util/uri: Remove unused functions uri_resolve() and uri_resolve_relative()
These rather complex functions have never been used since they've been introduced in 2012, so looks like they are not really useful for QEMU. And since the static normalize_uri_path() function is also only used by uri_resolve(), we can remove that function now, too. Reviewed-by: Stefan Weil <sw@weilnetz.de> Reviewed-by: "Daniel P. Berrangé" <berrange@redhat.com> Message-ID: <20240123182247.432642-3-thuth@redhat.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Thomas Huth <thuth@redhat.com>
This commit is contained in:
parent
7536acb426
commit
fdd16f16f4
@ -72,8 +72,6 @@ typedef struct URI {
|
||||
} URI;
|
||||
|
||||
URI *uri_new(void);
|
||||
char *uri_resolve(const char *URI, const char *base);
|
||||
char *uri_resolve_relative(const char *URI, const char *base);
|
||||
URI *uri_parse(const char *str);
|
||||
URI *uri_parse_raw(const char *str, int raw);
|
||||
int uri_parse_into(URI *uri, const char *str);
|
||||
|
689
util/uri.c
689
util/uri.c
@ -1355,212 +1355,6 @@ void uri_free(URI *uri)
|
||||
* *
|
||||
************************************************************************/
|
||||
|
||||
/**
|
||||
* normalize_uri_path:
|
||||
* @path: pointer to the path string
|
||||
*
|
||||
* Applies the 5 normalization steps to a path string--that is, RFC 2396
|
||||
* Section 5.2, steps 6.c through 6.g.
|
||||
*
|
||||
* Normalization occurs directly on the string, no new allocation is done
|
||||
*
|
||||
* Returns 0 or an error code
|
||||
*/
|
||||
static int normalize_uri_path(char *path)
|
||||
{
|
||||
char *cur, *out;
|
||||
|
||||
if (path == NULL) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Skip all initial "/" chars. We want to get to the beginning of the
|
||||
* first non-empty segment.
|
||||
*/
|
||||
cur = path;
|
||||
while (cur[0] == '/') {
|
||||
++cur;
|
||||
}
|
||||
if (cur[0] == '\0') {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Keep everything we've seen so far. */
|
||||
out = cur;
|
||||
|
||||
/*
|
||||
* Analyze each segment in sequence for cases (c) and (d).
|
||||
*/
|
||||
while (cur[0] != '\0') {
|
||||
/*
|
||||
* c) All occurrences of "./", where "." is a complete path segment,
|
||||
* are removed from the buffer string.
|
||||
*/
|
||||
if ((cur[0] == '.') && (cur[1] == '/')) {
|
||||
cur += 2;
|
||||
/* '//' normalization should be done at this point too */
|
||||
while (cur[0] == '/') {
|
||||
cur++;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
/*
|
||||
* d) If the buffer string ends with "." as a complete path segment,
|
||||
* that "." is removed.
|
||||
*/
|
||||
if ((cur[0] == '.') && (cur[1] == '\0')) {
|
||||
break;
|
||||
}
|
||||
|
||||
/* Otherwise keep the segment. */
|
||||
while (cur[0] != '/') {
|
||||
if (cur[0] == '\0') {
|
||||
goto done_cd;
|
||||
}
|
||||
(out++)[0] = (cur++)[0];
|
||||
}
|
||||
/* nomalize // */
|
||||
while ((cur[0] == '/') && (cur[1] == '/')) {
|
||||
cur++;
|
||||
}
|
||||
|
||||
(out++)[0] = (cur++)[0];
|
||||
}
|
||||
done_cd:
|
||||
out[0] = '\0';
|
||||
|
||||
/* Reset to the beginning of the first segment for the next sequence. */
|
||||
cur = path;
|
||||
while (cur[0] == '/') {
|
||||
++cur;
|
||||
}
|
||||
if (cur[0] == '\0') {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Analyze each segment in sequence for cases (e) and (f).
