC_PF_INT */
#define KVM_ASYNC_PF_VEC_MASK GENMASK(7, 0)
/* MSR_KVM_MIGRATION_CONTROL */
#define KVM_MIGRATION_READY (1 << 0)
/* KVM_HC_MAP_GPA_RANGE */
#define KVM_MAP_GPA_RANGE_PAGE_SZ_4K 0
#define KVM_MAP_GPA_RANGE_PAGE_SZ_2M (1 << 0)
#define KVM_MAP_GPA_RANGE_PAGE_SZ_1G (1 << 1)
#define KVM_MAP_GPA_RANGE_ENC_STAT(n) (n << 4)
#define KVM_MAP_GPA_RANGE_ENCRYPTED KVM_MAP_GPA_RANGE_ENC_STAT(1)
#define KVM_MAP_GPA_RANGE_DECRYPTED KVM_MAP_GPA_RANGE_ENC_STAT(0)
/* Operations for KVM_HC_MMU_OP */
#define KVM_MMU_OP_WRITE_PTE 1

View File

@ -167,6 +167,13 @@ extern "C" {
#define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
#define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
/* 64 bpp RGB */
#define DRM_FORMAT_XRGB16161616 fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
#define DRM_FORMAT_XBGR16161616 fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
#define DRM_FORMAT_ARGB16161616 fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
#define DRM_FORMAT_ABGR16161616 fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
/*
* Floating point 64bpp RGB
* IEEE 754-2008 binary16 half-precision float

View File

@ -233,7 +233,7 @@ enum tunable_id {
ETHTOOL_PFC_PREVENTION_TOUT, /* timeout in msecs */
/*
* Add your fresh new tunable attribute above and remember to update
* tunable_strings[] in net/core/ethtool.c
* tunable_strings[] in net/ethtool/common.c
*/
__ETHTOOL_TUNABLE_COUNT,
};
@ -297,7 +297,7 @@ enum phy_tunable_id {
ETHTOOL_PHY_EDPD,
/*
* Add your fresh new phy tunable attribute above and remember to update
* phy_tunable_strings[] in net/core/ethtool.c
* phy_tunable_strings[] in net/ethtool/common.c
*/
__ETHTOOL_PHY_TUNABLE_COUNT,
};

View File

@ -611,6 +611,7 @@
#define KEY_VOICECOMMAND 0x246 /* Listening Voice Command */
#define KEY_ASSISTANT 0x247 /* AL Context-aware desktop assistant */
#define KEY_KBD_LAYOUT_NEXT 0x248 /* AC Next Keyboard Layout Select */
#define KEY_EMOJI_PICKER 0x249 /* Show/hide emoji picker (HUTRR101) */
#define KEY_BRIGHTNESS_MIN 0x250 /* Set Brightness to Minimum */
#define KEY_BRIGHTNESS_MAX 0x251 /* Set Brightness to Maximum */

View File

@ -54,7 +54,7 @@
#define VIRTIO_ID_SOUND 25 /* virtio sound */
#define VIRTIO_ID_FS 26 /* virtio filesystem */
#define VIRTIO_ID_PMEM 27 /* virtio pmem */
#define VIRTIO_ID_BT 28 /* virtio bluetooth */
#define VIRTIO_ID_MAC80211_HWSIM 29 /* virtio mac80211-hwsim */
#define VIRTIO_ID_BT 40 /* virtio bluetooth */
#endif /* _LINUX_VIRTIO_IDS_H */

View File

@ -38,6 +38,9 @@
#include "standard-headers/linux/virtio_ids.h"
#include "standard-headers/linux/virtio_config.h"
/* The feature bitmap for virtio vsock */
#define VIRTIO_VSOCK_F_SEQPACKET 1 /* SOCK_SEQPACKET supported */
struct virtio_vsock_config {
uint64_t guest_cid;
} QEMU_PACKED;
@ -65,6 +68,7 @@ struct virtio_vsock_hdr {
enum virtio_vsock_type {
VIRTIO_VSOCK_TYPE_STREAM = 1,
VIRTIO_VSOCK_TYPE_SEQPACKET = 2,
};
enum virtio_vsock_op {
@ -91,4 +95,9 @@ enum virtio_vsock_shutdown {
VIRTIO_VSOCK_SHUTDOWN_SEND = 2,
};
/* VIRTIO_VSOCK_OP_RW flags values */
enum virtio_vsock_rw {
VIRTIO_VSOCK_SEQ_EOR = 1,
};
#endif /* _LINUX_VIRTIO_VSOCK_H */

View File

@ -184,6 +184,17 @@ struct kvm_vcpu_events {
__u32 reserved[12];
};
struct kvm_arm_copy_mte_tags {
__u64 guest_ipa;
__u64 length;
void *addr;
__u64 flags;
__u64 reserved[2];
};
#define KVM_ARM_TAGS_TO_GUEST 0
#define KVM_ARM_TAGS_FROM_GUEST 1
/* If you need to interpret the index values, here is the key: */
#define KVM_REG_ARM_COPROC_MASK 0x000000000FFF0000
#define KVM_REG_ARM_COPROC_SHIFT 16

View File

@ -72,6 +72,9 @@
#define MADV_COLD 20 /* deactivate these pages */
#define MADV_PAGEOUT 21 /* reclaim these pages */
#define MADV_POPULATE_READ 22 /* populate (prefault) page tables readable */
#define MADV_POPULATE_WRITE 23 /* populate (prefault) page tables writable */
/* compatibility flags */
#define MAP_FILE 0

View File

@ -863,8 +863,8 @@ __SYSCALL(__NR_process_madvise, sys_process_madvise)
__SC_COMP(__NR_epoll_pwait2, sys_epoll_pwait2, compat_sys_epoll_pwait2)
#define __NR_mount_setattr 442
__SYSCALL(__NR_mount_setattr, sys_mount_setattr)
#define __NR_quotactl_path 443
__SYSCALL(__NR_quotactl_path, sys_quotactl_path)
#define __NR_quotactl_fd 443
__SYSCALL(__NR_quotactl_fd, sys_quotactl_fd)
#define __NR_landlock_create_ruleset 444
__SYSCALL(__NR_landlock_create_ruleset, sys_landlock_create_ruleset)

View File

@ -98,6 +98,9 @@
#define MADV_COLD 20 /* deactivate these pages */
#define MADV_PAGEOUT 21 /* reclaim these pages */
#define MADV_POPULATE_READ 22 /* populate (prefault) page tables readable */
#define MADV_POPULATE_WRITE 23 /* populate (prefault) page tables writable */
/* compatibility flags */
#define MAP_FILE 0

View File

@ -372,6 +372,7 @@
#define __NR_process_madvise (__NR_Linux + 440)
#define __NR_epoll_pwait2 (__NR_Linux + 441)
#define __NR_mount_setattr (__NR_Linux + 442)
#define __NR_quotactl_fd (__NR_Linux + 443)
#define __NR_landlock_create_ruleset (__NR_Linux + 444)
#define __NR_landlock_add_rule (__NR_Linux + 445)
#define __NR_landlock_restrict_self (__NR_Linux + 446)

View File

@ -348,6 +348,7 @@
#define __NR_process_madvise (__NR_Linux + 440)
#define __NR_epoll_pwait2 (__NR_Linux + 441)
#define __NR_mount_setattr (__NR_Linux + 442)
#define __NR_quotactl_fd (__NR_Linux + 443)
#define __NR_landlock_create_ruleset (__NR_Linux + 444)
#define __NR_landlock_add_rule (__NR_Linux + 445)
#define __NR_landlock_restrict_self (__NR_Linux + 446)

View File

@ -418,6 +418,7 @@
#define __NR_process_madvise (__NR_Linux + 440)
#define __NR_epoll_pwait2 (__NR_Linux + 441)
#define __NR_mount_setattr (__NR_Linux + 442)
#define __NR_quotactl_fd (__NR_Linux + 443)
#define __NR_landlock_create_ruleset (__NR_Linux + 444)
#define __NR_landlock_add_rule (__NR_Linux + 445)
#define __NR_landlock_restrict_self (__NR_Linux + 446)

View File

@ -425,6 +425,7 @@
#define __NR_process_madvise 440
#define __NR_epoll_pwait2 441
#define __NR_mount_setattr 442
#define __NR_quotactl_fd 443
#define __NR_landlock_create_ruleset 444
#define __NR_landlock_add_rule 445
#define __NR_landlock_restrict_self 446

View File

@ -397,6 +397,7 @@
#define __NR_process_madvise 440
#define __NR_epoll_pwait2 441
#define __NR_mount_setattr 442
#define __NR_quotactl_fd 443
#define __NR_landlock_create_ruleset 444
#define __NR_landlock_add_rule 445
#define __NR_landlock_restrict_self 446

View File

@ -415,6 +415,7 @@
#define __NR_process_madvise 440
#define __NR_epoll_pwait2 441
#define __NR_mount_setattr 442
#define __NR_quotactl_fd 443
#define __NR_landlock_create_ruleset 444
#define __NR_landlock_add_rule 445
#define __NR_landlock_restrict_self 446

View File

@ -363,6 +363,7 @@
#define __NR_process_madvise 440
#define __NR_epoll_pwait2 441
#define __NR_mount_setattr 442
#define __NR_quotactl_fd 443
#define __NR_landlock_create_ruleset 444
#define __NR_landlock_add_rule 445
#define __NR_landlock_restrict_self 446

View File

@ -159,6 +159,19 @@ struct kvm_sregs {
__u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
};
struct kvm_sregs2 {
/* out (KVM_GET_SREGS2) / in (KVM_SET_SREGS2) */
struct kvm_segment cs, ds, es, fs, gs, ss;
struct kvm_segment tr, ldt;
struct kvm_dtable gdt, idt;
__u64 cr0, cr2, cr3, cr4, cr8;
__u64 efer;
__u64 apic_base;
__u64 flags;
__u64 pdptrs[4];
};
#define KVM_SREGS2_FLAGS_PDPTRS_VALID 1
/* for KVM_GET_FPU and KVM_SET_FPU */
struct kvm_fpu {
__u8 fpr[8][16];

View File

@ -1,5 +1,5 @@
#ifndef _ASM_X86_UNISTD_32_H
#define _ASM_X86_UNISTD_32_H 1
#ifndef _ASM_UNISTD_32_H
#define _ASM_UNISTD_32_H
#define __NR_restart_syscall 0
#define __NR_exit 1
@ -433,9 +433,10 @@
#define __NR_process_madvise 440
#define __NR_epoll_pwait2 441
#define __NR_mount_setattr 442
#define __NR_quotactl_fd 443
#define __NR_landlock_create_ruleset 444
#define __NR_landlock_add_rule 445
#define __NR_landlock_restrict_self 446
#endif /* _ASM_X86_UNISTD_32_H */
#endif /* _ASM_UNISTD_32_H */

View File

@ -1,5 +1,5 @@
#ifndef _ASM_X86_UNISTD_64_H
#define _ASM_X86_UNISTD_64_H 1
#ifndef _ASM_UNISTD_64_H
#define _ASM_UNISTD_64_H
#define __NR_read 0
#define __NR_write 1
@ -355,9 +355,10 @@
#define __NR_process_madvise 440
#define __NR_epoll_pwait2 441
#define __NR_mount_setattr 442
#define __NR_quotactl_fd 443
#define __NR_landlock_create_ruleset 444
#define __NR_landlock_add_rule 445
#define __NR_landlock_restrict_self 446
#endif /* _ASM_X86_UNISTD_64_H */
#endif /* _ASM_UNISTD_64_H */

View File

@ -1,5 +1,5 @@
#ifndef _ASM_X86_UNISTD_X32_H
#define _ASM_X86_UNISTD_X32_H 1
#ifndef _ASM_UNISTD_X32_H
#define _ASM_UNISTD_X32_H
#define __NR_read (__X32_SYSCALL_BIT + 0)
#define __NR_write (__X32_SYSCALL_BIT + 1)
@ -308,6 +308,7 @@
#define __NR_process_madvise (__X32_SYSCALL_BIT + 440)
#define __NR_epoll_pwait2 (__X32_SYSCALL_BIT + 441)
#define __NR_mount_setattr (__X32_SYSCALL_BIT + 442)
#define __NR_quotactl_fd (__X32_SYSCALL_BIT + 443)
#define __NR_landlock_create_ruleset (__X32_SYSCALL_BIT + 444)
#define __NR_landlock_add_rule (__X32_SYSCALL_BIT + 445)
#define __NR_landlock_restrict_self (__X32_SYSCALL_BIT + 446)
@ -349,4 +350,4 @@
#define __NR_pwritev2 (__X32_SYSCALL_BIT + 547)
#endif /* _ASM_X86_UNISTD_X32_H */
#endif /* _ASM_UNISTD_X32_H */

