We are generally moving to int64_t for both offset and bytes parameters
on all io paths.
Main motivation is realization of 64-bit write_zeroes operation for
fast zeroing large disk chunks, up to the whole disk.
We chose signed type, to be consistent with off_t (which is signed) and
with possibility for signed return type (where negative value means
error).
So, convert driver discard handlers bytes parameter to int64_t.
The only caller of all updated function is bdrv_co_pdiscard in
block/io.c. It is already prepared to work with 64bit requests, but
pass at most max(bs->bl.max_pdiscard, INT_MAX) to the driver.
Let's look at all updated functions:
blkdebug: all calculations are still OK, thanks to
bdrv_check_qiov_request().
both rule_check and bdrv_co_pdiscard are 64bit
blklogwrites: pass to blk_loc_writes_co_log which is 64bit
blkreplay, copy-on-read, filter-compress: pass to bdrv_co_pdiscard, OK
copy-before-write: pass to bdrv_co_pdiscard which is 64bit and to
cbw_do_copy_before_write which is 64bit
file-posix: one handler calls raw_account_discard() is 64bit and both
handlers calls raw_do_pdiscard(). Update raw_do_pdiscard, which pass
to RawPosixAIOData::aio_nbytes, which is 64bit (and calls
raw_account_discard())
gluster: somehow, third argument of glfs_discard_async is size_t.
Let's set max_pdiscard accordingly.
iscsi: iscsi_allocmap_set_invalid is 64bit,
!is_byte_request_lun_aligned is 64bit.
list.num is uint32_t. Let's clarify max_pdiscard and
pdiscard_alignment.
mirror_top: pass to bdrv_mirror_top_do_write() which is
64bit
nbd: protocol limitation. max_pdiscard is alredy set strict enough,
keep it as is for now.
nvme: buf.nlb is uint32_t and we do shift. So, add corresponding limits
to nvme_refresh_limits().
preallocate: pass to bdrv_co_pdiscard() which is 64bit.
rbd: pass to qemu_rbd_start_co() which is 64bit.
qcow2: calculations are still OK, thanks to bdrv_check_qiov_request(),
qcow2_cluster_discard() is 64bit.
raw-format: raw_adjust_offset() is 64bit, bdrv_co_pdiscard too.
throttle: pass to bdrv_co_pdiscard() which is 64bit and to
throttle_group_co_io_limits_intercept() which is 64bit as well.
test-block-iothread: bytes argument is unused
Great! Now all drivers are prepared to handle 64bit discard requests,
or else have explicit max_pdiscard limits.
Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Message-Id: <20210903102807.27127-11-vsementsov@virtuozzo.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Eric Blake <eblake@redhat.com>
We are generally moving to int64_t for both offset and bytes parameters
on all io paths.
Main motivation is realization of 64-bit write_zeroes operation for
fast zeroing large disk chunks, up to the whole disk.
We chose signed type, to be consistent with off_t (which is signed) and
with possibility for signed return type (where negative value means
error).
So, convert driver write_zeroes handlers bytes parameter to int64_t.
The only caller of all updated function is bdrv_co_do_pwrite_zeroes().
bdrv_co_do_pwrite_zeroes() itself is of course OK with widening of
callee parameter type. Also, bdrv_co_do_pwrite_zeroes()'s
max_write_zeroes is limited to INT_MAX. So, updated functions all are
safe, they will not get "bytes" larger than before.
Still, let's look through all updated functions, and add assertions to
the ones which are actually unprepared to values larger than INT_MAX.
For these drivers also set explicit max_pwrite_zeroes limit.
Let's go:
blkdebug: calculations can't overflow, thanks to
bdrv_check_qiov_request() in generic layer. rule_check() and
bdrv_co_pwrite_zeroes() both have 64bit argument.
blklogwrites: pass to blk_log_writes_co_log() with 64bit argument.
blkreplay, copy-on-read, filter-compress: pass to
bdrv_co_pwrite_zeroes() which is OK
copy-before-write: Calls cbw_do_copy_before_write() and
bdrv_co_pwrite_zeroes, both have 64bit argument.
file-posix: both handler calls raw_do_pwrite_zeroes, which is updated.