|
||||
*
|
||||
* e) All occurrences of "<segment>/../", where <segment> is a
|
||||
* complete path segment not equal to "..", are removed from the
|
||||
* buffer string. Removal of these path segments is performed
|
||||
* iteratively, removing the leftmost matching pattern on each
|
||||
* iteration, until no matching pattern remains.
|
||||
*
|
||||
* f) If the buffer string ends with "<segment>/..", where <segment>
|
||||
* is a complete path segment not equal to "..", that
|
||||
* "<segment>/.." is removed.
|
||||
*
|
||||
* To satisfy the "iterative" clause in (e), we need to collapse the
|
||||
* string every time we find something that needs to be removed. Thus,
|
||||
* we don't need to keep two pointers into the string: we only need a
|
||||
* "current position" pointer.
|
||||
*/
|
||||
while (1) {
|
||||
char *segp, *tmp;
|
||||
|
||||
/* At the beginning of each iteration of this loop, "cur" points to
|
||||
* the first character of the segment we want to examine.
|
||||
*/
|
||||
|
||||
/* Find the end of the current segment. */
|
||||
segp = cur;
|
||||
while ((segp[0] != '/') && (segp[0] != '\0')) {
|
||||
++segp;
|
||||
}
|
||||
|
||||
/* If this is the last segment, we're done (we need at least two
|
||||
* segments to meet the criteria for the (e) and (f) cases).
|
||||
*/
|
||||
if (segp[0] == '\0') {
|
||||
break;
|
||||
}
|
||||
|
||||
/* If the first segment is "..", or if the next segment _isn't_ "..",
|
||||
* keep this segment and try the next one.
|
||||
*/
|
||||
++segp;
|
||||
if (((cur[0] == '.') && (cur[1] == '.') && (segp == cur + 3)) ||
|
||||
((segp[0] != '.') || (segp[1] != '.') ||
|
||||
((segp[2] != '/') && (segp[2] != '\0')))) {
|
||||
cur = segp;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* If we get here, remove this segment and the next one and back up
|
||||
* to the previous segment (if there is one), to implement the
|
||||
* "iteratively" clause. It's pretty much impossible to back up
|
||||
* while maintaining two pointers into the buffer, so just compact
|
||||
* the whole buffer now.
|
||||
*/
|
||||
|
||||
/* If this is the end of the buffer, we're done. */
|
||||
if (segp[2] == '\0') {
|
||||
cur[0] = '\0';
|
||||
break;
|
||||
}
|
||||
/* Valgrind complained, strcpy(cur, segp + 3); */
|
||||
/* string will overlap, do not use strcpy */
|
||||
tmp = cur;
|
||||
segp += 3;
|
||||
while ((*tmp++ = *segp++) != 0) {
|
||||
/* No further work */
|
||||
}
|
||||
|
||||
/* If there are no previous segments, then keep going from here. */
|
||||
segp = cur;
|
||||
while ((segp > path) && ((--segp)[0] == '/')) {
|
||||
/* No further work */
|
||||
}
|
||||
if (segp == path) {
|
||||
continue;
|
||||
}
|
||||
|
||||
/* "segp" is pointing to the end of a previous segment; find it's
|
||||
* start. We need to back up to the previous segment and start
|
||||
* over with that to handle things like "foo/bar/../..". If we
|
||||
* don't do this, then on the first pass we'll remove the "bar/..",
|
||||
* but be pointing at the second ".." so we won't realize we can also
|
||||
* remove the "foo/..".
|
||||
*/
|
||||
cur = segp;
|
||||
while ((cur > path) && (cur[-1] != '/')) {
|
||||
--cur;
|
||||
}
|
||||
}
|
||||
out[0] = '\0';
|
||||
|
||||
/*
|
||||
* g) If the resulting buffer string still begins with one or more
|
||||
* complete path segments of "..", then the reference is
|
||||
* considered to be in error. Implementations may handle this
|
||||
* error by retaining these components in the resolved path (i.e.,
|
||||
* treating them as part of the final URI), by removing them from
|
||||
* the resolved path (i.e., discarding relative levels above the
|
||||
* root), or by avoiding traversal of the reference.