View File

@ -280,6 +280,9 @@ struct kvm_xen_exit {
/* Encounter unexpected vm-exit reason */
#define KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON 4
/* Flags that describe what fields in emulation_failure hold valid data. */
#define KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES (1ULL << 0)
/* for KVM_RUN, returned by mmap(vcpu_fd, offset=0) */
struct kvm_run {
/* in */
@ -383,6 +386,25 @@ struct kvm_run {
__u32 ndata;
__u64 data[16];
} internal;
/*
* KVM_INTERNAL_ERROR_EMULATION
*
* "struct emulation_failure" is an overlay of "struct internal"
* that is used for the KVM_INTERNAL_ERROR_EMULATION sub-type of
* KVM_EXIT_INTERNAL_ERROR. Note, unlike other internal error
* sub-types, this struct is ABI! It also needs to be backwards
* compatible with "struct internal". Take special care that
* "ndata" is correct, that new fields are enumerated in "flags",
* and that each flag enumerates fields that are 64-bit aligned
* and sized (so that ndata+internal.data[] is valid/accurate).
*/
struct {
__u32 suberror;
__u32 ndata;
__u64 flags;
__u8 insn_size;
__u8 insn_bytes[15];
} emulation_failure;
/* KVM_EXIT_OSI */
struct {
__u64 gprs[32];
@ -1083,6 +1105,13 @@ struct kvm_ppc_resize_hpt {
#define KVM_CAP_SGX_ATTRIBUTE 196
#define KVM_CAP_VM_COPY_ENC_CONTEXT_FROM 197
#define KVM_CAP_PTP_KVM 198
#define KVM_CAP_HYPERV_ENFORCE_CPUID 199
#define KVM_CAP_SREGS2 200
#define KVM_CAP_EXIT_HYPERCALL 201
#define KVM_CAP_PPC_RPT_INVALIDATE 202
#define KVM_CAP_BINARY_STATS_FD 203
#define KVM_CAP_EXIT_ON_EMULATION_FAILURE 204
#define KVM_CAP_ARM_MTE 205
#ifdef KVM_CAP_IRQ_ROUTING
@ -1428,6 +1457,7 @@ struct kvm_s390_ucas_mapping {
/* Available with KVM_CAP_PMU_EVENT_FILTER */
#define KVM_SET_PMU_EVENT_FILTER _IOW(KVMIO, 0xb2, struct kvm_pmu_event_filter)
#define KVM_PPC_SVM_OFF _IO(KVMIO, 0xb3)
#define KVM_ARM_MTE_COPY_TAGS _IOR(KVMIO, 0xb4, struct kvm_arm_copy_mte_tags)
/* ioctl for vm fd */
#define KVM_CREATE_DEVICE _IOWR(KVMIO, 0xe0, struct kvm_create_device)
@ -1621,6 +1651,9 @@ struct kvm_xen_hvm_attr {
#define KVM_XEN_VCPU_GET_ATTR _IOWR(KVMIO, 0xca, struct kvm_xen_vcpu_attr)
#define KVM_XEN_VCPU_SET_ATTR _IOW(KVMIO, 0xcb, struct kvm_xen_vcpu_attr)
#define KVM_GET_SREGS2 _IOR(KVMIO, 0xcc, struct kvm_sregs2)
#define KVM_SET_SREGS2 _IOW(KVMIO, 0xcd, struct kvm_sregs2)
struct kvm_xen_vcpu_attr {
__u16 type;
__u16 pad[3];
@ -1899,4 +1932,76 @@ struct kvm_dirty_gfn {
#define KVM_BUS_LOCK_DETECTION_OFF (1 << 0)
#define KVM_BUS_LOCK_DETECTION_EXIT (1 << 1)
/**
* struct kvm_stats_header - Header of per vm/vcpu binary statistics data.
* @flags: Some extra information for header, always 0 for now.
* @name_size: The size in bytes of the memory which contains statistics
* name string including trailing '\0'. The memory is allocated
* at the send of statistics descriptor.
* @num_desc: The number of statistics the vm or vcpu has.
* @id_offset: The offset of the vm/vcpu stats' id string in the file pointed
* by vm/vcpu stats fd.
* @desc_offset: The offset of the vm/vcpu stats' descriptor block in the file
* pointd by vm/vcpu stats fd.
* @data_offset: The offset of the vm/vcpu stats' data block in the file
* pointed by vm/vcpu stats fd.
*
* This is the header userspace needs to read from stats fd before any other
* readings. It is used by userspace to discover all the information about the
* vm/vcpu's binary statistics.
* Userspace reads this header from the start of the vm/vcpu's stats fd.
*/
struct kvm_stats_header {
__u32 flags;
__u32 name_size;
__u32 num_desc;
__u32 id_offset;
__u32 desc_offset;
__u32 data_offset;
};
#define KVM_STATS_TYPE_SHIFT 0
#define KVM_STATS_TYPE_MASK (0xF << KVM_STATS_TYPE_SHIFT)
#define KVM_STATS_TYPE_CUMULATIVE (0x0 << KVM_STATS_TYPE_SHIFT)
#define KVM_STATS_TYPE_INSTANT (0x1 << KVM_STATS_TYPE_SHIFT)
#define KVM_STATS_TYPE_PEAK (0x2 << KVM_STATS_TYPE_SHIFT)
#define KVM_STATS_TYPE_MAX KVM_STATS_TYPE_PEAK
#define KVM_STATS_UNIT_SHIFT 4
#define KVM_STATS_UNIT_MASK (0xF << KVM_STATS_UNIT_SHIFT)
#define KVM_STATS_UNIT_NONE (0x0 << KVM_STATS_UNIT_SHIFT)
#define KVM_STATS_UNIT_BYTES (0x1 << KVM_STATS_UNIT_SHIFT)
#define KVM_STATS_UNIT_SECONDS (0x2 << KVM_STATS_UNIT_SHIFT)
#define KVM_STATS_UNIT_CYCLES (0x3 << KVM_STATS_UNIT_SHIFT)
#define KVM_STATS_UNIT_MAX KVM_STATS_UNIT_CYCLES
#define KVM_STATS_BASE_SHIFT 8
#define KVM_STATS_BASE_MASK (0xF << KVM_STATS_BASE_SHIFT)
#define KVM_STATS_BASE_POW10 (0x0 << KVM_STATS_BASE_SHIFT)
#define KVM_STATS_BASE_POW2 (0x1 << KVM_STATS_BASE_SHIFT)
#define KVM_STATS_BASE_MAX KVM_STATS_BASE_POW2
/**
* struct kvm_stats_desc - Descriptor of a KVM statistics.
* @flags: Annotations of the stats, like type, unit, etc.
* @exponent: Used together with @flags to determine the unit.
* @size: The number of data items for this stats.
* Every data item is of type __u64.
* @offset: The offset of the stats to the start of stat structure in
* struture kvm or kvm_vcpu.
* @unused: Unused field for future usage. Always 0 for now.
* @name: The name string for the stats. Its size is indicated by the
* &kvm_stats_header->name_size.
*/
struct kvm_stats_desc {
__u32 flags;
__s16 exponent;
__u16 size;
__u32 offset;
__u32 unused;
char name[];
};
#define KVM_GET_STATS_FD _IO(KVMIO, 0xce)
#endif /* __LINUX_KVM_H */

View File

@ -31,7 +31,8 @@
UFFD_FEATURE_MISSING_SHMEM | \
UFFD_FEATURE_SIGBUS | \
UFFD_FEATURE_THREAD_ID | \
UFFD_FEATURE_MINOR_HUGETLBFS)
UFFD_FEATURE_MINOR_HUGETLBFS | \
UFFD_FEATURE_MINOR_SHMEM)
#define UFFD_API_IOCTLS \
((__u64)1 << _UFFDIO_REGISTER | \
(__u64)1 << _UFFDIO_UNREGISTER | \
@ -80,8 +81,8 @@
struct uffdio_zeropage)
#define UFFDIO_WRITEPROTECT _IOWR(UFFDIO, _UFFDIO_WRITEPROTECT, \
struct uffdio_writeprotect)
#define UFFDIO_CONTINUE _IOR(UFFDIO, _UFFDIO_CONTINUE, \
struct uffdio_continue)
#define UFFDIO_CONTINUE _IOWR(UFFDIO, _UFFDIO_CONTINUE, \
struct uffdio_continue)
/* read() structure */
struct uffd_msg {
@ -185,6 +186,9 @@ struct uffdio_api {
* UFFD_FEATURE_MINOR_HUGETLBFS indicates that minor faults
* can be intercepted (via REGISTER_MODE_MINOR) for
* hugetlbfs-backed pages.
*
* UFFD_FEATURE_MINOR_SHMEM indicates the same support as
* UFFD_FEATURE_MINOR_HUGETLBFS, but for shmem-backed pages instead.
*/
#define UFFD_FEATURE_PAGEFAULT_FLAG_WP (1<<0)
#define UFFD_FEATURE_EVENT_FORK (1<<1)
@ -196,6 +200,7 @@ struct uffdio_api {
#define UFFD_FEATURE_SIGBUS (1<<7)
#define UFFD_FEATURE_THREAD_ID (1<<8)
#define UFFD_FEATURE_MINOR_HUGETLBFS (1<<9)
#define UFFD_FEATURE_MINOR_SHMEM (1<<10)
__u64 features;
__u64 ioctls;

View File

@ -16,6 +16,10 @@
https://github.com/aik/SLOF, and the image currently in qemu is
built from git tag qemu-slof-20210217.
- VOF (Virtual Open Firmware) is a minimalistic firmware to work with
-machine pseries,x-vof=on. When enabled, the firmware acts as a slim shim and
QEMU implements parts of the IEEE 1275 Open Firmware interface.
- sgabios (the Serial Graphics Adapter option ROM) provides a means for
legacy x86 software to communicate with an attached serial console as
if a video card were attached. The master sources reside in a subversion

Binary file not shown.

BIN
pc-bios/vof-nvram.bin Normal file

Binary file not shown.

BIN
pc-bios/vof.bin Executable file

Binary file not shown.

23
pc-bios/vof/Makefile Normal file
View File

@ -0,0 +1,23 @@
all: build-all
build-all: vof.bin
CROSS ?=
CC = $(CROSS)gcc
LD = $(CROSS)ld
OBJCOPY = $(CROSS)objcopy
%.o: %.S
$(CC) -m32 -mbig-endian -mcpu=power4 -c -o $@ $<
%.o: %.c
$(CC) -m32 -mbig-endian -mcpu=power4 -c -fno-stack-protector -o $@ $<
vof.elf: entry.o main.o ci.o bootmem.o libc.o
$(LD) -nostdlib -e_start -Tvof.lds -EB -o $@ $^
%.bin: %.elf
$(OBJCOPY) -O binary -j .text -j .data -j .toc -j .got2 $^ $@
clean:
rm -f *.o vof.bin vof.elf *~

14
pc-bios/vof/bootmem.c Normal file
View File

@ -0,0 +1,14 @@
#include "vof.h"
void boot_from_memory(uint64_t initrd, uint64_t initrdsize)
{
uint64_t kern[2];
phandle chosen = ci_finddevice("/chosen");
if (ci_getprop(chosen, "qemu,boot-kernel", kern, sizeof(kern)) !=
sizeof(kern)) {
return;
}
do_boot(kern[0], initrd, initrdsize);
}

91
pc-bios/vof/ci.c Normal file
View File

@ -0,0 +1,91 @@
#include "vof.h"
struct prom_args {
uint32_t service;
uint32_t nargs;
uint32_t nret;
uint32_t args[10];
};
typedef unsigned long prom_arg_t;
#define ADDR(x) (uint32_t)(x)
static int prom_handle(struct prom_args *pargs)
{
void *rtasbase;
uint32_t rtassize = 0;
phandle rtas;
if (strcmp("call-method", (void *)(unsigned long)pargs->service)) {
return -1;
}
if (strcmp("instantiate-rtas", (void *)(unsigned long)pargs->args[0])) {
return -1;
}
rtas = ci_finddevice("/rtas");
/* rtas-size is set by QEMU depending of FWNMI support */
ci_getprop(rtas, "rtas-size", &rtassize, sizeof(rtassize));
if (rtassize < hv_rtas_size) {
return -1;
}
rtasbase = (void *)(unsigned long) pargs->args[2];
memcpy(rtasbase, hv_rtas, hv_rtas_size);
pargs->args[pargs->nargs] = 0;
pargs->args[pargs->nargs + 1] = pargs->args[2];
return 0;
}
void prom_entry(uint32_t args)
{
if (prom_handle((void *)(unsigned long) args)) {
ci_entry(args);
}
}
static int call_ci(const char *service, int nargs, int nret, ...)
{
int i;
struct prom_args args;
va_list list;
args.service = ADDR(service);
args.nargs = nargs;
args.nret = nret;
va_start(list, nret);
for (i = 0; i < nargs; i++) {
args.args[i] = va_arg(list, prom_arg_t);
}
va_end(list);
for (i = 0; i < nret; i++) {
args.args[nargs + i] = 0;
}
if (ci_entry((uint32_t)(&args)) < 0) {
return -1;
}
return (nret > 0) ? args.args[nargs] : 0;
}
void ci_panic(const char *str)
{
call_ci("exit", 0, 0);
}
phandle ci_finddevice(const char *path)
{
return call_ci("finddevice", 1, 1, path);
}
uint32_t ci_getprop(phandle ph, const char *propname, void *prop, int len)
{
return call_ci("getprop", 4, 1, ph, propname, prop, len);
}

49
pc-bios/vof/entry.S Normal file
View File

@ -0,0 +1,49 @@
#define LOAD32(rn, name) \
lis rn,name##@h; \
ori rn,rn,name##@l
#define ENTRY(func_name) \
.text; \
.align 2; \
.globl .func_name; \
.func_name: \
.globl func_name; \
func_name:
#define KVMPPC_HCALL_BASE 0xf000
#define KVMPPC_H_RTAS (KVMPPC_HCALL_BASE + 0x0)
#define KVMPPC_H_VOF_CLIENT (KVMPPC_HCALL_BASE + 0x5)
. = 0x100 /* Do exactly as SLOF does */
ENTRY(_start)
LOAD32(2, __toc_start)
b entry_c
ENTRY(_prom_entry)
LOAD32(2, __toc_start)
stwu %r1,-112(%r1)
stw %r31,104(%r1)
mflr %r31
bl prom_entry
nop
mtlr %r31
lwz %r31,104(%r1)
addi %r1,%r1,112
blr
ENTRY(ci_entry)
mr 4,3
LOAD32(3,KVMPPC_H_VOF_CLIENT)
sc 1
blr
/* This is the actual RTAS blob copied to the OS at instantiate-rtas */
ENTRY(hv_rtas)
mr %r4,%r3
LOAD32(3,KVMPPC_H_RTAS)
sc 1
blr
.globl hv_rtas_size
hv_rtas_size:
.long . - hv_rtas;