In raw_do_pwrite_zeroes() calculations are OK due to
bdrv_check_qiov_request(), bytes go to RawPosixAIOData::aio_nbytes
which is uint64_t.
Check also where that uint64_t gets handed:
handle_aiocb_write_zeroes_block() passes a uint64_t[2] to
ioctl(BLKZEROOUT), handle_aiocb_write_zeroes() calls do_fallocate()
which takes off_t (and we compile to always have 64-bit off_t), as
does handle_aiocb_write_zeroes_unmap. All look safe.
gluster: bytes go to GlusterAIOCB::size which is int64_t and to
glfs_zerofill_async works with off_t.
iscsi: Aha, here we deal with iscsi_writesame16_task() that has
uint32_t num_blocks argument and iscsi_writesame16_task() has
uint16_t argument. Make comments, add assertions and clarify
max_pwrite_zeroes calculation.
iscsi_allocmap_() functions already has int64_t argument
is_byte_request_lun_aligned is simple to update, do it.
mirror_top: pass to bdrv_mirror_top_do_write which has uint64_t
argument
nbd: Aha, here we have protocol limitation, and NBDRequest::len is
uint32_t. max_pwrite_zeroes is cleanly set to 32bit value, so we are
OK for now.
nvme: Again, protocol limitation. And no inherent limit for
write-zeroes at all. But from code that calculates cdw12 it's obvious
that we do have limit and alignment. Let's clarify it. Also,
obviously the code is not prepared to handle bytes=0. Let's handle
this case too.
trace events already 64bit
preallocate: pass to handle_write() and bdrv_co_pwrite_zeroes(), both
64bit.
rbd: pass to qemu_rbd_start_co() which is 64bit.
qcow2: offset + bytes and alignment still works good (thanks to
bdrv_check_qiov_request()), so tail calculation is OK
qcow2_subcluster_zeroize() has 64bit argument, should be OK
trace events updated
qed: qed_co_request wants int nb_sectors. Also in code we have size_t
used for request length which may be 32bit. So, let's just keep
INT_MAX as a limit (aligning it down to pwrite_zeroes_alignment) and
don't care.
raw-format: Is OK. raw_adjust_offset and bdrv_co_pwrite_zeroes are both
64bit.
throttle: Both throttle_group_co_io_limits_intercept() and
bdrv_co_pwrite_zeroes() are 64bit.
vmdk: pass to vmdk_pwritev which is 64bit
quorum: pass to quorum_co_pwritev() which is 64bit
Hooray!
At this point all block drivers are prepared to support 64bit
write-zero requests, or have explicitly set max_pwrite_zeroes.
Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Message-Id: <20210903102807.27127-8-vsementsov@virtuozzo.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
[eblake: use <= rather than < in assertions relying on max_pwrite_zeroes]
Signed-off-by: Eric Blake <eblake@redhat.com>
We are generally moving to int64_t for both offset and bytes parameters
on all io paths.
Main motivation is realization of 64-bit write_zeroes operation for
fast zeroing large disk chunks, up to the whole disk.
We chose signed type, to be consistent with off_t (which is signed) and
with possibility for signed return type (where negative value means
error).
So, convert driver write handlers parameters which are already 64bit to
signed type.
While being here, convert also flags parameter to be BdrvRequestFlags.
Now let's consider all callers. Simple
git grep '\->bdrv_\(aio\|co\)_pwritev\(_part\)\?'
shows that's there three callers of driver function:
bdrv_driver_pwritev() and bdrv_driver_pwritev_compressed() in
block/io.c, both pass int64_t, checked by bdrv_check_qiov_request() to
be non-negative.
qcow2_save_vmstate() does bdrv_check_qiov_request().
Still, the functions may be called directly, not only by drv->...