|
||||
*
|
||||
* We discard them from the final path.
|
||||
*/
|
||||
if (path[0] == '/') {
|
||||
cur = path;
|
||||
while ((cur[0] == '/') && (cur[1] == '.') && (cur[2] == '.') &&
|
||||
((cur[3] == '/') || (cur[3] == '\0'))) {
|
||||
cur += 3;
|
||||
}
|
||||
|
||||
if (cur != path) {
|
||||
out = path;
|
||||
while (cur[0] != '\0') {
|
||||
(out++)[0] = (cur++)[0];
|
||||
}
|
||||
out[0] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* uri_string_escape:
|
||||
* @str: string to escape
|
||||
@ -1631,489 +1425,6 @@ char *uri_string_escape(const char *str, const char *list)
|
||||
* *
|
||||
************************************************************************/
|
||||
|
||||
/**
|
||||
* uri_resolve:
|
||||
* @URI: the URI instance found in the document
|
||||
* @base: the base value
|
||||
*
|
||||
* Computes he final URI of the reference done by checking that
|
||||
* the given URI is valid, and building the final URI using the
|
||||
* base URI. This is processed according to section 5.2 of the
|
||||
* RFC 2396
|
||||
*
|
||||
* 5.2. Resolving Relative References to Absolute Form
|
||||
*
|
||||
* Returns a new URI string (to be freed by the caller) or NULL in case
|
||||
* of error.
|
||||
*/
|
||||
char *uri_resolve(const char *uri, const char *base)
|
||||
{
|
||||
char *val = NULL;
|
||||
int ret, len, indx, cur, out;
|
||||
URI *ref = NULL;
|
||||
URI *bas = NULL;
|
||||
URI *res = NULL;
|
||||
|
||||
/*
|
||||
* 1) The URI reference is parsed into the potential four components and
|
||||
* fragment identifier, as described in Section 4.3.
|
||||
*
|
||||
* NOTE that a completely empty URI is treated by modern browsers
|
||||
* as a reference to "." rather than as a synonym for the current
|
||||
* URI. Should we do that here?
|
||||
*/
|
||||
if (uri == NULL) {
|
||||
ret = -1;
|
||||
} else {
|
||||
if (*uri) {
|
||||
ref = uri_new();
|
||||
ret = uri_parse_into(ref, uri);
|
||||
} else {
|
||||
ret = 0;
|
||||
}
|
||||
}
|
||||
if (ret != 0) {
|
||||
goto done;
|
||||
}
|
||||
if ((ref != NULL) && (ref->scheme != NULL)) {
|
||||
/*
|
||||
* The URI is absolute don't modify.
|
||||
*/
|
||||
val = g_strdup(uri);
|
||||
goto done;
|
||||
}
|
||||
if (base == NULL) {
|
||||
ret = -1;
|
||||
} else {
|
||||
bas = uri_new();
|
||||
ret = uri_parse_into(bas, base);
|
||||
}
|
||||
if (ret != 0) {
|
||||
if (ref) {
|
||||
val = uri_to_string(ref);
|
||||
}
|
||||
goto done;
|
||||
}
|
||||
if (ref == NULL) {
|
||||
/*
|
||||
* the base fragment must be ignored
|
||||
*/
|
||||
g_free(bas->fragment);
|
||||
bas->fragment = NULL;
|
||||
val = uri_to_string(bas);
|
||||
goto done;
|
||||
}
|
||||
|
||||
/*
|
||||
* 2) If the path component is empty and the scheme, authority, and
|
||||
* query components are undefined, then it is a reference to the
|
||||
* current document and we are done. Otherwise, the reference URI's
|
||||
* query and fragment components are defined as found (or not found)
|
||||
* within the URI reference and not inherited from the base URI.