66
pc-bios/vof/libc.c Normal file
View File

@ -0,0 +1,66 @@
#include "vof.h"
int strlen(const char *s)
{
int len = 0;
while (*s != 0) {
len += 1;
s += 1;
}
return len;
}
int strcmp(const char *s1, const char *s2)
{
while (*s1 != 0 && *s2 != 0) {
if (*s1 != *s2) {
break;
}
s1 += 1;
s2 += 1;
}
return *s1 - *s2;
}
void *memcpy(void *dest, const void *src, size_t n)
{
char *cdest;
const char *csrc = src;
cdest = dest;
while (n-- > 0) {
*cdest++ = *csrc++;
}
return dest;
}
int memcmp(const void *ptr1, const void *ptr2, size_t n)
{
const unsigned char *p1 = ptr1;
const unsigned char *p2 = ptr2;
while (n-- > 0) {
if (*p1 != *p2) {
return *p1 - *p2;
}
p1 += 1;
p2 += 1;
}
return 0;
}
void *memset(void *dest, int c, size_t size)
{
unsigned char *d = (unsigned char *)dest;
while (size-- > 0) {
*d++ = (unsigned char)c;
}
return dest;
}

21
pc-bios/vof/main.c Normal file
View File

@ -0,0 +1,21 @@
#include "vof.h"
void do_boot(unsigned long addr, unsigned long _r3, unsigned long _r4)
{
register unsigned long r3 __asm__("r3") = _r3;
register unsigned long r4 __asm__("r4") = _r4;
register unsigned long r5 __asm__("r5") = (unsigned long) _prom_entry;
((void (*)(void))(uint32_t)addr)();
}
void entry_c(void)
{
register unsigned long r3 __asm__("r3");
register unsigned long r4 __asm__("r4");
register unsigned long r5 __asm__("r5");
uint64_t initrd = r3, initrdsize = r4;
boot_from_memory(initrd, initrdsize);
ci_panic("*** No boot target ***\n");
}

41
pc-bios/vof/vof.h Normal file
View File

@ -0,0 +1,41 @@
/*
* Virtual Open Firmware
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include <stdarg.h>
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef unsigned long uint32_t;
typedef unsigned long long uint64_t;
#define NULL (0)
typedef unsigned long ihandle;
typedef unsigned long phandle;
typedef int size_t;
/* globals */
extern void _prom_entry(void); /* OF CI entry point (i.e. this firmware) */
void do_boot(unsigned long addr, unsigned long r3, unsigned long r4);
/* libc */
int strlen(const char *s);
int strcmp(const char *s1, const char *s2);
void *memcpy(void *dest, const void *src, size_t n);
int memcmp(const void *ptr1, const void *ptr2, size_t n);
void *memmove(void *dest, const void *src, size_t n);
void *memset(void *dest, int c, size_t size);
/* CI wrappers */
void ci_panic(const char *str);
phandle ci_finddevice(const char *path);
uint32_t ci_getprop(phandle ph, const char *propname, void *prop, int len);
/* booting from -kernel */
void boot_from_memory(uint64_t initrd, uint64_t initrdsize);
/* Entry points for CI and RTAS */
extern uint32_t ci_entry(uint32_t params);
extern unsigned long hv_rtas(unsigned long params);
extern unsigned int hv_rtas_size;

48
pc-bios/vof/vof.lds Normal file
View File

@ -0,0 +1,48 @@
OUTPUT_FORMAT("elf32-powerpc")
OUTPUT_ARCH(powerpc:common)
/* set the entry point */
ENTRY ( __start )
SECTIONS {
__executable_start = .;
.text : {
*(.text)
}
__etext = .;
. = ALIGN(8);
.data : {
*(.data)
*(.rodata .rodata.*)
*(.got1)
*(.sdata)
*(.opd)
}
/* FIXME bss at end ??? */
. = ALIGN(8);
__bss_start = .;
.bss : {
*(.sbss) *(.scommon)
*(.dynbss)
*(.bss)
}
. = ALIGN(8);
__bss_end = .;
__bss_size = (__bss_end - __bss_start);
. = ALIGN(256);
__toc_start = DEFINED (.TOC.) ? .TOC. : ADDR (.got) + 0x8000;
.got :
{
*(.toc .got)
}
. = ALIGN(8);
__toc_end = .;
}

@ -1 +1 @@
Subproject commit b46dd116ce03e235f2a7d4843c6278e1da44b5e1
Subproject commit 840658b093976390e9537724f802281c9c8439f5

View File

@ -227,22 +227,20 @@ int cpu_get_dump_info(ArchDumpInfo *info,
const struct GuestPhysBlockList *guest_phys_blocks)
{
PowerPCCPU *cpu;
PowerPCCPUClass *pcc;
if (first_cpu == NULL) {
return -1;
}
cpu = POWERPC_CPU(first_cpu);
pcc = POWERPC_CPU_GET_CLASS(cpu);
info->d_machine = PPC_ELF_MACHINE;
info->d_class = ELFCLASS;
if ((*pcc->interrupts_big_endian)(cpu)) {
info->d_endian = ELFDATA2MSB;
} else {
if (ppc_interrupts_little_endian(cpu)) {
info->d_endian = ELFDATA2LSB;
} else {
info->d_endian = ELFDATA2MSB;
}
/* 64KB is the max page size for pseries kernel */
if (strncmp(object_get_typename(qdev_get_machine()),

View File

@ -198,8 +198,6 @@ struct PowerPCCPUClass {
int n_host_threads;
void (*init_proc)(CPUPPCState *env);
int (*check_pow)(CPUPPCState *env);
int (*handle_mmu_fault)(PowerPCCPU *cpu, vaddr eaddr, int rwx, int mmu_idx);
bool (*interrupts_big_endian)(PowerPCCPU *cpu);
};
#ifndef CONFIG_USER_ONLY

View File

@ -72,7 +72,7 @@ void ppc_store_sdr1(CPUPPCState *env, target_ulong value)
{
PowerPCCPU *cpu = env_archcpu(env);
qemu_log_mask(CPU_LOG_MMU, "%s: " TARGET_FMT_lx "\n", __func__, value);
assert(!cpu->vhyp);
assert(!cpu->env.has_hv_mode || !cpu->vhyp);
#if defined(TARGET_PPC64)
if (mmu_is_64bit(env->mmu_model)) {
target_ulong sdr_mask = SDR_64_HTABORG | SDR_64_HTABSIZE;

View File

@ -2643,6 +2643,21 @@ static inline bool ppc_has_spr(PowerPCCPU *cpu, int spr)
return cpu->env.spr_cb[spr].name != NULL;
}
static inline bool ppc_interrupts_little_endian(PowerPCCPU *cpu)
{
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
/*
* Only models that have an LPCR and know about LPCR_ILE can do little
* endian.
*/
if (pcc->lpcr_mask & LPCR_ILE) {
return !!(cpu->env.spr[SPR_LPCR] & LPCR_ILE);
}
return false;
}
void dump_mmu(CPUPPCState *env);
void ppc_maybe_bswap_register(CPUPPCState *env, uint8_t *mem_buf, int len);

View File

@ -2666,18 +2666,6 @@ static int check_pow_hid0_74xx(CPUPPCState *env)
return 0;
}
static bool ppc_cpu_interrupts_big_endian_always(PowerPCCPU *cpu)
{
return true;
}
#ifdef TARGET_PPC64
static bool ppc_cpu_interrupts_big_endian_lpcr(PowerPCCPU *cpu)
{
return !(cpu->env.spr[SPR_LPCR] & LPCR_ILE);
}
#endif
/*****************************************************************************/
/* PowerPC implementations definitions */
@ -4578,9 +4566,6 @@ POWERPC_FAMILY(601)(ObjectClass *oc, void *data)
(1ull << MSR_IR) |
(1ull << MSR_DR);
pcc->mmu_model = POWERPC_MMU_601;
#if defined(CONFIG_SOFTMMU)
pcc->handle_mmu_fault = ppc_hash32_handle_mmu_fault;
#endif
pcc->excp_model = POWERPC_EXCP_601;
pcc->bus_model = PPC_FLAGS_INPUT_6xx;
pcc->bfd_mach = bfd_mach_ppc_601;
@ -4623,9 +4608,6 @@ POWERPC_FAMILY(601v)(ObjectClass *oc, void *data)
(1ull << MSR_IR) |
(1ull << MSR_DR);
pcc->mmu_model = POWERPC_MMU_601;
#if defined(CONFIG_SOFTMMU)
pcc->handle_mmu_fault = ppc_hash32_handle_mmu_fault;
#endif
pcc->bus_model = PPC_FLAGS_INPUT_6xx;
pcc->bfd_mach = bfd_mach_ppc_601;
pcc->flags = POWERPC_FLAG_SE | POWERPC_FLAG_RTC_CLK | POWERPC_FLAG_HID0_LE;
@ -4889,9 +4871,6 @@ POWERPC_FAMILY(604)(ObjectClass *oc, void *data)
(1ull << MSR_RI) |
(1ull << MSR_LE);
pcc->mmu_model = POWERPC_MMU_32B;
#if defined(CONFIG_SOFTMMU)
pcc->handle_mmu_fault = ppc_hash32_handle_mmu_fault;
#endif
pcc->excp_model = POWERPC_EXCP_604;
pcc->bus_model = PPC_FLAGS_INPUT_6xx;
pcc->bfd_mach = bfd_mach_ppc_604;
@ -4973,9 +4952,6 @@ POWERPC_FAMILY(604E)(ObjectClass *oc, void *data)
(1ull << MSR_RI) |
(1ull << MSR_LE);
pcc->mmu_model = POWERPC_MMU_32B;
#if defined(CONFIG_SOFTMMU)
pcc->handle_mmu_fault = ppc_hash32_handle_mmu_fault;
#endif
pcc->excp_model = POWERPC_EXCP_604;
pcc->bus_model = PPC_FLAGS_INPUT_6xx;
pcc->bfd_mach = bfd_mach_ppc_604;
@ -5044,9 +5020,6 @@ POWERPC_FAMILY(740)(ObjectClass *oc, void *data)
(1ull << MSR_RI) |
(1ull << MSR_LE);
pcc->mmu_model = POWERPC_MMU_32B;
#if defined(CONFIG_SOFTMMU)
pcc->handle_mmu_fault = ppc_hash32_handle_mmu_fault;
#endif
pcc->excp_model = POWERPC_EXCP_7x0;
pcc->bus_model = PPC_FLAGS_INPUT_6xx;
pcc->bfd_mach = bfd_mach_ppc_750;
@ -5124,9 +5097,6 @@ POWERPC_FAMILY(750)(ObjectClass *oc, void *data)
(1ull << MSR_RI) |
(1ull << MSR_LE);
pcc->mmu_model = POWERPC_MMU_32B;
#if defined(CONFIG_SOFTMMU)
pcc->handle_mmu_fault = ppc_hash32_handle_mmu_fault;
#endif
pcc->excp_model = POWERPC_EXCP_7x0;
pcc->bus_model = PPC_FLAGS_INPUT_6xx;
pcc->bfd_mach = bfd_mach_ppc_750;
@ -5327,9 +5297,6 @@ POWERPC_FAMILY(750cl)(ObjectClass *oc, void *data)
(1ull << MSR_RI) |
(1ull << MSR_LE);
pcc->mmu_model = POWERPC_MMU_32B;
#if defined(CONFIG_SOFTMMU)
pcc->handle_mmu_fault = ppc_hash32_handle_mmu_fault;
#endif
pcc->excp_model = POWERPC_EXCP_7x0;
pcc->bus_model = PPC_FLAGS_INPUT_6xx;
pcc->bfd_mach = bfd_mach_ppc_750;
@ -5410,9 +5377,6 @@ POWERPC_FAMILY(750cx)(ObjectClass *oc, void *data)
(1ull << MSR_RI) |
(1ull << MSR_LE);
pcc->mmu_model = POWERPC_MMU_32B;
#if defined(CONFIG_SOFTMMU)
pcc->handle_mmu_fault = ppc_hash32_handle_mmu_fault;
#endif
pcc->excp_model = POWERPC_EXCP_7x0;
pcc->bus_model = PPC_FLAGS_INPUT_6xx;
pcc->bfd_mach = bfd_mach_ppc_750;
@ -5498,9 +5462,6 @@ POWERPC_FAMILY(750fx)(ObjectClass *oc, void *data)
(1ull << MSR_RI) |
(1ull << MSR_LE);
pcc->mmu_model = POWERPC_MMU_32B;
#if defined(CONFIG_SOFTMMU)
pcc->handle_mmu_fault = ppc_hash32_handle_mmu_fault;
#endif
pcc->excp_model = POWERPC_EXCP_7x0;
pcc->bus_model = PPC_FLAGS_INPUT_6xx;
pcc->bfd_mach = bfd_mach_ppc_750;
@ -5586,9 +5547,6 @@ POWERPC_FAMILY(750gx)(ObjectClass *oc, void *data)
(1ull << MSR_RI) |
(1ull << MSR_LE);
pcc->mmu_model = POWERPC_MMU_32B;
#if defined(CONFIG_SOFTMMU)
pcc->handle_mmu_fault = ppc_hash32_handle_mmu_fault;
#endif
pcc->excp_model = POWERPC_EXCP_7x0;
pcc->bus_model = PPC_FLAGS_INPUT_6xx;
pcc->bfd_mach = bfd_mach_ppc_750;
@ -5828,9 +5786,6 @@ POWERPC_FAMILY(7400)(ObjectClass *oc, void *data)
(1ull << MSR_RI) |
(1ull << MSR_LE);
pcc->mmu_model = POWERPC_MMU_32B;
#if defined(CONFIG_SOFTMMU)
pcc->handle_mmu_fault = ppc_hash32_handle_mmu_fault;
#endif
pcc->excp_model = POWERPC_EXCP_74xx;
pcc->bus_model = PPC_FLAGS_INPUT_6xx;
pcc->bfd_mach = bfd_mach_ppc_7400;
@ -5914,9 +5869,6 @@ POWERPC_FAMILY(7410)(ObjectClass *oc, void *data)
(1ull << MSR_RI) |
(1ull << MSR_LE);
pcc->mmu_model = POWERPC_MMU_32B;
#if defined(CONFIG_SOFTMMU)
pcc->handle_mmu_fault = ppc_hash32_handle_mmu_fault;
#endif
pcc->excp_model = POWERPC_EXCP_74xx;
pcc->bus_model = PPC_FLAGS_INPUT_6xx;
pcc->bfd_mach = bfd_mach_ppc_7400;
@ -6743,9 +6695,6 @@ POWERPC_FAMILY(e600)(ObjectClass *oc, void *data)
(1ull << MSR_RI) |
(1ull << MSR_LE);
pcc->mmu_model = POWERPC_MMU_32B;
#if defined(CONFIG_SOFTMMU)
pcc->handle_mmu_fault = ppc_hash32_handle_mmu_fault;
#endif
pcc->excp_model = POWERPC_EXCP_74xx;
pcc->bus_model = PPC_FLAGS_INPUT_6xx;
pcc->bfd_mach = bfd_mach_ppc_7400;
@ -7505,7 +7454,6 @@ POWERPC_FAMILY(970)(ObjectClass *oc, void *data)
(1ull << MSR_RI);
pcc->mmu_model = POWERPC_MMU_64B;
#if defined(CONFIG_SOFTMMU)
pcc->handle_mmu_fault = ppc_hash64_handle_mmu_fault;
pcc->hash64_opts = &ppc_hash64_opts_basic;
#endif
pcc->excp_model = POWERPC_EXCP_970;
@ -7583,7 +7531,6 @@ POWERPC_FAMILY(POWER5P)(ObjectClass *oc, void *data)
LPCR_RMI | LPCR_HDICE;
pcc->mmu_model = POWERPC_MMU_2_03;
#if defined(CONFIG_SOFTMMU)
pcc->handle_mmu_fault = ppc_hash64_handle_mmu_fault;
pcc->hash64_opts = &ppc_hash64_opts_basic;
pcc->lrg_decr_bits = 32;
#endif
@ -7727,7 +7674,6 @@ POWERPC_FAMILY(POWER7)(ObjectClass *oc, void *data)
pcc->lpcr_pm = LPCR_P7_PECE0 | LPCR_P7_PECE1 | LPCR_P7_PECE2;
pcc->mmu_model = POWERPC_MMU_2_06;
#if defined(CONFIG_SOFTMMU)
pcc->handle_mmu_fault = ppc_hash64_handle_mmu_fault;
pcc->hash64_opts = &ppc_hash64_opts_POWER7;
pcc->lrg_decr_bits = 32;
#endif
@ -7740,7 +7686,6 @@ POWERPC_FAMILY(POWER7)(ObjectClass *oc, void *data)
POWERPC_FLAG_VSX;
pcc->l1_dcache_size = 0x8000;
pcc->l1_icache_size = 0x8000;
pcc->interrupts_big_endian = ppc_cpu_interrupts_big_endian_lpcr;
}
static void init_proc_POWER8(CPUPPCState *env)
@ -7904,7 +7849,6 @@ POWERPC_FAMILY(POWER8)(ObjectClass *oc, void *data)
LPCR_P8_PECE3 | LPCR_P8_PECE4;
pcc->mmu_model = POWERPC_MMU_2_07;
#if defined(CONFIG_SOFTMMU)
pcc->handle_mmu_fault = ppc_hash64_handle_mmu_fault;
pcc->hash64_opts = &ppc_hash64_opts_POWER7;
pcc->lrg_decr_bits = 32;
pcc->n_host_threads = 8;
@ -7918,7 +7862,6 @@ POWERPC_FAMILY(POWER8)(ObjectClass *oc, void *data)
POWERPC_FLAG_VSX | POWERPC_FLAG_TM;
pcc->l1_dcache_size = 0x8000;
pcc->l1_icache_size = 0x8000;
pcc->interrupts_big_endian = ppc_cpu_interrupts_big_endian_lpcr;
}
#ifdef CONFIG_SOFTMMU
@ -8120,7 +8063,6 @@ POWERPC_FAMILY(POWER9)(ObjectClass *oc, void *data)
pcc->lpcr_pm = LPCR_PDEE | LPCR_HDEE | LPCR_EEE | LPCR_DEE | LPCR_OEE;
pcc->mmu_model = POWERPC_MMU_3_00;
#if defined(CONFIG_SOFTMMU)
pcc->handle_mmu_fault = ppc64_v3_handle_mmu_fault;
/* segment page size remain the same */
pcc->hash64_opts = &ppc_hash64_opts_POWER7;
pcc->radix_page_info = &POWER9_radix_page_info;
@ -8136,7 +8078,6 @@ POWERPC_FAMILY(POWER9)(ObjectClass *oc, void *data)
POWERPC_FLAG_VSX | POWERPC_FLAG_TM | POWERPC_FLAG_SCV;
pcc->l1_dcache_size = 0x8000;
pcc->l1_icache_size = 0x8000;
pcc->interrupts_big_endian = ppc_cpu_interrupts_big_endian_lpcr;
}
#ifdef CONFIG_SOFTMMU
@ -8332,7 +8273,6 @@ POWERPC_FAMILY(POWER10)(ObjectClass *oc, void *data)
pcc->lpcr_pm = LPCR_PDEE | LPCR_HDEE | LPCR_EEE | LPCR_DEE | LPCR_OEE;
pcc->mmu_model = POWERPC_MMU_3_00;
#if defined(CONFIG_SOFTMMU)
pcc->handle_mmu_fault = ppc64_v3_handle_mmu_fault;
/* segment page size remain the same */
pcc->hash64_opts = &ppc_hash64_opts_POWER7;
pcc->radix_page_info = &POWER10_radix_page_info;
@ -8347,7 +8287,6 @@ POWERPC_FAMILY(POWER10)(ObjectClass *oc, void *data)
POWERPC_FLAG_VSX | POWERPC_FLAG_TM | POWERPC_FLAG_SCV;
pcc->l1_dcache_size = 0x8000;
pcc->l1_icache_size = 0x8000;
pcc->interrupts_big_endian = ppc_cpu_interrupts_big_endian_lpcr;
}
#if !defined(CONFIG_USER_ONLY)
@ -8908,9 +8847,11 @@ static void ppc_cpu_reset(DeviceState *dev)
#if !defined(CONFIG_USER_ONLY)
env->nip = env->hreset_vector | env->excp_prefix;
#if defined(CONFIG_TCG)
if (env->mmu_model != POWERPC_MMU_REAL) {
ppc_tlb_invalidate_all(env);
}
#endif /* CONFIG_TCG */
#endif
hreg_compute_hflags(env);
@ -9094,7 +9035,6 @@ static void ppc_cpu_class_init(ObjectClass *oc, void *data)
device_class_set_parent_unrealize(dc, ppc_cpu_unrealize,
&pcc->parent_unrealize);
pcc->pvr_match = ppc_pvr_match_default;
pcc->interrupts_big_endian = ppc_cpu_interrupts_big_endian_always;
device_class_set_props(dc, ppc_cpu_properties);
device_class_set_parent_reset(dc, ppc_cpu_reset, &pcc->parent_reset);

