The last case where qobject_from_json() & friends return null without
setting an error is empty or blank input. Callers:
* block.c's parse_json_protocol() reports "Could not parse the JSON
options". It's marked as a work-around, because it also covered
actual bugs, but they got fixed in the previous few commits.
* qobject_input_visitor_new_str() reports "JSON parse error". Also
marked as work-around. The recent fixes have made this unreachable,
because it currently gets called only for input starting with '{'.
* check-qjson.c's empty_input() and blank_input() demonstrate the
behavior.
* The other callers are not affected since they only pass input with
exactly one JSON value or, in the case of negative tests, one error.
Fail with "Expecting a JSON value" instead of returning null, and
simplify callers.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180823164025.12553-48-armbru@redhat.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180823164025.12553-47-armbru@redhat.com>
json_message_process_token() accumulates tokens until it got the
sequence of tokens that comprise a single JSON value (it counts curly
braces and square brackets to decide). It feeds those token sequences
to json_parser_parse(). If a non-empty sequence of tokens remains at
the end of the parse, it's silently ignored. check-qjson.c cases
unterminated_array(), unterminated_array_comma(), unterminated_dict(),
unterminated_dict_comma() demonstrate this bug.
Fix as follows. Introduce a JSON_END_OF_INPUT token. When the
streamer receives it, it feeds the accumulated tokens to
json_parser_parse().
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180823164025.12553-46-armbru@redhat.com>
json-parser.c carefully reports end of input like this:
token = parser_context_pop_token(ctxt);
if (token == NULL) {
parse_error(ctxt, NULL, "premature EOI");
goto out;
}
Except parser_context_pop_token() can't return null, it fails its
assertion instead. Same for parser_context_peek_token(). Broken in
commit 65c0f1e9558, and faithfully preserved in commit 95385fe9ace.
Only a latent bug, because the streamer throws away any input that
could trigger it.
Drop the assertions, so we can fix the streamer in the next commit.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180823164025.12553-45-armbru@redhat.com>
qobject_from_json() & friends use the consume_json() callback to
receive either a value or an error from the parser.
When they are fed a string that contains more than either one JSON
value or one JSON syntax error, consume_json() gets called multiple
times.
When the last call receives a value, qobject_from_json() returns that
value. Any other values are leaked.
When any call receives an error, qobject_from_json() sets the first
error received. Any other errors are thrown away.
When values follow errors, qobject_from_json() returns both a value
and sets an error. That's bad. Impact:
* block.c's parse_json_protocol() ignores and leaks the value. It's
used to to parse pseudo-filenames starting with "json:". The
pseudo-filenames can come from the user or from image meta-data such
as a QCOW2 image's backing file name.
* vl.c's parse_display_qapi() ignores and leaks the error. It's used
to parse the argument of command line option -display.
* vl.c's main() case QEMU_OPTION_blockdev ignores the error and leaves
it in @err. main() will then pass a pointer to a non-null Error *
to net_init_clients(), which is forbidden. It can lead to assertion
failure or other misbehavior.
* check-qjson.c's multiple_values() demonstrates the badness.
* The other callers are not affected since they only pass strings with
exactly one JSON value or, in the case of negative tests, one
error.
The impact on the _nofail() functions is relatively harmless. They
abort when any call receives an error. Else they return the last
value, and leak the others, if any.
Fix consume_json() as follows. On the first call, save value and
error as before. On subsequent calls, if any, don't save them. If
the first call saved a value, the next call, if any, replaces the
value by an "Expecting at most one JSON value" error. Take care not
to leak values or errors that aren't saved.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180823164025.12553-44-armbru@redhat.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180823164025.12553-43-armbru@redhat.com>
Support for %I64d got added in commit 2c0d4b36e7f "json: fix PRId64 on
Win32". We had to hard-code I64d because we used the lexer's finite
state machine to check interpolations. No more, so clean this up.
Additional conversion specifications would be easy enough to implement
when needed.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180823164025.12553-42-armbru@redhat.com>
Both lexer and parser reject invalid interpolation specifications.
The parser's check is useless.