Let's check:
git grep '\.bdrv_\(aio\|co\)_pwritev\(_part\)\?\s*=' | \
awk '{print $4}' | sed 's/,//' | sed 's/&//' | sort | uniq | \
while read func; do git grep "$func(" | \
grep -v "$func(BlockDriverState"; done
shows several callers:
qcow2:
qcow2_co_truncate() write at most up to @offset, which is checked in
generic qcow2_co_truncate() by bdrv_check_request().
qcow2_co_pwritev_compressed_task() pass the request (or part of the
request) that already went through normal write path, so it should
be OK
qcow:
qcow_co_pwritev_compressed() pass int64_t, it's updated by this patch
quorum:
quorum_co_pwrite_zeroes() pass int64_t and int - OK
throttle:
throttle_co_pwritev_compressed() pass int64_t, it's updated by this
patch
vmdk:
vmdk_co_pwritev_compressed() pass int64_t, it's updated by this
patch
Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Message-Id: <20210903102807.27127-5-vsementsov@virtuozzo.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Eric Blake <eblake@redhat.com>
We are generally moving to int64_t for both offset and bytes parameters
on all io paths.
Main motivation is realization of 64-bit write_zeroes operation for
fast zeroing large disk chunks, up to the whole disk.
We chose signed type, to be consistent with off_t (which is signed) and
with possibility for signed return type (where negative value means
error).
So, convert driver read handlers parameters which are already 64bit to
signed type.
While being here, convert also flags parameter to be BdrvRequestFlags.
Now let's consider all callers. Simple
git grep '\->bdrv_\(aio\|co\)_preadv\(_part\)\?'
shows that's there three callers of driver function:
bdrv_driver_preadv() in block/io.c, passes int64_t, checked by
bdrv_check_qiov_request() to be non-negative.
qcow2_load_vmstate() does bdrv_check_qiov_request().
do_perform_cow_read() has uint64_t argument. And a lot of things in
qcow2 driver are uint64_t, so converting it is big job. But we must
not work with requests that don't satisfy bdrv_check_qiov_request(),
so let's just assert it here.
Still, the functions may be called directly, not only by drv->...
Let's check:
git grep '\.bdrv_\(aio\|co\)_preadv\(_part\)\?\s*=' | \
awk '{print $4}' | sed 's/,//' | sed 's/&//' | sort | uniq | \
while read func; do git grep "$func(" | \
grep -v "$func(BlockDriverState"; done
The only one such caller:
QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, &data, 1);
...
ret = bdrv_replace_test_co_preadv(bs, 0, 1, &qiov, 0);
in tests/unit/test-bdrv-drain.c, and it's OK obviously.
Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Message-Id: <20210903102807.27127-4-vsementsov@virtuozzo.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
[eblake: fix typos]
Signed-off-by: Eric Blake <eblake@redhat.com>
clang's C11 atomic_fetch_*() functions only take a C11 atomic type
pointer argument. QEMU uses direct types (int, etc) and this causes a
compiler error when a QEMU code calls these functions in a source file
that also included <stdatomic.h> via a system header file:
$ CC=clang CXX=clang++ ./configure ... && make
../util/async.c:79:17: error: address argument to atomic operation must be a pointer to _Atomic type ('unsigned int *' invalid)
Avoid using atomic_*() names in QEMU's atomic.h since that namespace is
used by <stdatomic.h>. Prefix QEMU's APIs with 'q' so that atomic.h
and <stdatomic.h> can co-exist. I checked /usr/include on my machine and
searched GitHub for existing "qatomic_" users but there seem to be none.
This patch was generated using:
$ git grep -h -o '\<atomic\(64\)\?_[a-z0-9_]\+' include/qemu/atomic.h | \
sort -u >/tmp/changed_identifiers
$ for identifier in $(</tmp/changed_identifiers); do
sed -i "s%\<$identifier\>%q$identifier%g" \
$(git grep -I -l "\<$identifier\>")
done
I manually fixed line-wrap issues and misaligned rST tables.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200923105646.47864-1-stefanha@redhat.com>
With bdrv_filter_bs(), we can easily handle this default filter behavior
in bdrv_co_block_status().
blkdebug wants to have an additional assertion, so it keeps its own
implementation, except bdrv_co_block_status_from_file() needs to be
inlined there.