View File

@ -1099,7 +1099,6 @@ void ppc_cpu_do_fwnmi_machine_check(CPUState *cs, target_ulong vector)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
target_ulong msr = 0;
/*
@ -1108,7 +1107,7 @@ void ppc_cpu_do_fwnmi_machine_check(CPUState *cs, target_ulong vector)
*/
msr = (1ULL << MSR_ME);
msr |= env->msr & (1ULL << MSR_SF);
if (!(*pcc->interrupts_big_endian)(cpu)) {
if (ppc_interrupts_little_endian(cpu)) {
msr |= (1ULL << MSR_LE);
}

View File

@ -89,6 +89,7 @@ static int cap_ppc_count_cache_flush_assist;
static int cap_ppc_nested_kvm_hv;
static int cap_large_decr;
static int cap_fwnmi;
static int cap_rpt_invalidate;
static uint32_t debug_inst_opcode;
@ -152,6 +153,7 @@ int kvm_arch_init(MachineState *ms, KVMState *s)
exit(1);
}
cap_rpt_invalidate = kvm_vm_check_extension(s, KVM_CAP_PPC_RPT_INVALIDATE);
kvm_ppc_register_host_cpu_type();
return 0;
@ -2040,6 +2042,11 @@ void kvmppc_enable_h_page_init(void)
kvmppc_enable_hcall(kvm_state, H_PAGE_INIT);
}
void kvmppc_enable_h_rpt_invalidate(void)
{
kvmppc_enable_hcall(kvm_state, H_RPT_INVALIDATE);
}
void kvmppc_set_papr(PowerPCCPU *cpu)
{
CPUState *cs = CPU(cpu);
@ -2551,6 +2558,11 @@ int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
return 0;
}
int kvmppc_has_cap_rpt_invalidate(void)
{
return cap_rpt_invalidate;
}
PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
{
uint32_t host_pvr = mfpvr();

View File

@ -24,6 +24,7 @@ void kvmppc_enable_logical_ci_hcalls(void);
void kvmppc_enable_set_mode_hcall(void);
void kvmppc_enable_clear_ref_mod_hcalls(void);
void kvmppc_enable_h_page_init(void);
void kvmppc_enable_h_rpt_invalidate(void);
void kvmppc_set_papr(PowerPCCPU *cpu);
int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr);
void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy);
@ -71,6 +72,7 @@ bool kvmppc_has_cap_nested_kvm_hv(void);
int kvmppc_set_cap_nested_kvm_hv(int enable);
int kvmppc_get_cap_large_decr(void);
int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable);
int kvmppc_has_cap_rpt_invalidate(void);
int kvmppc_enable_hwrng(void);
int kvmppc_put_books_sregs(PowerPCCPU *cpu);
PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void);
@ -150,6 +152,11 @@ static inline void kvmppc_enable_h_page_init(void)
{
}
static inline void kvmppc_enable_h_rpt_invalidate(void)
{
g_assert_not_reached();
}
static inline void kvmppc_set_papr(PowerPCCPU *cpu)
{
}
@ -381,6 +388,11 @@ static inline int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
return -1;
}
static inline int kvmppc_has_cap_rpt_invalidate(void)
{
return false;
}
static inline int kvmppc_enable_hwrng(void)
{
return -1;

View File

@ -23,25 +23,6 @@
#include "mmu-book3s-v3.h"
#include "mmu-radix64.h"
int ppc64_v3_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr, int rwx,
int mmu_idx)
{
if (ppc64_v3_radix(cpu)) { /* Guest uses radix */
return ppc_radix64_handle_mmu_fault(cpu, eaddr, rwx, mmu_idx);
} else { /* Guest uses hash */
return ppc_hash64_handle_mmu_fault(cpu, eaddr, rwx, mmu_idx);
}
}
hwaddr ppc64_v3_get_phys_page_debug(PowerPCCPU *cpu, vaddr eaddr)
{
if (ppc64_v3_radix(cpu)) {
return ppc_radix64_get_phys_page_debug(cpu, eaddr);
} else {
return ppc_hash64_get_phys_page_debug(cpu, eaddr);
}
}
bool ppc64_v3_get_pate(PowerPCCPU *cpu, target_ulong lpid, ppc_v3_pate_t *entry)
{
uint64_t patb = cpu->env.spr[SPR_PTCR] & PTCR_PATB;

View File

@ -21,6 +21,7 @@
#define PPC_MMU_BOOK3S_V3_H
#include "mmu-hash64.h"
#include "mmu-books.h"
#ifndef CONFIG_USER_ONLY
@ -67,11 +68,6 @@ static inline bool ppc64_v3_radix(PowerPCCPU *cpu)
return !!(cpu->env.spr[SPR_LPCR] & LPCR_HR);
}
hwaddr ppc64_v3_get_phys_page_debug(PowerPCCPU *cpu, vaddr eaddr);
int ppc64_v3_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr, int rwx,
int mmu_idx);
static inline hwaddr ppc_hash64_hpt_base(PowerPCCPU *cpu)
{
uint64_t base;

30
target/ppc/mmu-books.h Normal file
View File

@ -0,0 +1,30 @@
/*
* PowerPC BookS emulation generic mmu definitions for qemu.
*
* Copyright (c) 2021 Instituto de Pesquisas Eldorado (eldorado.org.br)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef PPC_MMU_BOOKS_H
#define PPC_MMU_BOOKS_H
/*
* These correspond to the mmu_idx values computed in
* hreg_compute_hflags_value. See the tables therein
*/
static inline bool mmuidx_pr(int idx) { return !(idx & 1); }
static inline bool mmuidx_real(int idx) { return idx & 2; }
static inline bool mmuidx_hv(int idx) { return idx & 4; }
#endif /* PPC_MMU_BOOKS_H */