|
||||
*
|
||||
* NOTE that in modern browsers, the parsing differs from the above
|
||||
* in the following aspect: the query component is allowed to be
|
||||
* defined while still treating this as a reference to the current
|
||||
* document.
|
||||
*/
|
||||
res = uri_new();
|
||||
if ((ref->scheme == NULL) && (ref->path == NULL) &&
|
||||
((ref->authority == NULL) && (ref->server == NULL))) {
|
||||
res->scheme = g_strdup(bas->scheme);
|
||||
if (bas->authority != NULL) {
|
||||
res->authority = g_strdup(bas->authority);
|
||||
} else if (bas->server != NULL) {
|
||||
res->server = g_strdup(bas->server);
|
||||
res->user = g_strdup(bas->user);
|
||||
res->port = bas->port;
|
||||
}
|
||||
res->path = g_strdup(bas->path);
|
||||
if (ref->query != NULL) {
|
||||
res->query = g_strdup(ref->query);
|
||||
} else {
|
||||
res->query = g_strdup(bas->query);
|
||||
}
|
||||
res->fragment = g_strdup(ref->fragment);
|
||||
goto step_7;
|
||||
}
|
||||
|
||||
/*
|
||||
* 3) If the scheme component is defined, indicating that the reference
|
||||
* starts with a scheme name, then the reference is interpreted as an
|
||||
* absolute URI and we are done. Otherwise, the reference URI's
|
||||
* scheme is inherited from the base URI's scheme component.
|
||||
*/
|
||||
if (ref->scheme != NULL) {
|
||||
val = uri_to_string(ref);
|
||||
goto done;
|
||||
}
|
||||
res->scheme = g_strdup(bas->scheme);
|
||||
|
||||
res->query = g_strdup(ref->query);
|
||||
res->fragment = g_strdup(ref->fragment);
|
||||
|
||||
/*
|
||||
* 4) If the authority component is defined, then the reference is a
|
||||
* network-path and we skip to step 7. Otherwise, the reference
|
||||
* URI's authority is inherited from the base URI's authority
|
||||
* component, which will also be undefined if the URI scheme does not
|
||||
* use an authority component.
|
||||
*/
|
||||
if ((ref->authority != NULL) || (ref->server != NULL)) {
|
||||
if (ref->authority != NULL) {
|
||||
res->authority = g_strdup(ref->authority);
|
||||
} else {
|
||||
res->server = g_strdup(ref->server);
|
||||
res->user = g_strdup(ref->user);
|
||||
res->port = ref->port;
|
||||
}
|
||||
res->path = g_strdup(ref->path);
|
||||
goto step_7;
|
||||
}
|
||||
if (bas->authority != NULL) {
|
||||
res->authority = g_strdup(bas->authority);
|
||||
} else if (bas->server != NULL) {
|
||||
res->server = g_strdup(bas->server);
|
||||
res->user = g_strdup(bas->user);
|
||||
res->port = bas->port;
|
||||
}
|
||||
|
||||
/*
|
||||
* 5) If the path component begins with a slash character ("/"), then
|
||||
* the reference is an absolute-path and we skip to step 7.
|
||||
*/
|
||||
if ((ref->path != NULL) && (ref->path[0] == '/')) {
|
||||
res->path = g_strdup(ref->path);
|
||||
goto step_7;
|
||||
}
|
||||
|
||||
/*
|
||||
* 6) If this step is reached, then we are resolving a relative-path
|
||||
* reference. The relative path needs to be merged with the base
|
||||
* URI's path. Although there are many ways to do this, we will
|
||||
* describe a simple method using a separate string buffer.
|
||||
*
|
||||
* Allocate a buffer large enough for the result string.