The lexer ends the token right after the first bad character. This
tends to lead to suboptimal error reporting. For instance, input
[ %04d ]
produces the tokens
JSON_LSQUARE [
JSON_ERROR %0
JSON_INTEGER 4
JSON_KEYWORD d
JSON_RSQUARE ]
The parser then yields an error, an object and two more errors:
error: Invalid JSON syntax
object: 4
error: JSON parse error, invalid keyword
error: JSON parse error, expecting value
Dumb down the lexer to accept [A-Za-z0-9]*. The parser's check is now
used. Emit a proper error there.
The lexer now produces
JSON_LSQUARE [
JSON_INTERP %04d
JSON_RSQUARE ]
and the parser reports just
JSON parse error, invalid interpolation '%04d'
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180823164025.12553-41-armbru@redhat.com>
The callback to consume JSON values takes QObject *json, Error *err.
If both are null, the callback is supposed to make up an error by
itself. This sucks.
qjson.c's consume_json() neglects to do so, which makes
qobject_from_json() null instead of failing. I consider that a bug.
The culprit is json_message_process_token(): it passes two null
pointers when it runs into a lexical error or a limit violation. Fix
it to pass a proper Error object then. Update the callbacks:
* monitor.c's handle_qmp_command(): the code to make up an error is
now dead, drop it.
* qga/main.c's process_event(): lumps the "both null" case together
with the "not a JSON object" case. The former is now gone. The
error message "Invalid JSON syntax" is misleading for the latter.
Improve it to "Input must be a JSON object".
* qobject/qjson.c's consume_json(): no update; check-qjson
demonstrates qobject_from_json() now sets an error on lexical
errors, but still doesn't on some other errors.
* tests/libqtest.c's qmp_response(): the Error object is now reliable,
so use it to improve the error message.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180823164025.12553-40-armbru@redhat.com>
The JSON parser optionally supports interpolation. The lexer
recognizes interpolation tokens unconditionally. The parser rejects
them when interpolation is disabled, in parse_interpolation().
However, it neglects to set an error then, which can make
json_parser_parse() fail without setting an error.
Move the check for unwanted interpolation from the parser's
parse_interpolation() into the lexer's finite state machine. When
interpolation is disabled, '%' is now handled like any other
unexpected character.
The next commit will improve how such lexical errors are handled.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180823164025.12553-39-armbru@redhat.com>
The JSON parser optionally supports interpolation. The code calls it
"escape". Awkward, because it uses the same term for escape sequences
within strings. The latter usage is consistent with RFC 8259 "The
JavaScript Object Notation (JSON) Data Interchange Format" and ISO C.
Call the former "interpolation" instead.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180823164025.12553-38-armbru@redhat.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180823164025.12553-37-armbru@redhat.com>
json_parser_parse() normally returns the QObject on success. Except
it returns null when its @tokens argument is null.
Its only caller json_message_process_token() passes null @tokens when
emitting a lexical error. The call is a rather opaque way to say json
= NULL then.
Simplify matters by lifting the assignment to json out of the emit
path: initialize json to null, set it to the value of
json_parser_parse() when there's no lexical error. Drop the special
case from json_parser_parse().
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180823164025.12553-36-armbru@redhat.com>
The classical way to structure parser and lexer is to have the client
call the parser to get an abstract syntax tree, the parser call the
lexer to get the next token, and the lexer call some function to get
input characters.
Another way to structure them would be to have the client feed
characters to the lexer, the lexer feed tokens to the parser, and the
parser feed abstract syntax trees to some callback provided by the
client. This way is more easily integrated into an event loop that
dispatches input characters as they arrive.
Our JSON parser is kind of between the two. The lexer feeds tokens to
a "streamer" instead of a real parser. The streamer accumulates
tokens until it got the sequence of tokens that comprise a single JSON
value (it counts curly braces and square brackets to decide). It
feeds those token sequences to a callback provided by the client. The
callback passes each token sequence to the parser, and gets back an
abstract syntax tree.
I figure it was done that way to make a straightforward recursive
descent parser possible. "Get next token" becomes "pop the first
token off the token sequence". Drawback: we need to store a complete
token sequence. Each token eats 13 + input characters + malloc
overhead bytes.
Observations:
1. This is not the only way to use recursive descent. If we replaced
"get next token" by a coroutine yield, we could do without a
streamer.