View File

@ -25,9 +25,10 @@
#include "kvm_ppc.h"
#include "internal.h"
#include "mmu-hash32.h"
#include "mmu-books.h"
#include "exec/log.h"
/* #define DEBUG_BAT */
/* #define DEBUG_BATS */
#ifdef DEBUG_BATS
# define LOG_BATS(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
@ -86,25 +87,22 @@ static int ppc_hash32_pp_prot(int key, int pp, int nx)
return prot;
}
static int ppc_hash32_pte_prot(PowerPCCPU *cpu,
static int ppc_hash32_pte_prot(int mmu_idx,
target_ulong sr, ppc_hash_pte32_t pte)
{
CPUPPCState *env = &cpu->env;
unsigned pp, key;
key = !!(msr_pr ? (sr & SR32_KP) : (sr & SR32_KS));
key = !!(mmuidx_pr(mmu_idx) ? (sr & SR32_KP) : (sr & SR32_KS));
pp = pte.pte1 & HPTE32_R_PP;
return ppc_hash32_pp_prot(key, pp, !!(sr & SR32_NX));
}
static target_ulong hash32_bat_size(PowerPCCPU *cpu,
static target_ulong hash32_bat_size(int mmu_idx,
target_ulong batu, target_ulong batl)
{
CPUPPCState *env = &cpu->env;
if ((msr_pr && !(batu & BATU32_VP))
|| (!msr_pr && !(batu & BATU32_VS))) {
if ((mmuidx_pr(mmu_idx) && !(batu & BATU32_VP))
|| (!mmuidx_pr(mmu_idx) && !(batu & BATU32_VS))) {
return 0;
}
@ -137,14 +135,13 @@ static target_ulong hash32_bat_601_size(PowerPCCPU *cpu,
return BATU32_BEPI & ~((batl & BATL32_601_BL) << 17);
}
static int hash32_bat_601_prot(PowerPCCPU *cpu,
static int hash32_bat_601_prot(int mmu_idx,
target_ulong batu, target_ulong batl)
{
CPUPPCState *env = &cpu->env;
int key, pp;
pp = batu & BATU32_601_PP;
if (msr_pr == 0) {
if (mmuidx_pr(mmu_idx) == 0) {
key = !!(batu & BATU32_601_KS);
} else {
key = !!(batu & BATU32_601_KP);
@ -153,7 +150,8 @@ static int hash32_bat_601_prot(PowerPCCPU *cpu,
}
static hwaddr ppc_hash32_bat_lookup(PowerPCCPU *cpu, target_ulong ea,
MMUAccessType access_type, int *prot)
MMUAccessType access_type, int *prot,
int mmu_idx)
{
CPUPPCState *env = &cpu->env;
target_ulong *BATlt, *BATut;
@ -177,7 +175,7 @@ static hwaddr ppc_hash32_bat_lookup(PowerPCCPU *cpu, target_ulong ea,
if (unlikely(env->mmu_model == POWERPC_MMU_601)) {
mask = hash32_bat_601_size(cpu, batu, batl);
} else {
mask = hash32_bat_size(cpu, batu, batl);
mask = hash32_bat_size(mmu_idx, batu, batl);
}
LOG_BATS("%s: %cBAT%d v " TARGET_FMT_lx " BATu " TARGET_FMT_lx
" BATl " TARGET_FMT_lx "\n", __func__,
@ -187,7 +185,7 @@ static hwaddr ppc_hash32_bat_lookup(PowerPCCPU *cpu, target_ulong ea,
hwaddr raddr = (batl & mask) | (ea & ~mask);
if (unlikely(env->mmu_model == POWERPC_MMU_601)) {
*prot = hash32_bat_601_prot(cpu, batu, batl);
*prot = hash32_bat_601_prot(mmu_idx, batu, batl);
} else {
*prot = hash32_bat_prot(cpu, batu, batl);
}
@ -199,6 +197,9 @@ static hwaddr ppc_hash32_bat_lookup(PowerPCCPU *cpu, target_ulong ea,
/* No hit */
#if defined(DEBUG_BATS)
if (qemu_log_enabled()) {
target_ulong *BATu, *BATl;
target_ulong BEPIl, BEPIu, bl;
LOG_BATS("no BAT match for " TARGET_FMT_lx ":\n", ea);
for (i = 0; i < 4; i++) {
BATu = &BATut[i];
@ -218,14 +219,15 @@ static hwaddr ppc_hash32_bat_lookup(PowerPCCPU *cpu, target_ulong ea,
return -1;
}
static int ppc_hash32_direct_store(PowerPCCPU *cpu, target_ulong sr,
target_ulong eaddr,
MMUAccessType access_type,
hwaddr *raddr, int *prot)
static bool ppc_hash32_direct_store(PowerPCCPU *cpu, target_ulong sr,
target_ulong eaddr,
MMUAccessType access_type,
hwaddr *raddr, int *prot, int mmu_idx,
bool guest_visible)
{
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
int key = !!(msr_pr ? (sr & SR32_KP) : (sr & SR32_KS));
int key = !!(mmuidx_pr(mmu_idx) ? (sr & SR32_KP) : (sr & SR32_KS));
qemu_log_mask(CPU_LOG_MMU, "direct store...\n");
@ -238,17 +240,23 @@ static int ppc_hash32_direct_store(PowerPCCPU *cpu, target_ulong sr,
*/
*raddr = ((sr & 0xF) << 28) | (eaddr & 0x0FFFFFFF);
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
return 0;
return true;
}
if (access_type == MMU_INST_FETCH) {
/* No code fetch is allowed in direct-store areas */
cs->exception_index = POWERPC_EXCP_ISI;
env->error_code = 0x10000000;
return 1;
if (guest_visible) {
cs->exception_index = POWERPC_EXCP_ISI;
env->error_code = 0x10000000;
}
return false;
}
switch (env->access_type) {
/*
* From ppc_cpu_get_phys_page_debug, env->access_type is not set.
* Assume ACCESS_INT for that case.
*/
switch (guest_visible ? env->access_type : ACCESS_INT) {
case ACCESS_INT:
/* Integer load/store : only access allowed */
break;
@ -257,7 +265,7 @@ static int ppc_hash32_direct_store(PowerPCCPU *cpu, target_ulong sr,
cs->exception_index = POWERPC_EXCP_ALIGN;
env->error_code = POWERPC_EXCP_ALIGN_FP;
env->spr[SPR_DAR] = eaddr;
return 1;
return false;
case ACCESS_RES:
/* lwarx, ldarx or srwcx. */
env->error_code = 0;
@ -267,7 +275,7 @@ static int ppc_hash32_direct_store(PowerPCCPU *cpu, target_ulong sr,
} else {
env->spr[SPR_DSISR] = 0x04000000;
}
return 1;
return false;
case ACCESS_CACHE:
/*
* dcba, dcbt, dcbtst, dcbf, dcbi, dcbst, dcbz, or icbi
@ -276,7 +284,7 @@ static int ppc_hash32_direct_store(PowerPCCPU *cpu, target_ulong sr,
* no-op, it's quite easy :-)
*/
*raddr = eaddr;
return 0;
return true;
case ACCESS_EXT:
/* eciwx or ecowx */
cs->exception_index = POWERPC_EXCP_DSI;
@ -287,16 +295,18 @@ static int ppc_hash32_direct_store(PowerPCCPU *cpu, target_ulong sr,
} else {
env->spr[SPR_DSISR] = 0x04100000;
}
return 1;
return false;
default:
cpu_abort(cs, "ERROR: instruction should not need "
"address translation\n");
cpu_abort(cs, "ERROR: insn should not need address translation\n");
}
if ((access_type == MMU_DATA_STORE || key != 1) &&
(access_type == MMU_DATA_LOAD || key != 0)) {
*prot = key ? PAGE_READ | PAGE_WRITE : PAGE_READ;
if (*prot & prot_for_access_type(access_type)) {
*raddr = eaddr;
return 0;
} else {
return true;
}
if (guest_visible) {
cs->exception_index = POWERPC_EXCP_DSI;
env->error_code = 0;
env->spr[SPR_DAR] = eaddr;
@ -305,8 +315,8 @@ static int ppc_hash32_direct_store(PowerPCCPU *cpu, target_ulong sr,
} else {
env->spr[SPR_DSISR] = 0x08000000;
}
return 1;
}
return false;
}
hwaddr get_pteg_offset32(PowerPCCPU *cpu, hwaddr hash)
@ -415,8 +425,9 @@ static hwaddr ppc_hash32_pte_raddr(target_ulong sr, ppc_hash_pte32_t pte,
return (rpn & ~mask) | (eaddr & mask);
}
int ppc_hash32_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr, int rwx,
int mmu_idx)
bool ppc_hash32_xlate(PowerPCCPU *cpu, vaddr eaddr, MMUAccessType access_type,
hwaddr *raddrp, int *psizep, int *protp, int mmu_idx,
bool guest_visible)
{
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
@ -425,48 +436,45 @@ int ppc_hash32_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr, int rwx,
ppc_hash_pte32_t pte;
int prot;
int need_prot;
MMUAccessType access_type;
hwaddr raddr;
assert((rwx == 0) || (rwx == 1) || (rwx == 2));
access_type = rwx;
need_prot = prot_for_access_type(access_type);
/* There are no hash32 large pages. */
*psizep = TARGET_PAGE_BITS;
/* 1. Handle real mode accesses */
if (access_type == MMU_INST_FETCH ? !msr_ir : !msr_dr) {
if (mmuidx_real(mmu_idx)) {
/* Translation is off */
raddr = eaddr;
tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
TARGET_PAGE_SIZE);
return 0;
*raddrp = eaddr;
*protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
return true;
}
need_prot = prot_for_access_type(access_type);
/* 2. Check Block Address Translation entries (BATs) */
if (env->nb_BATs != 0) {
raddr = ppc_hash32_bat_lookup(cpu, eaddr, access_type, &prot);
raddr = ppc_hash32_bat_lookup(cpu, eaddr, access_type, protp, mmu_idx);
if (raddr != -1) {
if (need_prot & ~prot) {
if (access_type == MMU_INST_FETCH) {
cs->exception_index = POWERPC_EXCP_ISI;
env->error_code = 0x08000000;
} else {
cs->exception_index = POWERPC_EXCP_DSI;
env->error_code = 0;
env->spr[SPR_DAR] = eaddr;
if (access_type == MMU_DATA_STORE) {
env->spr[SPR_DSISR] = 0x0a000000;
if (need_prot & ~*protp) {
if (guest_visible) {
if (access_type == MMU_INST_FETCH) {
cs->exception_index = POWERPC_EXCP_ISI;
env->error_code = 0x08000000;
} else {
env->spr[SPR_DSISR] = 0x08000000;
cs->exception_index = POWERPC_EXCP_DSI;
env->error_code = 0;
env->spr[SPR_DAR] = eaddr;
if (access_type == MMU_DATA_STORE) {
env->spr[SPR_DSISR] = 0x0a000000;
} else {
env->spr[SPR_DSISR] = 0x08000000;
}
}
}
return 1;
return false;
}
tlb_set_page(cs, eaddr & TARGET_PAGE_MASK,
raddr & TARGET_PAGE_MASK, prot, mmu_idx,
TARGET_PAGE_SIZE);
return 0;
*raddrp = raddr;
return true;
}
}
@ -475,67 +483,65 @@ int ppc_hash32_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr, int rwx,
/* 4. Handle direct store segments */
if (sr & SR32_T) {
if (ppc_hash32_direct_store(cpu, sr, eaddr, access_type,
&raddr, &prot) == 0) {
tlb_set_page(cs, eaddr & TARGET_PAGE_MASK,
raddr & TARGET_PAGE_MASK, prot, mmu_idx,
TARGET_PAGE_SIZE);
return 0;
} else {
return 1;
}
return ppc_hash32_direct_store(cpu, sr, eaddr, access_type,
raddrp, protp, mmu_idx, guest_visible);
}
/* 5. Check for segment level no-execute violation */
if (access_type == MMU_INST_FETCH && (sr & SR32_NX)) {
cs->exception_index = POWERPC_EXCP_ISI;
env->error_code = 0x10000000;
return 1;
if (guest_visible) {
cs->exception_index = POWERPC_EXCP_ISI;
env->error_code = 0x10000000;
}
return false;
}
/* 6. Locate the PTE in the hash table */
pte_offset = ppc_hash32_htab_lookup(cpu, sr, eaddr, &pte);
if (pte_offset == -1) {
if (access_type == MMU_INST_FETCH) {
cs->exception_index = POWERPC_EXCP_ISI;
env->error_code = 0x40000000;
} else {
cs->exception_index = POWERPC_EXCP_DSI;
env->error_code = 0;
env->spr[SPR_DAR] = eaddr;
if (access_type == MMU_DATA_STORE) {
env->spr[SPR_DSISR] = 0x42000000;
if (guest_visible) {
if (access_type == MMU_INST_FETCH) {
cs->exception_index = POWERPC_EXCP_ISI;
env->error_code = 0x40000000;
} else {
env->spr[SPR_DSISR] = 0x40000000;
cs->exception_index = POWERPC_EXCP_DSI;
env->error_code = 0;
env->spr[SPR_DAR] = eaddr;
if (access_type == MMU_DATA_STORE) {
env->spr[SPR_DSISR] = 0x42000000;
} else {
env->spr[SPR_DSISR] = 0x40000000;
}
}
}
return 1;
return false;
}
qemu_log_mask(CPU_LOG_MMU,
"found PTE at offset %08" HWADDR_PRIx "\n", pte_offset);
/* 7. Check access permissions */
prot = ppc_hash32_pte_prot(cpu, sr, pte);
prot = ppc_hash32_pte_prot(mmu_idx, sr, pte);
if (need_prot & ~prot) {
/* Access right violation */
qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
if (access_type == MMU_INST_FETCH) {
cs->exception_index = POWERPC_EXCP_ISI;
env->error_code = 0x08000000;
} else {
cs->exception_index = POWERPC_EXCP_DSI;
env->error_code = 0;
env->spr[SPR_DAR] = eaddr;
if (access_type == MMU_DATA_STORE) {
env->spr[SPR_DSISR] = 0x0a000000;
if (guest_visible) {
if (access_type == MMU_INST_FETCH) {
cs->exception_index = POWERPC_EXCP_ISI;
env->error_code = 0x08000000;
} else {
env->spr[SPR_DSISR] = 0x08000000;
cs->exception_index = POWERPC_EXCP_DSI;
env->error_code = 0;
env->spr[SPR_DAR] = eaddr;
if (access_type == MMU_DATA_STORE) {
env->spr[SPR_DSISR] = 0x0a000000;
} else {
env->spr[SPR_DSISR] = 0x08000000;
}
}
}
return 1;
return false;
}
qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
@ -559,45 +565,7 @@ int ppc_hash32_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr, int rwx,
/* 9. Determine the real address from the PTE */
raddr = ppc_hash32_pte_raddr(sr, pte, eaddr);
tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
prot, mmu_idx, TARGET_PAGE_SIZE);
return 0;
}
hwaddr ppc_hash32_get_phys_page_debug(PowerPCCPU *cpu, target_ulong eaddr)
{
CPUPPCState *env = &cpu->env;
target_ulong sr;
hwaddr pte_offset;
ppc_hash_pte32_t pte;
int prot;
if (msr_dr == 0) {
/* Translation is off */
return eaddr;
}
if (env->nb_BATs != 0) {
hwaddr raddr = ppc_hash32_bat_lookup(cpu, eaddr, 0, &prot);
if (raddr != -1) {
return raddr;
}
}
sr = env->sr[eaddr >> 28];
if (sr & SR32_T) {
/* FIXME: Add suitable debug support for Direct Store segments */
return -1;
}
pte_offset = ppc_hash32_htab_lookup(cpu, sr, eaddr, &pte);
if (pte_offset == -1) {
return -1;
}
return ppc_hash32_pte_raddr(sr, pte, eaddr) & TARGET_PAGE_MASK;
*raddrp = ppc_hash32_pte_raddr(sr, pte, eaddr);
*protp = prot;
return true;
}