Suggested-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
Reviewed-by: Andrey Shinkevich <andrey.shinkevich@virtuozzo.com>
Reviewed-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Reviewed-by: Andrey Shinkevich <andrey.shinkevich@virtuozzo.com>
Reviewed-by: Kevin Wolf <kwolf@redhat.com>
When all we do with an Error we receive into a local variable is
propagating to somewhere else, we can just as well receive it there
right away. The previous commit did that with a Coccinelle script I
consider fairly trustworthy. This commit uses the same script with
the matching of return taken out, i.e. we convert
if (!foo(..., &err)) {
...
error_propagate(errp, err);
...
}
to
if (!foo(..., errp)) {
...
...
}
This is unsound: @err could still be read between afterwards. I don't
know how to express "no read of @err without an intervening write" in
Coccinelle. Instead, I manually double-checked for uses of @err.
Suboptimal line breaks tweaked manually. qdev_realize() simplified
further to placate scripts/checkpatch.pl.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20200707160613.848843-36-armbru@redhat.com>
bdrv_default_perms() can decide which permission profile to use based on
the BdrvChildRole, so block drivers do not need to select it explicitly.
The blkverify driver now no longer shares the WRITE permission for the
image to verify. We thus have to adjust two places in
test-block-iothread not to take it. (Note that in theory, blkverify
should behave like quorum in this regard and share neither WRITE nor
RESIZE for both of its children. In practice, it does not really
matter, because blkverify is used only for debugging, so we might as
well keep its permissions rather liberal.)
Signed-off-by: Max Reitz <mreitz@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20200513110544.176672-30-mreitz@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Note that some filters have secondary children, namely blkverify (the
image to be verified) and blklogwrites (the log). This patch does not
touch those children.
Note that for blkverify, the filtered child should not be format-probed.
While there is nothing enforcing this here, in practice, it will not be:
blkverify implements .bdrv_file_open. The block layer ensures (and in
fact, asserts) that BDRV_O_PROTOCOL is set for every BDS whose driver
implements .bdrv_file_open. This flag will then be bequeathed to
blkverify's children, and they will thus (by default) not be probed
either.
("By default" refers to the fact that blkverify's other child (the
non-filtered one) will have BDRV_O_PROTOCOL force-unset, because that is
what happens for all non-filtered children of non-format drivers.)
Signed-off-by: Max Reitz <mreitz@redhat.com>
Message-Id: <20200513110544.176672-27-mreitz@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
For now, it is always set to 0. Later patches in this series will
ensure that all callers pass an appropriate combination of flags.
Signed-off-by: Max Reitz <mreitz@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20200513110544.176672-6-mreitz@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
It no longer has any users.
Signed-off-by: Max Reitz <mreitz@redhat.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Message-Id: <20200218103454.296704-11-mreitz@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
This new field can be set by block drivers to list the runtime options
they accept that may influence the contents of the respective BDS. As of
a follow-up patch, this list will be used by the common
bdrv_refresh_filename() implementation to decide which options to put
into BDS.full_open_options (and consequently whether a JSON filename has
to be created), thus freeing the drivers of having to implement that
logic themselves.
Additionally, this patch adds the field to all of the block drivers that
need it and sets it accordingly.
Signed-off-by: Max Reitz <mreitz@redhat.com>
Reviewed-by: Alberto Garcia <berto@igalia.com>
Message-id: 20190201192935.18394-22-mreitz@redhat.com
Signed-off-by: Max Reitz <mreitz@redhat.com>
Other I/O functions are already using a BdrvChild pointer in the API, so
make discard do the same. It makes it possible to initiate the same
permission checks before doing I/O, and much easier to share the
helper functions for this, which will be added and used by write,
truncate and copy range paths.
Signed-off-by: Fam Zheng <famz@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
The throttle block filter can be reopened, and with this it is
possible to change the throttle group that the filter belongs to.