2. The lexer reports errors by passing a JSON_ERROR token to the
streamer. This communicates the offending input characters and
their location, but no more.
3. The streamer reports errors by passing a null token sequence to the
callback. The (already poor) lexical error information is thrown
away.
4. Having the callback receive a token sequence duplicates the code to
convert token sequence to abstract syntax tree in every callback.
5. Known bug: the streamer silently drops incomplete token sequences.
This commit rectifies 4. by lifting the call of the parser from the
callbacks into the streamer. Later commits will address 3. and 5.
The lifting removes a bug from qjson.c's parse_json(): it passed a
pointer to a non-null Error * in certain cases, as demonstrated by
check-qjson.c.
json_parser_parse() is now unused. It's a stupid wrapper around
json_parser_parse_err(). Drop it, and rename json_parser_parse_err()
to json_parser_parse().
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180823164025.12553-35-armbru@redhat.com>
json_lexer_init() takes the function to process a token as an
argument. It's always json_message_process_token(). Makes the code
harder to understand for no actual gain. Drop the indirection.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180823164025.12553-34-armbru@redhat.com>
parser_context_new/free() are only used from json_parser_parse(). We
can fold the code there and avoid an allocation altogether.
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Message-Id: <20180719184111.5129-9-marcandre.lureau@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20180823164025.12553-33-armbru@redhat.com>
The lexer always returns 0 when char feeding. Furthermore, none of the
caller care about the return value.
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Message-Id: <20180326150916.9602-10-marcandre.lureau@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20180823164025.12553-32-armbru@redhat.com>
The JSON parser treats each half of a surrogate pair as unpaired
surrogate. Fix it to recognize surrogate pairs.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180823164025.12553-30-armbru@redhat.com>
The JSON parser translates invalid \uXXXX to garbage instead of
rejecting it, and swallows \u0000.
Fix by using mod_utf8_encode() instead of flawed wchar_to_utf8().
Valid surrogate pairs are now differently broken: they're rejected
instead of translated to garbage. The next commit will fix them.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180823164025.12553-29-armbru@redhat.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180823164025.12553-28-armbru@redhat.com>
Both lexer and parser reject invalid escape sequences in strings. The
parser's check is useless.
The lexer ends the token right after the first non-well-formed byte.
This tends to lead to suboptimal error reporting. For instance, input
{"abc\@ijk": 1}
produces the tokens
JSON_LCURLY {
JSON_ERROR "abc\@
JSON_KEYWORD ijk
JSON_ERROR ": 1}\n
The parser then reports three errors
Invalid JSON syntax
JSON parse error, invalid keyword 'ijk'
Invalid JSON syntax
before it recovers at the newline.
Drop the lexer's escape sequence checking, and make it accept the same
characters after backslash it accepts elsewhere in strings. It now
produces
JSON_LCURLY {
JSON_STRING "abc\@ijk"
JSON_COLON :
JSON_INTEGER 1
JSON_RCURLY
and the parser reports just
JSON parse error, invalid escape sequence in string
While there, fix parse_string()'s inaccurate function comment.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180823164025.12553-27-armbru@redhat.com>
Since the JSON grammer doesn't accept U+0000 anywhere, this merely
exchanges one kind of parse error for another. It's purely for
consistency with qobject_to_json(), which accepts \xC0\x80 (see commit
e2ec3f97680).
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180823164025.12553-26-armbru@redhat.com>
Both the lexer and the parser (attempt to) validate UTF-8 in JSON
strings.
The lexer rejects bytes that can't occur in valid UTF-8: \xC0..\xC1,
\xF5..\xFF. This rejects some, but not all invalid UTF-8. It also
rejects ASCII control characters \x00..\x1F, in accordance with RFC
8259 (see recent commit "json: Reject unescaped control characters").
When the lexer rejects, it ends the token right after the first bad
byte. Good when the bad byte is a newline. Not so good when it's
something like an overlong sequence in the middle of a string. For
instance, input
{"abc\xC0\xAFijk": 1}\n
produces the tokens
JSON_LCURLY {
JSON_ERROR "abc\xC0
JSON_ERROR \xAF
JSON_KEYWORD ijk
JSON_ERROR ": 1}\n
The parser then reports four errors
Invalid JSON syntax
Invalid JSON syntax
JSON parse error, invalid keyword 'ijk'
Invalid JSON syntax
before it recovers at the newline.