View File

@ -4,9 +4,9 @@
#ifndef CONFIG_USER_ONLY
hwaddr get_pteg_offset32(PowerPCCPU *cpu, hwaddr hash);
hwaddr ppc_hash32_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr);
int ppc_hash32_handle_mmu_fault(PowerPCCPU *cpu, vaddr address, int rw,
int mmu_idx);
bool ppc_hash32_xlate(PowerPCCPU *cpu, vaddr eaddr, MMUAccessType access_type,
hwaddr *raddrp, int *psizep, int *protp, int mmu_idx,
bool guest_visible);
/*
* Segment register definitions
@ -22,6 +22,8 @@ int ppc_hash32_handle_mmu_fault(PowerPCCPU *cpu, vaddr address, int rw,
* Block Address Translation (BAT) definitions
*/
#define BATU32_BEPIU 0xf0000000
#define BATU32_BEPIL 0x0ffe0000
#define BATU32_BEPI 0xfffe0000
#define BATU32_BL 0x00001ffc
#define BATU32_VS 0x00000002

View File

@ -366,10 +366,9 @@ static inline int ppc_hash64_pte_noexec_guard(PowerPCCPU *cpu,
}
/* Check Basic Storage Protection */
static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
static int ppc_hash64_pte_prot(int mmu_idx,
ppc_slb_t *slb, ppc_hash_pte64_t pte)
{
CPUPPCState *env = &cpu->env;
unsigned pp, key;
/*
* Some pp bit combinations have undefined behaviour, so default
@ -377,7 +376,7 @@ static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
*/
int prot = 0;
key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
key = !!(mmuidx_pr(mmu_idx) ? (slb->vsid & SLB_VSID_KP)
: (slb->vsid & SLB_VSID_KS));
pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
@ -744,17 +743,17 @@ static bool ppc_hash64_use_vrma(CPUPPCState *env)
}
}
static void ppc_hash64_set_isi(CPUState *cs, uint64_t error_code)
static void ppc_hash64_set_isi(CPUState *cs, int mmu_idx, uint64_t error_code)
{
CPUPPCState *env = &POWERPC_CPU(cs)->env;
bool vpm;
if (msr_ir) {
if (!mmuidx_real(mmu_idx)) {
vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
} else {
vpm = ppc_hash64_use_vrma(env);
}
if (vpm && !msr_hv) {
if (vpm && !mmuidx_hv(mmu_idx)) {
cs->exception_index = POWERPC_EXCP_HISI;
} else {
cs->exception_index = POWERPC_EXCP_ISI;
@ -762,17 +761,17 @@ static void ppc_hash64_set_isi(CPUState *cs, uint64_t error_code)
env->error_code = error_code;
}
static void ppc_hash64_set_dsi(CPUState *cs, uint64_t dar, uint64_t dsisr)
static void ppc_hash64_set_dsi(CPUState *cs, int mmu_idx, uint64_t dar, uint64_t dsisr)
{
CPUPPCState *env = &POWERPC_CPU(cs)->env;
bool vpm;
if (msr_dr) {
if (!mmuidx_real(mmu_idx)) {
vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
} else {
vpm = ppc_hash64_use_vrma(env);
}
if (vpm && !msr_hv) {
if (vpm && !mmuidx_hv(mmu_idx)) {
cs->exception_index = POWERPC_EXCP_HDSI;
env->spr[SPR_HDAR] = dar;
env->spr[SPR_HDSISR] = dsisr;
@ -873,8 +872,9 @@ static int build_vrma_slbe(PowerPCCPU *cpu, ppc_slb_t *slb)
return -1;
}
int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
int rwx, int mmu_idx)
bool ppc_hash64_xlate(PowerPCCPU *cpu, vaddr eaddr, MMUAccessType access_type,
hwaddr *raddrp, int *psizep, int *protp, int mmu_idx,
bool guest_visible)
{
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
@ -884,13 +884,9 @@ int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
hwaddr ptex;
ppc_hash_pte64_t pte;
int exec_prot, pp_prot, amr_prot, prot;
MMUAccessType access_type;
int need_prot;
hwaddr raddr;
assert((rwx == 0) || (rwx == 1) || (rwx == 2));
access_type = rwx;
/*
* Note on LPCR usage: 970 uses HID4, but our special variant of
* store_spr copies relevant fields into env->spr[SPR_LPCR].
@ -900,7 +896,7 @@ int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
*/
/* 1. Handle real mode accesses */
if (access_type == MMU_INST_FETCH ? !msr_ir : !msr_dr) {
if (mmuidx_real(mmu_idx)) {
/*
* Translation is supposedly "off", but in real mode the top 4
* effective address bits are (mostly) ignored
@ -912,7 +908,7 @@ int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
* In virtual hypervisor mode, there's nothing to do:
* EA == GPA == qemu guest address
*/
} else if (msr_hv || !env->has_hv_mode) {
} else if (mmuidx_hv(mmu_idx) || !env->has_hv_mode) {
/* In HV mode, add HRMOR if top EA bit is clear */
if (!(eaddr >> 63)) {
raddr |= env->spr[SPR_HRMOR];
@ -922,9 +918,11 @@ int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
slb = &vrma_slbe;
if (build_vrma_slbe(cpu, slb) != 0) {
/* Invalid VRMA setup, machine check */
cs->exception_index = POWERPC_EXCP_MCHECK;
env->error_code = 0;
return 1;
if (guest_visible) {
cs->exception_index = POWERPC_EXCP_MCHECK;
env->error_code = 0;
}
return false;
}
goto skip_slb_search;
@ -933,29 +931,33 @@ int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
/* Emulated old-style RMO mode, bounds check against RMLS */
if (raddr >= limit) {
if (!guest_visible) {
return false;
}
switch (access_type) {
case MMU_INST_FETCH:
ppc_hash64_set_isi(cs, SRR1_PROTFAULT);
ppc_hash64_set_isi(cs, mmu_idx, SRR1_PROTFAULT);
break;
case MMU_DATA_LOAD:
ppc_hash64_set_dsi(cs, eaddr, DSISR_PROTFAULT);
ppc_hash64_set_dsi(cs, mmu_idx, eaddr, DSISR_PROTFAULT);
break;
case MMU_DATA_STORE:
ppc_hash64_set_dsi(cs, eaddr,
ppc_hash64_set_dsi(cs, mmu_idx, eaddr,
DSISR_PROTFAULT | DSISR_ISSTORE);
break;
default:
g_assert_not_reached();
}
return 1;
return false;
}
raddr |= env->spr[SPR_RMOR];
}
tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
TARGET_PAGE_SIZE);
return 0;
*raddrp = raddr;
*protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
*psizep = TARGET_PAGE_BITS;
return true;
}
/* 2. Translation is on, so look up the SLB */
@ -968,6 +970,9 @@ int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
exit(1);
}
/* Segment still not found, generate the appropriate interrupt */
if (!guest_visible) {
return false;
}
switch (access_type) {
case MMU_INST_FETCH:
cs->exception_index = POWERPC_EXCP_ISEG;
@ -982,34 +987,39 @@ int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
default:
g_assert_not_reached();
}
return 1;
return false;
}
skip_slb_search:
skip_slb_search:
/* 3. Check for segment level no-execute violation */
if (access_type == MMU_INST_FETCH && (slb->vsid & SLB_VSID_N)) {
ppc_hash64_set_isi(cs, SRR1_NOEXEC_GUARD);
return 1;
if (guest_visible) {
ppc_hash64_set_isi(cs, mmu_idx, SRR1_NOEXEC_GUARD);
}
return false;
}
/* 4. Locate the PTE in the hash table */
ptex = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
if (ptex == -1) {
if (!guest_visible) {
return false;
}
switch (access_type) {
case MMU_INST_FETCH:
ppc_hash64_set_isi(cs, SRR1_NOPTE);
ppc_hash64_set_isi(cs, mmu_idx, SRR1_NOPTE);
break;
case MMU_DATA_LOAD:
ppc_hash64_set_dsi(cs, eaddr, DSISR_NOPTE);
ppc_hash64_set_dsi(cs, mmu_idx, eaddr, DSISR_NOPTE);
break;
case MMU_DATA_STORE:
ppc_hash64_set_dsi(cs, eaddr, DSISR_NOPTE | DSISR_ISSTORE);
ppc_hash64_set_dsi(cs, mmu_idx, eaddr, DSISR_NOPTE | DSISR_ISSTORE);
break;
default:
g_assert_not_reached();
}
return 1;
return false;
}
qemu_log_mask(CPU_LOG_MMU,
"found PTE at index %08" HWADDR_PRIx "\n", ptex);
@ -1017,7 +1027,7 @@ skip_slb_search:
/* 5. Check access permissions */
exec_prot = ppc_hash64_pte_noexec_guard(cpu, pte);
pp_prot = ppc_hash64_pte_prot(cpu, slb, pte);
pp_prot = ppc_hash64_pte_prot(mmu_idx, slb, pte);
amr_prot = ppc_hash64_amr_prot(cpu, pte);
prot = exec_prot & pp_prot & amr_prot;
@ -1025,6 +1035,9 @@ skip_slb_search:
if (need_prot & ~prot) {
/* Access right violation */
qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
if (!guest_visible) {
return false;
}
if (access_type == MMU_INST_FETCH) {
int srr1 = 0;
if (PAGE_EXEC & ~exec_prot) {
@ -1035,7 +1048,7 @@ skip_slb_search:
if (PAGE_EXEC & ~amr_prot) {
srr1 |= SRR1_IAMR; /* Access violates virt pg class key prot */
}
ppc_hash64_set_isi(cs, srr1);
ppc_hash64_set_isi(cs, mmu_idx, srr1);
} else {
int dsisr = 0;
if (need_prot & ~pp_prot) {
@ -1047,9 +1060,9 @@ skip_slb_search:
if (need_prot & ~amr_prot) {
dsisr |= DSISR_AMR;
}
ppc_hash64_set_dsi(cs, eaddr, dsisr);
ppc_hash64_set_dsi(cs, mmu_idx, eaddr, dsisr);
}
return 1;
return false;
}
qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
@ -1073,66 +1086,10 @@ skip_slb_search:
/* 7. Determine the real address from the PTE */
raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
prot, mmu_idx, 1ULL << apshift);
return 0;
}
hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
{
CPUPPCState *env = &cpu->env;
ppc_slb_t vrma_slbe;
ppc_slb_t *slb;
hwaddr ptex, raddr;
ppc_hash_pte64_t pte;
unsigned apshift;
/* Handle real mode */
if (msr_dr == 0) {
/* In real mode the top 4 effective address bits are ignored */
raddr = addr & 0x0FFFFFFFFFFFFFFFULL;
if (cpu->vhyp) {
/*
* In virtual hypervisor mode, there's nothing to do:
* EA == GPA == qemu guest address
*/
return raddr;
} else if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) {
/* In HV mode, add HRMOR if top EA bit is clear */
return raddr | env->spr[SPR_HRMOR];
} else if (ppc_hash64_use_vrma(env)) {
/* Emulated VRMA mode */
slb = &vrma_slbe;
if (build_vrma_slbe(cpu, slb) != 0) {
return -1;
}
} else {
target_ulong limit = rmls_limit(cpu);
/* Emulated old-style RMO mode, bounds check against RMLS */
if (raddr >= limit) {
return -1;
}
return raddr | env->spr[SPR_RMOR];
}
} else {
slb = slb_lookup(cpu, addr);
if (!slb) {
return -1;
}
}
ptex = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift);
if (ptex == -1) {
return -1;
}
return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
& TARGET_PAGE_MASK;
*raddrp = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
*protp = prot;
*psizep = apshift;
return true;
}
void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu, target_ulong ptex,

View File

@ -7,9 +7,9 @@
void dump_slb(PowerPCCPU *cpu);
int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
target_ulong esid, target_ulong vsid);
hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr);
int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr address, int rw,
int mmu_idx);
bool ppc_hash64_xlate(PowerPCCPU *cpu, vaddr eaddr, MMUAccessType access_type,
hwaddr *raddrp, int *psizep, int *protp, int mmu_idx,
bool guest_visible);
void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu,
target_ulong pte_index,
target_ulong pte0, target_ulong pte1);

