hw/arm/raspi: Provide spin-loop code for AArch64 CPUs

The raspi3 has AArch64 CPUs, which means that our smpboot
code for keeping the secondary CPUs in a pen needs to have
a version for A64 as well as A32. Without this, the
secondary CPUs go into an infinite loop of taking undefined
instruction exceptions.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-id: 20180313153458.26822-10-peter.maydell@linaro.org
This commit is contained in:
Peter Maydell 2018-03-13 15:34:58 +00:00
parent 210f47840d
commit ff72cb6b46
1 changed files with 40 additions and 1 deletions

View File

@ -27,6 +27,7 @@
#define BOARDSETUP_ADDR (MVBAR_ADDR + 0x20) /* board setup code */
#define FIRMWARE_ADDR_2 0x8000 /* Pi 2 loads kernel.img here by default */
#define FIRMWARE_ADDR_3 0x80000 /* Pi 3 loads kernel.img here by default */
#define SPINTABLE_ADDR 0xd8 /* Pi 3 bootloader spintable */
/* Table of Linux board IDs for different Pi versions */
static const int raspi_boardid[] = {[1] = 0xc42, [2] = 0xc43, [3] = 0xc44};
@ -63,6 +64,40 @@ static void write_smpboot(ARMCPU *cpu, const struct arm_boot_info *info)
info->smp_loader_start);
}
static void write_smpboot64(ARMCPU *cpu, const struct arm_boot_info *info)
{
/* Unlike the AArch32 version we don't need to call the board setup hook.
* The mechanism for doing the spin-table is also entirely different.
* We must have four 64-bit fields at absolute addresses
* 0xd8, 0xe0, 0xe8, 0xf0 in RAM, which are the flag variables for
* our CPUs, and which we must ensure are zero initialized before
* the primary CPU goes into the kernel. We put these variables inside
* a rom blob, so that the reset for ROM contents zeroes them for us.
*/
static const uint32_t smpboot[] = {
0xd2801b05, /* mov x5, 0xd8 */
0xd53800a6, /* mrs x6, mpidr_el1 */
0x924004c6, /* and x6, x6, #0x3 */
0xd503205f, /* spin: wfe */
0xf86678a4, /* ldr x4, [x5,x6,lsl #3] */
0xb4ffffc4, /* cbz x4, spin */
0xd2800000, /* mov x0, #0x0 */
0xd2800001, /* mov x1, #0x0 */
0xd2800002, /* mov x2, #0x0 */
0xd2800003, /* mov x3, #0x0 */
0xd61f0080, /* br x4 */
};
static const uint64_t spintables[] = {
0, 0, 0, 0
};
rom_add_blob_fixed("raspi_smpboot", smpboot, sizeof(smpboot),
info->smp_loader_start);
rom_add_blob_fixed("raspi_spintables", spintables, sizeof(spintables),
SPINTABLE_ADDR);
}
static void write_board_setup(ARMCPU *cpu, const struct arm_boot_info *info)
{
arm_write_secure_board_setup_dummy_smc(cpu, info, MVBAR_ADDR);
@ -99,7 +134,11 @@ static void setup_boot(MachineState *machine, int version, size_t ram_size)
/* Pi2 and Pi3 requires SMP setup */
if (version >= 2) {
binfo.smp_loader_start = SMPBOOT_ADDR;
binfo.write_secondary_boot = write_smpboot;
if (version == 2) {
binfo.write_secondary_boot = write_smpboot;
} else {
binfo.write_secondary_boot = write_smpboot64;
}
binfo.secondary_cpu_reset_hook = reset_secondary;
}