The commit before previous made the parser reject invalid UTF-8
sequences. Since then, anything the lexer rejects, the parser would
reject as well. Thus, the lexer's rejecting is unnecessary for
correctness, and harmful for error reporting.
However, we want to keep rejecting ASCII control characters in the
lexer, because that produces the behavior we want for unclosed
strings.
We also need to keep rejecting \xFF in the lexer, because we
documented that as a way to reset the JSON parser
(docs/interop/qmp-spec.txt section 2.6 QGA Synchronization), which
means we can't change how we recover from this error now. I wish we
hadn't done that.
I think we should treat \xFE the same as \xFF.
Change the lexer to accept \xC0..\xC1 and \xF5..\xFD. It now rejects
only \x00..\x1F and \xFE..\xFF. Error reporting for invalid UTF-8 in
strings is much improved, except for \xFE and \xFF. For the example
above, the lexer now produces
JSON_LCURLY {
JSON_STRING "abc\xC0\xAFijk"
JSON_COLON :
JSON_INTEGER 1
JSON_RCURLY
and the parser reports just
JSON parse error, invalid UTF-8 sequence in string
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180823164025.12553-25-armbru@redhat.com>
Quiz time! When a parser reports multiple errors, but the user gets
to see just one, which one is (on average) the least useful one?
Yes, you're right, it's the last one! You're clearly familiar with
compilers.
Which one does QEMU report?
Right again, the last one! You're clearly familiar with QEMU.
Reproducer: feeding
{"abc\xC2ijk": 1}\n
to QMP produces
{"error": {"class": "GenericError", "desc": "JSON parse error, key is not a string in object"}}
Report the first error instead. The reproducer now produces
{"error": {"class": "GenericError", "desc": "JSON parse error, invalid UTF-8 sequence in string"}}
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180823164025.12553-24-armbru@redhat.com>
We reject bytes that can't occur in valid UTF-8 (\xC0..\xC1,
\xF5..\xFF in the lexer. That's insufficient; there's plenty of
invalid UTF-8 not containing these bytes, as demonstrated by
check-qjson:
* Malformed sequences
- Unexpected continuation bytes
- Missing continuation bytes after start bytes other than
\xC0..\xC1, \xF5..\xFD.
* Overlong sequences with start bytes other than \xC0..\xC1,
\xF5..\xFD.
* Invalid code points
Fixing this in the lexer would be bothersome. Fixing it in the parser
is straightforward, so do that.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180823164025.12553-23-armbru@redhat.com>
Simplify loop control, and assert that the string ends with the
appropriate quote (the lexer ensures it does).
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180823164025.12553-21-armbru@redhat.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180823164025.12553-20-armbru@redhat.com>
Fix the lexer to reject unescaped control characters in JSON strings,
in accordance with RFC 8259 "The JavaScript Object Notation (JSON)
Data Interchange Format".
Bonus: we now recover more nicely from unclosed strings. E.g.
{"one: 1}\n{"two": 2}
now recovers cleanly after the newline, where before the lexer
remained confused until the next unpaired double quote or lexical
error.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180823164025.12553-19-armbru@redhat.com>
json_lexer[] maps (lexer state, input character) to the new lexer
state. The input character is consumed unless the new state is
terminal and the input character doesn't belong to this token,
i.e. the state transition uses look-ahead. When this is the case,
input character '\0' would result in the same state transition.
TERMINAL_NEEDED_LOOKAHEAD() exploits this.
Except this is wrong for transitions to IN_ERROR. There, the
offending input character is in fact consumed: case IN_ERROR returns.
It isn't added to the JSON_ERROR token, though.
Fix that by making TERMINAL_NEEDED_LOOKAHEAD() return false for
transitions to IN_ERROR.