View File

@ -155,7 +155,7 @@ static void ppc_radix64_raise_hsi(PowerPCCPU *cpu, MMUAccessType access_type,
static bool ppc_radix64_check_prot(PowerPCCPU *cpu, MMUAccessType access_type,
uint64_t pte, int *fault_cause, int *prot,
bool partition_scoped)
int mmu_idx, bool partition_scoped)
{
CPUPPCState *env = &cpu->env;
int need_prot;
@ -173,7 +173,8 @@ static bool ppc_radix64_check_prot(PowerPCCPU *cpu, MMUAccessType access_type,
/* Determine permissions allowed by Encoded Access Authority */
if (!partition_scoped && (pte & R_PTE_EAA_PRIV) && msr_pr) {
*prot = 0;
} else if (msr_pr || (pte & R_PTE_EAA_PRIV) || partition_scoped) {
} else if (mmuidx_pr(mmu_idx) || (pte & R_PTE_EAA_PRIV) ||
partition_scoped) {
*prot = ppc_radix64_get_prot_eaa(pte);
} else { /* !msr_pr && !(pte & R_PTE_EAA_PRIV) && !partition_scoped */
*prot = ppc_radix64_get_prot_eaa(pte);
@ -299,7 +300,7 @@ static int ppc_radix64_partition_scoped_xlate(PowerPCCPU *cpu,
ppc_v3_pate_t pate,
hwaddr *h_raddr, int *h_prot,
int *h_page_size, bool pde_addr,
bool guest_visible)
int mmu_idx, bool guest_visible)
{
int fault_cause = 0;
hwaddr pte_addr;
@ -310,7 +311,8 @@ static int ppc_radix64_partition_scoped_xlate(PowerPCCPU *cpu,
if (ppc_radix64_walk_tree(CPU(cpu)->as, g_raddr, pate.dw0 & PRTBE_R_RPDB,
pate.dw0 & PRTBE_R_RPDS, h_raddr, h_page_size,
&pte, &fault_cause, &pte_addr) ||
ppc_radix64_check_prot(cpu, access_type, pte, &fault_cause, h_prot, true)) {
ppc_radix64_check_prot(cpu, access_type, pte,
&fault_cause, h_prot, mmu_idx, true)) {
if (pde_addr) { /* address being translated was that of a guest pde */
fault_cause |= DSISR_PRTABLE_FAULT;
}
@ -332,7 +334,7 @@ static int ppc_radix64_process_scoped_xlate(PowerPCCPU *cpu,
vaddr eaddr, uint64_t pid,
ppc_v3_pate_t pate, hwaddr *g_raddr,
int *g_prot, int *g_page_size,
bool guest_visible)
int mmu_idx, bool guest_visible)
{
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
@ -367,7 +369,8 @@ static int ppc_radix64_process_scoped_xlate(PowerPCCPU *cpu,
ret = ppc_radix64_partition_scoped_xlate(cpu, 0, eaddr, prtbe_addr,
pate, &h_raddr, &h_prot,
&h_page_size, true,
guest_visible);
/* mmu_idx is 5 because we're translating from hypervisor scope */
5, guest_visible);
if (ret) {
return ret;
}
@ -407,7 +410,8 @@ static int ppc_radix64_process_scoped_xlate(PowerPCCPU *cpu,
ret = ppc_radix64_partition_scoped_xlate(cpu, 0, eaddr, pte_addr,
pate, &h_raddr, &h_prot,
&h_page_size, true,
guest_visible);
/* mmu_idx is 5 because we're translating from hypervisor scope */
5, guest_visible);
if (ret) {
return ret;
}
@ -431,7 +435,8 @@ static int ppc_radix64_process_scoped_xlate(PowerPCCPU *cpu,
*g_raddr = (rpn & ~mask) | (eaddr & mask);
}
if (ppc_radix64_check_prot(cpu, access_type, pte, &fault_cause, g_prot, false)) {
if (ppc_radix64_check_prot(cpu, access_type, pte, &fault_cause,
g_prot, mmu_idx, false)) {
/* Access denied due to protection */
if (guest_visible) {
ppc_radix64_raise_si(cpu, access_type, eaddr, fault_cause);
@ -463,24 +468,53 @@ static int ppc_radix64_process_scoped_xlate(PowerPCCPU *cpu,
* | = On | Process Scoped | Scoped |
* +-------------+----------------+---------------+
*/
static int ppc_radix64_xlate(PowerPCCPU *cpu, vaddr eaddr,
MMUAccessType access_type,
bool relocation,
hwaddr *raddr, int *psizep, int *protp,
bool guest_visible)
bool ppc_radix64_xlate(PowerPCCPU *cpu, vaddr eaddr, MMUAccessType access_type,
hwaddr *raddr, int *psizep, int *protp, int mmu_idx,
bool guest_visible)
{
CPUPPCState *env = &cpu->env;
uint64_t lpid, pid;
ppc_v3_pate_t pate;
int psize, prot;
hwaddr g_raddr;
bool relocation;
assert(!(mmuidx_hv(mmu_idx) && cpu->vhyp));
relocation = !mmuidx_real(mmu_idx);
/* HV or virtual hypervisor Real Mode Access */
if (!relocation && (mmuidx_hv(mmu_idx) || cpu->vhyp)) {
/* In real mode top 4 effective addr bits (mostly) ignored */
*raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
/* In HV mode, add HRMOR if top EA bit is clear */
if (mmuidx_hv(mmu_idx) || !env->has_hv_mode) {
if (!(eaddr >> 63)) {
*raddr |= env->spr[SPR_HRMOR];
}
}
*protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
*psizep = TARGET_PAGE_BITS;
return true;
}
/*
* Check UPRT (we avoid the check in real mode to deal with
* transitional states during kexec.
*/
if (guest_visible && !ppc64_use_proc_tbl(cpu)) {
qemu_log_mask(LOG_GUEST_ERROR,
"LPCR:UPRT not set in radix mode ! LPCR="
TARGET_FMT_lx "\n", env->spr[SPR_LPCR]);
}
/* Virtual Mode Access - get the fully qualified address */
if (!ppc_radix64_get_fully_qualified_addr(&cpu->env, eaddr, &lpid, &pid)) {
if (guest_visible) {
ppc_radix64_raise_segi(cpu, access_type, eaddr);
}
return 1;
return false;
}
/* Get Process Table */
@ -493,13 +527,13 @@ static int ppc_radix64_xlate(PowerPCCPU *cpu, vaddr eaddr,
if (guest_visible) {
ppc_radix64_raise_si(cpu, access_type, eaddr, DSISR_NOPTE);
}
return 1;
return false;
}
if (!validate_pate(cpu, lpid, &pate)) {
if (guest_visible) {
ppc_radix64_raise_si(cpu, access_type, eaddr, DSISR_R_BADCONFIG);
}
return 1;
return false;
}
}
@ -517,9 +551,9 @@ static int ppc_radix64_xlate(PowerPCCPU *cpu, vaddr eaddr,
if (relocation) {
int ret = ppc_radix64_process_scoped_xlate(cpu, access_type, eaddr, pid,
pate, &g_raddr, &prot,
&psize, guest_visible);
&psize, mmu_idx, guest_visible);
if (ret) {
return ret;
return false;
}
*psizep = MIN(*psizep, psize);
*protp &= prot;
@ -535,15 +569,15 @@ static int ppc_radix64_xlate(PowerPCCPU *cpu, vaddr eaddr,
* quadrants 1 or 2. Translates a guest real address to a host
* real address.
*/
if (lpid || !msr_hv) {
if (lpid || !mmuidx_hv(mmu_idx)) {
int ret;
ret = ppc_radix64_partition_scoped_xlate(cpu, access_type, eaddr,
g_raddr, pate, raddr,
&prot, &psize, false,
guest_visible);
mmu_idx, guest_visible);
if (ret) {
return ret;
return false;
}
*psizep = MIN(*psizep, psize);
*protp &= prot;
@ -552,78 +586,5 @@ static int ppc_radix64_xlate(PowerPCCPU *cpu, vaddr eaddr,
}
}
return 0;
}
int ppc_radix64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr, int rwx,
int mmu_idx)
{
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
int page_size, prot;
bool relocation;
MMUAccessType access_type;
hwaddr raddr;
assert(!(msr_hv && cpu->vhyp));
assert((rwx == 0) || (rwx == 1) || (rwx == 2));
access_type = rwx;
relocation = (access_type == MMU_INST_FETCH ? msr_ir : msr_dr);
/* HV or virtual hypervisor Real Mode Access */
if (!relocation && (msr_hv || cpu->vhyp)) {
/* In real mode top 4 effective addr bits (mostly) ignored */
raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
/* In HV mode, add HRMOR if top EA bit is clear */
if (msr_hv || !env->has_hv_mode) {
if (!(eaddr >> 63)) {
raddr |= env->spr[SPR_HRMOR];
}
}
tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
TARGET_PAGE_SIZE);
return 0;
}
/*
* Check UPRT (we avoid the check in real mode to deal with
* transitional states during kexec.
*/
if (!ppc64_use_proc_tbl(cpu)) {
qemu_log_mask(LOG_GUEST_ERROR,
"LPCR:UPRT not set in radix mode ! LPCR="
TARGET_FMT_lx "\n", env->spr[SPR_LPCR]);
}
/* Translate eaddr to raddr (where raddr is addr qemu needs for access) */
if (ppc_radix64_xlate(cpu, eaddr, access_type, relocation, &raddr,
&page_size, &prot, true)) {
return 1;
}
tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
prot, mmu_idx, 1UL << page_size);
return 0;
}
hwaddr ppc_radix64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong eaddr)
{
CPUPPCState *env = &cpu->env;
int psize, prot;
hwaddr raddr;
/* Handle Real Mode */
if ((msr_dr == 0) && (msr_hv || cpu->vhyp)) {
/* In real mode top 4 effective addr bits (mostly) ignored */
return eaddr & 0x0FFFFFFFFFFFFFFFULL;
}
if (ppc_radix64_xlate(cpu, eaddr, 0, msr_dr, &raddr, &psize,
&prot, false)) {
return -1;
}
return raddr & TARGET_PAGE_MASK;
return true;
}

View File

@ -44,9 +44,9 @@
#ifdef TARGET_PPC64
int ppc_radix64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr, int rwx,
int mmu_idx);
hwaddr ppc_radix64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr);
bool ppc_radix64_xlate(PowerPCCPU *cpu, vaddr eaddr, MMUAccessType access_type,
hwaddr *raddr, int *psizep, int *protp, int mmu_idx,
bool guest_visible);
static inline int ppc_radix64_get_prot_eaa(uint64_t pte)
{