|
||||
*/
|
||||
len = 2; /* extra / and 0 */
|
||||
if (ref->path != NULL) {
|
||||
len += strlen(ref->path);
|
||||
}
|
||||
if (bas->path != NULL) {
|
||||
len += strlen(bas->path);
|
||||
}
|
||||
res->path = g_malloc(len);
|
||||
res->path[0] = 0;
|
||||
|
||||
/*
|
||||
* a) All but the last segment of the base URI's path component is
|
||||
* copied to the buffer. In other words, any characters after the
|
||||
* last (right-most) slash character, if any, are excluded.
|
||||
*/
|
||||
cur = 0;
|
||||
out = 0;
|
||||
if (bas->path != NULL) {
|
||||
while (bas->path[cur] != 0) {
|
||||
while ((bas->path[cur] != 0) && (bas->path[cur] != '/')) {
|
||||
cur++;
|
||||
}
|
||||
if (bas->path[cur] == 0) {
|
||||
break;
|
||||
}
|
||||
|
||||
cur++;
|
||||
while (out < cur) {
|
||||
res->path[out] = bas->path[out];
|
||||
out++;
|
||||
}
|
||||
}
|
||||
}
|
||||
res->path[out] = 0;
|
||||
|
||||
/*
|
||||
* b) The reference's path component is appended to the buffer
|
||||
* string.
|
||||
*/
|
||||
if (ref->path != NULL && ref->path[0] != 0) {
|
||||
indx = 0;
|
||||
/*
|
||||
* Ensure the path includes a '/'
|
||||
*/
|
||||
if ((out == 0) && (bas->server != NULL)) {
|
||||
res->path[out++] = '/';
|
||||
}
|
||||
while (ref->path[indx] != 0) {
|
||||
res->path[out++] = ref->path[indx++];
|
||||
}
|
||||
}
|
||||
res->path[out] = 0;
|
||||
|
||||
/*
|
||||
* Steps c) to h) are really path normalization steps
|
||||
*/
|
||||
normalize_uri_path(res->path);
|
||||
|
||||
step_7:
|
||||
|
||||
/*
|
||||
* 7) The resulting URI components, including any inherited from the
|
||||
* base URI, are recombined to give the absolute form of the URI
|
||||
* reference.
|
||||
*/
|
||||
val = uri_to_string(res);
|
||||
|
||||
done:
|
||||
uri_free(ref);
|
||||
uri_free(bas);
|
||||
uri_free(res);
|
||||
return val;
|
||||
}
|
||||
|
||||
/**
|
||||
* uri_resolve_relative:
|
||||
* @URI: the URI reference under consideration
|
||||
* @base: the base value
|
||||
*
|
||||
* Expresses the URI of the reference in terms relative to the
|
||||
* base. Some examples of this operation include:
|
||||
* base = "http://site1.com/docs/book1.html"
|
||||
* URI input URI returned
|
||||
* docs/pic1.gif pic1.gif
|
||||
* docs/img/pic1.gif img/pic1.gif
|
||||
* img/pic1.gif ../img/pic1.gif
|
||||
* http://site1.com/docs/pic1.gif pic1.gif
|
||||
* http://site2.com/docs/pic1.gif http://site2.com/docs/pic1.gif
|
||||
*
|
||||
* base = "docs/book1.html"
|
||||
* URI input URI returned
|
||||
* docs/pic1.gif pic1.gif
|
||||
* docs/img/pic1.gif img/pic1.gif
|
||||
* img/pic1.gif ../img/pic1.gif
|
||||
* http://site1.com/docs/pic1.gif http://site1.com/docs/pic1.gif
|
||||
*
|
||||
*
|
||||
* Note: if the URI reference is really weird or complicated, it may be
|
||||
* worthwhile to first convert it into a "nice" one by calling
|
||||
* uri_resolve (using 'base') before calling this routine,
|
||||
* since this routine (for reasonable efficiency) assumes URI has
|
||||
* already been through some validation.