There's a slight complication. json_lexer_flush() passes input
character '\0' to flush an incomplete token. If this results in
JSON_ERROR, we'd now add the '\0' to the token. Suppress that.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180823164025.12553-18-armbru@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJbdTcjAAoJEDhwtADrkYZTZEYP/ivp0ozEfMeGgc6PFItv3zmx
QVD+NYJ8bnv/iEoWl/pnQ0/HY3YLHz4G1DTK0dSlJAvAiChpPiR7YCeJRXeTyLHL
9KCFQV5SV9llstVi0f4ebEK21mUkYWoqtlzxxyqXh0q2N/QLtaVQ85ysE6ufwhNH
jlunmJLGRRwPR95F4a05uVHNOym1ig9eo5CtQ1Fa8viV9BgWTbpSp1t4feB1OLnt
Ml9cbFubb1cA7CuhdNHazNOnRZtEW5A9eOo6rX4d5JcH/zgFWdPpKCRn/X/NdvSE
aRKqk7ll0gxYlacqVpkea23pVKVl7e1oUqkziaL8rq/BYE0SePkRv+SnmsifD8uT
kWl+eHLyaW1g43omc0uttyAuTkFnvAa+l9TqIrdEYcPJJNaCsZVgJpDvj9+Oxril
fk3OIHAnzSWwp/AmFLCSOYdaoVuZhppp6rqnu26B0w9Rxkbqe1790LbjDJrLUB+2
vN7+JmDhUfJk7/2pi+MGZrBtj3zcgbb3Qc5+NG8H1401bA/n8FNnPKgWdmAlmO7i
pTafa1FXArJGWiBhzg2PUqmZq45MQiheQ1+SWgviIodQX5oHB3kEimcRPg4Wk18c
fTKJDe7w8NFFNjuH6ou2LI4KzgQeewW+oCjxh2A7kwCqDmq5Eq8nBw/bYO1DgcDr
bfCnicNJinjCHcgvvCVM
=DuZ8
-----END PGP SIGNATURE-----
Merge remote-tracking branch 'remotes/armbru/tags/pull-tests-2018-08-16' into staging
Testing patches for 2018-08-16
# gpg: Signature made Thu 16 Aug 2018 09:34:43 BST
# gpg: using RSA key 3870B400EB918653
# gpg: Good signature from "Markus Armbruster <armbru@redhat.com>"
# gpg: aka "Markus Armbruster <armbru@pond.sub.org>"
# Primary key fingerprint: 354B C8B3 D7EB 2A6B 6867 4E5F 3870 B400 EB91 8653
* remotes/armbru/tags/pull-tests-2018-08-16: (25 commits)
libqtest: Improve error reporting for bad read from QEMU
tests/libqtest: Improve kill_qemu()
libqtest: Rename qtest_FOOv() to qtest_vFOO() for consistency
libqtest: Replace qtest_startf() by qtest_initf()
libqtest: Enable compile-time format string checking
migration-test: Clean up string interpolation into QMP, part 3
migration-test: Clean up string interpolation into QMP, part 2
migration-test: Clean up string interpolation into QMP, part 1
migration-test: Make wait_command() cope with '%'
tests: New helper qtest_qmp_receive_success()
migration-test: Make wait_command() return the "return" member
tests: Clean up string interpolation around qtest_qmp_device_add()
cpu-plug-test: Don't pass integers as strings to device_add
tests: Clean up string interpolation into QMP input (simple cases)
tests: Pass literal format strings directly to qmp_FOO()
qobject: qobject_from_jsonv() is dangerous, hide it away
test-qobject-input-visitor: Avoid format string ambiguity
libqtest: Simplify qmp_fd_vsend() a bit
qobject: New qobject_from_vjsonf_nofail(), qdict_from_vjsonf_nofail()
qobject: Replace qobject_from_jsonf() by qobject_from_jsonf_nofail()
...
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
qobject_from_jsonv() takes ownership of %p arguments. On failure, we
can't generally know whether we failed before or after %p, so
ownership becomes indeterminate. To avoid leaks, callers passing %p
must terminate on error, e.g. by passing &error_abort. Trap for the
unwary; document and give the function internal linkage.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180806065344.7103-11-armbru@redhat.com>
Every printf()-like function sooner or later needs its vprintf()-like
buddy. The next commit will need qobject_from_jsonf_nofail()'s buddy,
and qdict_from_jsonf_nofail()'s buddy will be used later in this
series. Add both.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180806065344.7103-8-armbru@redhat.com>
Commit ab45015a968 "qobject: Let qobject_from_jsonf() fail instead of
abort" fails to accomplish its stated aim: the function can still
abort due to its use of &error_abort.