View File

@ -511,7 +511,7 @@ static int get_segment_6xx_tlb(CPUPPCState *env, mmu_ctx_t *ctx,
qemu_log("Page table: " TARGET_FMT_plx " len " TARGET_FMT_plx
"\n", ppc_hash32_hpt_base(cpu),
ppc_hash32_hpt_mask(env) + 0x80);
ppc_hash32_hpt_mask(cpu) + 0x80);
for (curaddr = ppc_hash32_hpt_base(cpu);
curaddr < (ppc_hash32_hpt_base(cpu)
+ ppc_hash32_hpt_mask(cpu) + 0x80);
@ -825,6 +825,7 @@ static int mmubooke_get_physical_address(CPUPPCState *env, mmu_ctx_t *ctx,
return ret;
}
#ifdef CONFIG_TCG
static void booke206_flush_tlb(CPUPPCState *env, int flags,
const int check_iprot)
{
@ -846,6 +847,7 @@ static void booke206_flush_tlb(CPUPPCState *env, int flags,
tlb_flush(env_cpu(env));
}
#endif
static hwaddr booke206_tlb_to_page_size(CPUPPCState *env,
ppcmas_tlb_t *tlb)
@ -1435,48 +1437,6 @@ static int get_physical_address(CPUPPCState *env, mmu_ctx_t *ctx,
}
#endif
hwaddr ppc_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
mmu_ctx_t ctx;
switch (env->mmu_model) {
#if defined(TARGET_PPC64)
case POWERPC_MMU_64B:
case POWERPC_MMU_2_03:
case POWERPC_MMU_2_06:
case POWERPC_MMU_2_07:
return ppc_hash64_get_phys_page_debug(cpu, addr);
case POWERPC_MMU_3_00:
return ppc64_v3_get_phys_page_debug(cpu, addr);
#endif
case POWERPC_MMU_32B:
case POWERPC_MMU_601:
return ppc_hash32_get_phys_page_debug(cpu, addr);
default:
;
}
if (unlikely(get_physical_address(env, &ctx, addr, MMU_DATA_LOAD,
ACCESS_INT) != 0)) {
/*
* Some MMUs have separate TLBs for code and data. If we only
* try an ACCESS_INT, we may not be able to read instructions
* mapped by code TLBs, so we also try a ACCESS_CODE.
*/
if (unlikely(get_physical_address(env, &ctx, addr, MMU_INST_FETCH,
ACCESS_CODE) != 0)) {
return -1;
}
}
return ctx.raddr & TARGET_PAGE_MASK;
}
static void booke206_update_mas_tlb_miss(CPUPPCState *env, target_ulong address,
MMUAccessType access_type, int mmu_idx)
{
@ -1532,30 +1492,38 @@ static void booke206_update_mas_tlb_miss(CPUPPCState *env, target_ulong address,
}
/* Perform address translation */
static int cpu_ppc_handle_mmu_fault(CPUPPCState *env, target_ulong address,
MMUAccessType access_type, int mmu_idx)
/* TODO: Split this by mmu_model. */
static bool ppc_jumbo_xlate(PowerPCCPU *cpu, vaddr eaddr,
MMUAccessType access_type,
hwaddr *raddrp, int *psizep, int *protp,
int mmu_idx, bool guest_visible)
{
CPUState *cs = env_cpu(env);
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
mmu_ctx_t ctx;
int type;
int ret = 0;
int ret;
if (access_type == MMU_INST_FETCH) {
/* code access */
type = ACCESS_CODE;
} else {
} else if (guest_visible) {
/* data access */
type = env->access_type;
} else {
type = ACCESS_INT;
}
ret = get_physical_address_wtlb(env, &ctx, address, access_type,
ret = get_physical_address_wtlb(env, &ctx, eaddr, access_type,
type, mmu_idx);
if (ret == 0) {
tlb_set_page(cs, address & TARGET_PAGE_MASK,
ctx.raddr & TARGET_PAGE_MASK, ctx.prot,
mmu_idx, TARGET_PAGE_SIZE);
ret = 0;
} else if (ret < 0) {
*raddrp = ctx.raddr;
*protp = ctx.prot;
*psizep = TARGET_PAGE_BITS;
return true;
}
if (guest_visible) {
LOG_MMU_STATE(cs);
if (type == ACCESS_CODE) {
switch (ret) {
@ -1565,7 +1533,7 @@ static int cpu_ppc_handle_mmu_fault(CPUPPCState *env, target_ulong address,
case POWERPC_MMU_SOFT_6xx:
cs->exception_index = POWERPC_EXCP_IFTLB;
env->error_code = 1 << 18;
env->spr[SPR_IMISS] = address;
env->spr[SPR_IMISS] = eaddr;
env->spr[SPR_ICMP] = 0x80000000 | ctx.ptem;
goto tlb_miss;
case POWERPC_MMU_SOFT_74xx:
@ -1575,29 +1543,25 @@ static int cpu_ppc_handle_mmu_fault(CPUPPCState *env, target_ulong address,
case POWERPC_MMU_SOFT_4xx_Z:
cs->exception_index = POWERPC_EXCP_ITLB;
env->error_code = 0;
env->spr[SPR_40x_DEAR] = address;
env->spr[SPR_40x_DEAR] = eaddr;
env->spr[SPR_40x_ESR] = 0x00000000;
break;
case POWERPC_MMU_BOOKE206:
booke206_update_mas_tlb_miss(env, address, 2, mmu_idx);
booke206_update_mas_tlb_miss(env, eaddr, 2, mmu_idx);
/* fall through */
case POWERPC_MMU_BOOKE:
cs->exception_index = POWERPC_EXCP_ITLB;
env->error_code = 0;
env->spr[SPR_BOOKE_DEAR] = address;
env->spr[SPR_BOOKE_DEAR] = eaddr;
env->spr[SPR_BOOKE_ESR] = mmubooke206_esr(mmu_idx, MMU_DATA_LOAD);
return -1;
case POWERPC_MMU_MPC8xx:
/* XXX: TODO */
cpu_abort(cs, "MPC8xx MMU model is not implemented\n");
break;
case POWERPC_MMU_MPC8xx:
cpu_abort(cs, "MPC8xx MMU model is not implemented\n");
case POWERPC_MMU_REAL:
cpu_abort(cs, "PowerPC in real mode should never raise "
"any MMU exceptions\n");
return -1;
default:
cpu_abort(cs, "Unknown or invalid MMU model\n");
return -1;
}
break;
case -2:
@ -1634,7 +1598,7 @@ static int cpu_ppc_handle_mmu_fault(CPUPPCState *env, target_ulong address,
cs->exception_index = POWERPC_EXCP_DLTLB;
env->error_code = 0;
}
env->spr[SPR_DMISS] = address;
env->spr[SPR_DMISS] = eaddr;
env->spr[SPR_DCMP] = 0x80000000 | ctx.ptem;
tlb_miss:
env->error_code |= ctx.key << 19;
@ -1652,7 +1616,7 @@ static int cpu_ppc_handle_mmu_fault(CPUPPCState *env, target_ulong address,
tlb_miss_74xx:
/* Implement LRU algorithm */
env->error_code = ctx.key << 19;
env->spr[SPR_TLBMISS] = (address & ~((target_ulong)0x3)) |
env->spr[SPR_TLBMISS] = (eaddr & ~((target_ulong)0x3)) |
((env->last_way + 1) & (env->nb_ways - 1));
env->spr[SPR_PTEHI] = 0x80000000 | ctx.ptem;
break;
@ -1660,7 +1624,7 @@ static int cpu_ppc_handle_mmu_fault(CPUPPCState *env, target_ulong address,
case POWERPC_MMU_SOFT_4xx_Z:
cs->exception_index = POWERPC_EXCP_DTLB;
env->error_code = 0;
env->spr[SPR_40x_DEAR] = address;
env->spr[SPR_40x_DEAR] = eaddr;
if (access_type == MMU_DATA_STORE) {
env->spr[SPR_40x_ESR] = 0x00800000;
} else {
@ -1670,23 +1634,20 @@ static int cpu_ppc_handle_mmu_fault(CPUPPCState *env, target_ulong address,
case POWERPC_MMU_MPC8xx:
/* XXX: TODO */
cpu_abort(cs, "MPC8xx MMU model is not implemented\n");
break;
case POWERPC_MMU_BOOKE206:
booke206_update_mas_tlb_miss(env, address, access_type, mmu_idx);
booke206_update_mas_tlb_miss(env, eaddr, access_type, mmu_idx);
/* fall through */
case POWERPC_MMU_BOOKE:
cs->exception_index = POWERPC_EXCP_DTLB;
env->error_code = 0;
env->spr[SPR_BOOKE_DEAR] = address;
env->spr[SPR_BOOKE_DEAR] = eaddr;
env->spr[SPR_BOOKE_ESR] = mmubooke206_esr(mmu_idx, access_type);
return -1;
break;
case POWERPC_MMU_REAL:
cpu_abort(cs, "PowerPC in real mode should never raise "
"any MMU exceptions\n");
return -1;
default:
cpu_abort(cs, "Unknown or invalid MMU model\n");
return -1;
}
break;
case -2:
@ -1695,16 +1656,16 @@ static int cpu_ppc_handle_mmu_fault(CPUPPCState *env, target_ulong address,
env->error_code = 0;
if (env->mmu_model == POWERPC_MMU_SOFT_4xx
|| env->mmu_model == POWERPC_MMU_SOFT_4xx_Z) {
env->spr[SPR_40x_DEAR] = address;
env->spr[SPR_40x_DEAR] = eaddr;
if (access_type == MMU_DATA_STORE) {
env->spr[SPR_40x_ESR] |= 0x00800000;
}
} else if ((env->mmu_model == POWERPC_MMU_BOOKE) ||
(env->mmu_model == POWERPC_MMU_BOOKE206)) {
env->spr[SPR_BOOKE_DEAR] = address;
env->spr[SPR_BOOKE_DEAR] = eaddr;
env->spr[SPR_BOOKE_ESR] = mmubooke206_esr(mmu_idx, access_type);
} else {
env->spr[SPR_DAR] = address;
env->spr[SPR_DAR] = eaddr;
if (access_type == MMU_DATA_STORE) {
env->spr[SPR_DSISR] = 0x0A000000;
} else {
@ -1719,13 +1680,13 @@ static int cpu_ppc_handle_mmu_fault(CPUPPCState *env, target_ulong address,
/* Floating point load/store */
cs->exception_index = POWERPC_EXCP_ALIGN;
env->error_code = POWERPC_EXCP_ALIGN_FP;
env->spr[SPR_DAR] = address;
env->spr[SPR_DAR] = eaddr;
break;
case ACCESS_RES:
/* lwarx, ldarx or stwcx. */
cs->exception_index = POWERPC_EXCP_DSI;
env->error_code = 0;
env->spr[SPR_DAR] = address;
env->spr[SPR_DAR] = eaddr;
if (access_type == MMU_DATA_STORE) {
env->spr[SPR_DSISR] = 0x06000000;
} else {
@ -1736,7 +1697,7 @@ static int cpu_ppc_handle_mmu_fault(CPUPPCState *env, target_ulong address,
/* eciwx or ecowx */
cs->exception_index = POWERPC_EXCP_DSI;
env->error_code = 0;
env->spr[SPR_DAR] = address;
env->spr[SPR_DAR] = eaddr;
if (access_type == MMU_DATA_STORE) {
env->spr[SPR_DSISR] = 0x06100000;
} else {
@ -1748,16 +1709,14 @@ static int cpu_ppc_handle_mmu_fault(CPUPPCState *env, target_ulong address,
cs->exception_index = POWERPC_EXCP_PROGRAM;
env->error_code =
POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL;
env->spr[SPR_DAR] = address;
env->spr[SPR_DAR] = eaddr;
break;
}
break;
}
}
ret = 1;
}
return ret;
return false;
}
#ifdef CONFIG_TCG
@ -1798,9 +1757,6 @@ static inline void dump_store_bat(CPUPPCState *env, char ID, int ul, int nr,
void helper_store_ibatu(CPUPPCState *env, uint32_t nr, target_ulong value)
{
target_ulong mask;
#if defined(FLUSH_ALL_TLBS)
PowerPCCPU *cpu = env_archcpu(env);
#endif
dump_store_bat(env, 'I', 0, nr, value);
if (env->IBAT[0][nr] != value) {
@ -1834,9 +1790,6 @@ void helper_store_ibatl(CPUPPCState *env, uint32_t nr, target_ulong value)
void helper_store_dbatu(CPUPPCState *env, uint32_t nr, target_ulong value)
{
target_ulong mask;
#if defined(FLUSH_ALL_TLBS)
PowerPCCPU *cpu = env_archcpu(env);
#endif
dump_store_bat(env, 'D', 0, nr, value);
if (env->DBAT[0][nr] != value) {
@ -1871,7 +1824,6 @@ void helper_store_601_batu(CPUPPCState *env, uint32_t nr, target_ulong value)
{
target_ulong mask;
#if defined(FLUSH_ALL_TLBS)
PowerPCCPU *cpu = env_archcpu(env);
int do_inval;
#endif
@ -1916,7 +1868,6 @@ void helper_store_601_batl(CPUPPCState *env, uint32_t nr, target_ulong value)
#if !defined(FLUSH_ALL_TLBS)
target_ulong mask;
#else
PowerPCCPU *cpu = env_archcpu(env);
int do_inval;
#endif
@ -1952,6 +1903,7 @@ void helper_store_601_batl(CPUPPCState *env, uint32_t nr, target_ulong value)
}
#endif
#ifdef CONFIG_TCG
/*****************************************************************************/
/* TLB management */
void ppc_tlb_invalidate_all(CPUPPCState *env)
@ -1995,6 +1947,7 @@ void ppc_tlb_invalidate_all(CPUPPCState *env)
break;
}
}
#endif
#ifdef CONFIG_TCG
void ppc_tlb_invalidate_one(CPUPPCState *env, target_ulong addr)
@ -2942,26 +2895,76 @@ void helper_check_tlb_flush_global(CPUPPCState *env)
/*****************************************************************************/
bool ppc_cpu_tlb_fill(CPUState *cs, vaddr addr, int size,
static bool ppc_xlate(PowerPCCPU *cpu, vaddr eaddr, MMUAccessType access_type,
hwaddr *raddrp, int *psizep, int *protp,
int mmu_idx, bool guest_visible)
{
switch (cpu->env.mmu_model) {
#if defined(TARGET_PPC64)
case POWERPC_MMU_3_00:
if (ppc64_v3_radix(cpu)) {
return ppc_radix64_xlate(cpu, eaddr, access_type,
raddrp, psizep, protp, mmu_idx, guest_visible);
}
/* fall through */
case POWERPC_MMU_64B:
case POWERPC_MMU_2_03:
case POWERPC_MMU_2_06:
case POWERPC_MMU_2_07:
return ppc_hash64_xlate(cpu, eaddr, access_type,
raddrp, psizep, protp, mmu_idx, guest_visible);
#endif
case POWERPC_MMU_32B:
case POWERPC_MMU_601:
return ppc_hash32_xlate(cpu, eaddr, access_type,
raddrp, psizep, protp, mmu_idx, guest_visible);
default:
return ppc_jumbo_xlate(cpu, eaddr, access_type, raddrp,
psizep, protp, mmu_idx, guest_visible);
}
}
hwaddr ppc_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
hwaddr raddr;
int s, p;
/*
* Some MMUs have separate TLBs for code and data. If we only
* try an MMU_DATA_LOAD, we may not be able to read instructions
* mapped by code TLBs, so we also try a MMU_INST_FETCH.
*/
if (ppc_xlate(cpu, addr, MMU_DATA_LOAD, &raddr, &s, &p,
cpu_mmu_index(&cpu->env, false), false) ||
ppc_xlate(cpu, addr, MMU_INST_FETCH, &raddr, &s, &p,
cpu_mmu_index(&cpu->env, true), false)) {
return raddr & TARGET_PAGE_MASK;
}
return -1;
}
#ifdef CONFIG_TCG
bool ppc_cpu_tlb_fill(CPUState *cs, vaddr eaddr, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
CPUPPCState *env = &cpu->env;
int ret;
hwaddr raddr;
int page_size, prot;
if (pcc->handle_mmu_fault) {
ret = pcc->handle_mmu_fault(cpu, addr, access_type, mmu_idx);
} else {
ret = cpu_ppc_handle_mmu_fault(env, addr, access_type, mmu_idx);
if (ppc_xlate(cpu, eaddr, access_type, &raddr,
&page_size, &prot, mmu_idx, !probe)) {
tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
prot, mmu_idx, 1UL << page_size);
return true;
}
if (unlikely(ret != 0)) {
if (probe) {
return false;
}
raise_exception_err_ra(env, cs->exception_index, env->error_code,
retaddr);
if (probe) {
return false;
}
return true;
raise_exception_err_ra(&cpu->env, cs->exception_index,
cpu->env.error_code, retaddr);
}
#endif

View File

@ -4940,6 +4940,11 @@ static void gen_mtcrf(DisasContext *ctx)
#if defined(TARGET_PPC64)
static void gen_mtmsrd(DisasContext *ctx)
{
if (unlikely(!is_book3s_arch2x(ctx))) {
gen_invalid(ctx);
return;
}
CHK_SV;
#if !defined(CONFIG_USER_ONLY)

View File

@ -5,7 +5,7 @@
#include "libqos/libqos-spapr.h"
#include "libqos/rtas.h"
static void test_rtas_get_time_of_day(void)
static void run_test_rtas_get_time_of_day(const char *machine)
{
QOSState *qs;
struct tm tm;
@ -13,7 +13,7 @@ static void test_rtas_get_time_of_day(void)
uint64_t ret;
time_t t1, t2;
qs = qtest_spapr_boot("-machine pseries");
qs = qtest_spapr_boot(machine);
t1 = time(NULL);
ret = qrtas_get_time_of_day(qs->qts, &qs->alloc, &tm, &ns);
@ -24,6 +24,16 @@ static void test_rtas_get_time_of_day(void)
qtest_shutdown(qs);
}
static void test_rtas_get_time_of_day(void)
{
run_test_rtas_get_time_of_day("-machine pseries");
}
static void test_rtas_get_time_of_day_vof(void)
{
run_test_rtas_get_time_of_day("-machine pseries,x-vof=on");
}
int main(int argc, char *argv[])
{
const char *arch = qtest_get_arch();
@ -35,6 +45,7 @@ int main(int argc, char *argv[])
exit(EXIT_FAILURE);
}
qtest_add_func("rtas/get-time-of-day", test_rtas_get_time_of_day);
qtest_add_func("rtas/get-time-of-day-vof", test_rtas_get_time_of_day_vof);
return g_test_run();
}