The way the code does that is the following:
- On throttle_reopen_prepare(): create a new ThrottleGroupMember
and attach it to the new throttle group.
- On throttle_reopen_commit(): detach the old ThrottleGroupMember,
delete it and replace it with the new one.
The problem with this is that by replacing the ThrottleGroupMember the
previous value of io_limits_disabled is lost, causing an assertion
failure in throttle_co_drain_end().
This problem can be reproduced by reopening a throttle node:
$QEMU -monitor stdio
-object throttle-group,id=tg0,x-iops-total=1000 \
-blockdev node-name=hd0,driver=qcow2,file.driver=file,file.filename=hd.qcow2 \
-blockdev node-name=root,driver=throttle,throttle-group=tg0,file=hd0,read-only=on
(qemu) block_stream root
block/throttle.c:214: throttle_co_drain_end: Assertion `tgm->io_limits_disabled' failed.
Since we only want to change the throttle group on reopen there's no
need to create a ThrottleGroupMember and discard the old one. It's
easier if we simply detach it from its current group and attach it to
the new one.
Signed-off-by: Alberto Garcia <berto@igalia.com>
Message-id: 20180608151536.7378-1-berto@igalia.com
Signed-off-by: Max Reitz <mreitz@redhat.com>
Update the rest of the filter drivers to support
BDRV_REQ_WRITE_UNCHANGED. They already forward write request flags to
their children, so we just have to announce support for it.
This patch does not cover the replication driver because that currently
does not support flags at all, and because it just grabs the WRITE
permission for its children when it can, so we should be fine just
submitting the incoming WRITE_UNCHANGED requests as normal writes.
It also does not cover format drivers for similar reasons. They all use
bdrv_format_default_perms() as their .bdrv_child_perm() implementation
so they just always grab the WRITE permission for their file children
whenever possible. In addition, it often would be difficult to
ascertain whether incoming unchanging writes end up as unchanging writes
in their files. So we just leave them as normal potentially changing
writes.
Signed-off-by: Max Reitz <mreitz@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Alberto Garcia <berto@igalia.com>
Message-id: 20180421132929.21610-7-mreitz@redhat.com
Reviewed-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
The throttle driver is not a protocol so it should implement bdrv_open
instead of bdrv_file_open and not provide a protocol_name.
Attempts to invoke this driver using protocol syntax
(i.e. throttle:<filename:options:...>) will now fail gracefully:
$ qemu-img info throttle:foo
qemu-img: Could not open 'throttle:foo': Unknown protocol 'throttle'
Signed-off-by: Fabiano Rosas <farosas@linux.vnet.ibm.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Reviewed-by: Alberto Garcia <berto@igalia.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
We are gradually moving away from sector-based interfaces, towards
byte-based. Update the generic helpers, and all passthrough clients
(blkdebug, commit, mirror, throttle) accordingly.
Signed-off-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Reviewed-by: Fam Zheng <famz@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
qemu-common.h includes qemu/option.h, but most places that include the
former don't actually need the latter. Drop the include, and add it
to the places that actually need it.
While there, drop superfluous includes of both headers, and
separate #include from file comment with a blank line.
This cleanup makes the number of objects depending on qemu/option.h
drop from 4545 (out of 4743) to 284 in my "build everything" tree.
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20180201111846.21846-20-armbru@redhat.com>
[Semantic conflict with commit bdd6a90a9e in block/nvme.c resolved]
block/throttle.c uses existing I/O throttle infrastructure inside a
block filter driver. I/O operations are intercepted in the filter's
read/write coroutines, and referred to block/throttle-groups.c
The driver can be used with the syntax
-drive driver=throttle,file.filename=foo.qcow2,throttle-group=bar
which registers the throttle filter node with the ThrottleGroup 'bar'. The
given group must be created beforehand with object-add or -object.
Reviewed-by: Alberto Garcia <berto@igalia.com>
Signed-off-by: Manos Pitsidianakis <el13635@mail.ntua.gr>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>