Its rationale for letting it fail is that all remaining users cope
fine with failure. Well, they're just fine with aborting, too; it's
what they do on failure.
Simply reverting the broken commit would bring back the unfortunate
asymmetry between qobject_from_jsonf() and qobject_from_jsonv(): one
aborts, the other returns null. So also rename it to
qobject_from_jsonf_nofail().
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180806065344.7103-7-armbru@redhat.com>
This function extracts all options from a QDict starting with a
certain prefix and puts them in a new QDict.
We'll have a couple of cases where we simply want to discard those
options instead of copying them, and that's what this patch does.
Signed-off-by: Alberto Garcia <berto@igalia.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
qstring_from_substr() takes the index of the substring's first and
last character. qstring_from_substr(s, 0, SIZE_MAX) denotes an empty
substring. Awkward.
Shift the end index one to the right. This simplifies both
qstring_from_substr() and its callers.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180727062204.10401-3-armbru@redhat.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20180727062204.10401-2-armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
qstring_from_substr() parameters @start and @end are of type int.
blkdebug_parse_filename(), blkverify_parse_filename(), nbd_parse_uri(),
and qstring_from_str() pass @end values of type size_t or ptrdiff_t.
Values exceeding INT_MAX get truncated, with possibly disastrous
results.
Such huge substrings seem unlikely, but we found one in a core dump,
where "info tlb" executed via QMP's human-monitor-command apparently
produced 35 GiB of output.
Fix by changing the parameters size_t.
Signed-off-by: liujunjie <liujunjie23@huawei.com>
Message-Id: <20180724134339.17832-1-liujunjie23@huawei.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
qobject_from_jsonf() aborts on error, unlike qobject_from_jsonv(),
which returns null. Since all remaining users of qobject_from_jsonf()
cope fine with null, change it to return null.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180703085358.13941-30-armbru@redhat.com>
Many uses of qobject_from_jsonf() convert JSON objects. Create new
convenience function qdict_from_jsonf_nofail() that includes the
conversion to QDict. The next few commits will put it to use.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20180703085358.13941-22-armbru@redhat.com>
Commit f1b34a248e9 replaced less-than-obvious test in
qdict_flatten_qdict() by the obvious one. Sadly, it made something
else non-obvious: the fact that @new_key passed to qdict_put_obj()
can't be null, because that depends on the function's precondition
(target == qdict) == !prefix.
Tweak the function some more to help Coverity and human readers alike.
Fixes: CID 1393620
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
In its current form, qdict_flatten() removes all entries from nested
QDicts that are moved to the root QDict. It is completely sufficient to
remove all old entries from the root QDict, however. If the nested
dicts have a refcount of 1, this will automatically delete them, too.
And if they have a greater refcount, we probably do not want to modify
them in the first place.
The latter observation means that it was currently (in general)
impossible to qdict_flatten() a shallowly cloned dict because that would
empty nested QDicts in the original dict as well. This patch changes
this, so you can now use qdict_flatten(qdict_shallow_clone(dict)) to get
a flattened copy without disturbing the original.
Signed-off-by: Max Reitz <mreitz@redhat.com>
Message-Id: <20180611205203.2624-7-mreitz@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
-blockdev and blockdev-add silently ignore empty objects and arrays in
their argument. That's because qmp_blockdev_add() converts the
argument to a flat QDict, and qdict_flatten() eats empty QDict and
QList members. For instance, we ignore an empty BlockdevOptions
member @cache. No real harm, as absent means the same as empty there.
Thus, the flaw puts an artificial restriction on the QAPI schema: we
can't have potentially empty objects and arrays within
BlockdevOptions, except when they're optional and "empty" has the same
meaning as "absent".
Our QAPI schema satisfies this restriction (I checked), but it's a
trap for the unwary, and a temptation to employ awkward workarounds
for the wary. Let's get rid of it.