|
||||
*
|
||||
* Returns a new URI string (to be freed by the caller) or NULL in case
|
||||
* error.
|
||||
*/
|
||||
char *uri_resolve_relative(const char *uri, const char *base)
|
||||
{
|
||||
char *val = NULL;
|
||||
int ret;
|
||||
int ix;
|
||||
int pos = 0;
|
||||
int nbslash = 0;
|
||||
int len;
|
||||
URI *ref = NULL;
|
||||
URI *bas = NULL;
|
||||
char *bptr, *uptr, *vptr;
|
||||
int remove_path = 0;
|
||||
|
||||
if ((uri == NULL) || (*uri == 0)) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* First parse URI into a standard form
|
||||
*/
|
||||
ref = uri_new();
|
||||
/* If URI not already in "relative" form */
|
||||
if (uri[0] != '.') {
|
||||
ret = uri_parse_into(ref, uri);
|
||||
if (ret != 0) {
|
||||
goto done; /* Error in URI, return NULL */
|
||||
}
|
||||
} else {
|
||||
ref->path = g_strdup(uri);
|
||||
}
|
||||
|
||||
/*
|
||||
* Next parse base into the same standard form
|
||||
*/
|
||||
if ((base == NULL) || (*base == 0)) {
|
||||
val = g_strdup(uri);
|
||||
goto done;
|
||||
}
|
||||
bas = uri_new();
|
||||
if (base[0] != '.') {
|
||||
ret = uri_parse_into(bas, base);
|
||||
if (ret != 0) {
|
||||
goto done; /* Error in base, return NULL */
|
||||
}
|
||||
} else {
|
||||
bas->path = g_strdup(base);
|
||||
}
|
||||
|
||||
/*
|
||||
* If the scheme / server on the URI differs from the base,
|
||||
* just return the URI
|
||||
*/
|
||||
if ((ref->scheme != NULL) &&
|
||||
((bas->scheme == NULL) || (strcmp(bas->scheme, ref->scheme)) ||
|
||||
(strcmp(bas->server, ref->server)))) {
|
||||
val = g_strdup(uri);
|
||||
goto done;
|
||||
}
|
||||
if (bas->path == ref->path ||
|
||||
(bas->path && ref->path && !strcmp(bas->path, ref->path))) {
|
||||
val = g_strdup("");
|
||||
goto done;
|
||||
}
|
||||
if (bas->path == NULL) {
|
||||
val = g_strdup(ref->path);
|
||||
goto done;
|
||||
}
|
||||
if (ref->path == NULL) {
|
||||
ref->path = (char *)"/";
|
||||
remove_path = 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* At this point (at last!) we can compare the two paths
|
||||
*
|
||||
* First we take care of the special case where either of the
|
||||
* two path components may be missing (bug 316224)
|
||||
*/
|
||||
if (bas->path == NULL) {
|
||||
if (ref->path != NULL) {
|
||||
uptr = ref->path;
|
||||
if (*uptr == '/') {
|
||||
uptr++;
|
||||
}
|
||||
/* exception characters from uri_to_string */
|
||||
val = uri_string_escape(uptr, "/;&=+$,");
|
||||
}
|
||||
goto done;
|
||||
}
|
||||
bptr = bas->path;
|
||||
if (ref->path == NULL) {
|
||||
for (ix = 0; bptr[ix] != 0; ix++) {
|
||||
if (bptr[ix] == '/') {
|
||||
nbslash++;
|
||||
}
|
||||
}
|
||||
uptr = NULL;
|
||||
len = 1; /* this is for a string terminator only */
|
||||
} else {
|
||||
/*
|
||||
* Next we compare the two strings and find where they first differ
|
||||
*/
|
||||
if ((ref->path[pos] == '.') && (ref->path[pos + 1] == '/')) {
|
||||
pos += 2;