Change qdict_flatten() and qdict_crumple() to treat empty dictionaries
and lists exactly like scalars.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
When you mix scalar and non-scalar keys, whether you get an "already
set as scalar" or an "already set as dict" error depends on qdict
iteration order. Neither message makes much sense. Replace by
""Cannot mix scalar and non-scalar keys". This is similar to the
message we get for mixing list and non-list keys.
I find qdict_crumple()'s first loop hard to understand. Rearrange it
and add a comment.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
qdict_flatten_qdict() skips copying scalars from @qdict to @target
when the two are the same. Fair enough, but it uses a non-obvious
test for "same". Replace it by the obvious one. While there, improve
comments.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
There's no need to restart the loop. We don't elsewhere, e.g. in
qdict_extract_subqdict(), qdict_join() and qemu_opts_absorb_qdict().
Simplify accordingly.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Configuration flows through the block subsystem in a rather peculiar
way. Configuration made with -drive enters it as QemuOpts.
Configuration made with -blockdev / blockdev-add enters it as QAPI
type BlockdevOptions. The block subsystem uses QDict, QemuOpts and
QAPI types internally. The precise flow is next to impossible to
explain (I tried for this commit message, but gave up after wasting
several hours). What I can explain is a flaw in the BlockDriver
interface that leads to this bug:
$ qemu-system-x86_64 -blockdev node-name=n1,driver=nfs,server.type=inet,server.host=localhost,path=/foo/bar,user=1234
qemu-system-x86_64: -blockdev node-name=n1,driver=nfs,server.type=inet,server.host=localhost,path=/foo/bar,user=1234: Internal error: parameter user invalid
QMP blockdev-add is broken the same way.
Here's what happens. The block layer passes configuration represented
as flat QDict (with dotted keys) to BlockDriver methods
.bdrv_file_open(). The QDict's members are typed according to the
QAPI schema.
nfs_file_open() converts it to QAPI type BlockdevOptionsNfs, with
qdict_crumple() and a qobject input visitor.
This visitor comes in two flavors. The plain flavor requires scalars
to be typed according to the QAPI schema. That's the case here. The
keyval flavor requires string scalars. That's not the case here.
nfs_file_open() uses the latter, and promptly falls apart for members
@user, @group, @tcp-syn-count, @readahead-size, @page-cache-size,
@debug.
Switching to the plain flavor would fix -blockdev, but break -drive,
because there the scalars arrive in nfs_file_open() as strings.
The proper fix would be to replace the QDict by QAPI type
BlockdevOptions in the BlockDriver interface. Sadly, that's beyond my
reach right now.
Next best would be to fix the block layer to always pass correctly
typed QDicts to the BlockDriver methods. Also beyond my reach.
What I can do is throw another hack onto the pile: have
nfs_file_open() convert all members to string, so use of the keyval
flavor actually works, by replacing qdict_crumple() by new function
qdict_crumple_for_keyval_qiv().
The pattern "pass result of qdict_crumple() to
qobject_input_visitor_new_keyval()" occurs several times more:
* qemu_rbd_open()
Same issue as nfs_file_open(), but since BlockdevOptionsRbd has only
string members, its only a latent bug. Fix it anyway.
* parallels_co_create_opts(), qcow_co_create_opts(),
qcow2_co_create_opts(), bdrv_qed_co_create_opts(),
sd_co_create_opts(), vhdx_co_create_opts(), vpc_co_create_opts()
These work, because they create the QDict with
qemu_opts_to_qdict_filtered(), which creates only string scalars.
The function sports a TODO comment asking for better typing; that's
going to be fun. Use qdict_crumple_for_keyval_qiv() to be safe.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Pure code motion, except for two brace placements and a comment
tweaked to appease checkpatch.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
There are numerous QDict functions that have been introduced for and are
used only by the block layer. Move their declarations into an own
header file to reflect that.
While qdict_extract_subqdict() is in fact used outside of the block
layer (in util/qemu-config.c), it is still a function related very
closely to how the block layer works with nested QDicts, namely by
sometimes flattening them. Therefore, its declaration is put into this
header as well and util/qemu-config.c includes it with a comment stating
exactly which function it needs.
Suggested-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
Message-Id: <20180509165530.29561-7-mreitz@redhat.com>
[Copyright note tweaked, superfluous includes dropped]
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>