|
||||
}
|
||||
if ((*bptr == '.') && (bptr[1] == '/')) {
|
||||
bptr += 2;
|
||||
} else if ((*bptr == '/') && (ref->path[pos] != '/')) {
|
||||
bptr++;
|
||||
}
|
||||
while ((bptr[pos] == ref->path[pos]) && (bptr[pos] != 0)) {
|
||||
pos++;
|
||||
}
|
||||
|
||||
if (bptr[pos] == ref->path[pos]) {
|
||||
val = g_strdup("");
|
||||
goto done; /* (I can't imagine why anyone would do this) */
|
||||
}
|
||||
|
||||
/*
|
||||
* In URI, "back up" to the last '/' encountered. This will be the
|
||||
* beginning of the "unique" suffix of URI
|
||||
*/
|
||||
ix = pos;
|
||||
if ((ref->path[ix] == '/') && (ix > 0)) {
|
||||
ix--;
|
||||
} else if ((ref->path[ix] == 0) && (ix > 1)
|
||||
&& (ref->path[ix - 1] == '/')) {
|
||||
ix -= 2;
|
||||
}
|
||||
for (; ix > 0; ix--) {
|
||||
if (ref->path[ix] == '/') {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (ix == 0) {
|
||||
uptr = ref->path;
|
||||
} else {
|
||||
ix++;
|
||||
uptr = &ref->path[ix];
|
||||
}
|
||||
|
||||
/*
|
||||
* In base, count the number of '/' from the differing point
|
||||
*/
|
||||
if (bptr[pos] != ref->path[pos]) { /* check for trivial URI == base */
|
||||
for (; bptr[ix] != 0; ix++) {
|
||||
if (bptr[ix] == '/') {
|
||||
nbslash++;
|
||||
}
|
||||
}
|
||||
}
|
||||
len = strlen(uptr) + 1;
|
||||
}
|
||||
|
||||
if (nbslash == 0) {
|
||||
if (uptr != NULL) {
|
||||
/* exception characters from uri_to_string */
|
||||
val = uri_string_escape(uptr, "/;&=+$,");
|
||||
}
|
||||
goto done;
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocate just enough space for the returned string -
|
||||
* length of the remainder of the URI, plus enough space
|
||||
* for the "../" groups, plus one for the terminator
|
||||
*/
|
||||
val = g_malloc(len + 3 * nbslash);
|
||||
vptr = val;
|
||||
/*
|
||||
* Put in as many "../" as needed
|
||||
*/
|
||||
for (; nbslash > 0; nbslash--) {
|
||||
*vptr++ = '.';
|
||||
*vptr++ = '.';
|
||||
*vptr++ = '/';
|
||||
}
|
||||
/*
|
||||
* Finish up with the end of the URI
|
||||
*/
|
||||
if (uptr != NULL) {
|
||||
if ((vptr > val) && (len > 0) && (uptr[0] == '/') &&
|
||||
(vptr[-1] == '/')) {
|
||||
memcpy(vptr, uptr + 1, len - 1);
|
||||
vptr[len - 2] = 0;
|
||||
} else {
|
||||
memcpy(vptr, uptr, len);
|
||||
vptr[len - 1] = 0;
|
||||
}
|
||||
} else {
|
||||
vptr[len - 1] = 0;
|
||||
}
|
||||
|
||||
/* escape the freshly-built path */
|
||||
vptr = val;
|
||||
/* exception characters from uri_to_string */
|
||||
val = uri_string_escape(vptr, "/;&=+$,");
|
||||
g_free(vptr);
|
||||
|
||||
done:
|
||||
/*
|
||||
* Free the working variables
|
||||
*/
|
||||
if (remove_path != 0) {
|
||||
ref->path = NULL;
|
||||
}
|
||||
uri_free(ref);
|
||||
uri_free(bas);
|
||||
|
||||
return val;
|
||||
}
|
||||
|
||||
/*
|
||||
* Utility functions to help parse and assemble query strings.
|
||||
*/
|
||||
|
Loading…
Reference in New Issue
Block a user