Commit Graph

10 Commits

Author SHA1 Message Date
Jonathan Cameron
638b752da3 pci-bridge/cxl_upstream: Add a CXL switch upstream port
An initial simple upstream port emulation to allow the creation
of CXL switches. The Device ID has been allocated for this use.

Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-Id: <20220616145126.8002-2-Jonathan.Cameron@huawei.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2022-06-16 12:54:57 -04:00
Jonathan Cameron
dab390ff24 hw/cxl: Push linking of CXL targets into i386/pc rather than in machine.c
Whilst here take the oportunity to shorten the function name.

Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Ben Widawsky <ben@bwidawsk.net>
Message-Id: <20220608145440.26106-4-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2022-06-09 19:32:49 -04:00
Jonathan Cameron
03b39fcf64 hw/cxl: Make the CXL fixed memory window setup a machine parameter.
Paolo Bonzini requested this change to simplify the ongoing
effort to allow machine setup entirely via RPC.

Includes shortening the command line form cxl-fixed-memory-window
to cxl-fmw as the command lines are extremely long even with this
change.

The json change is needed to ensure that there is
a CXLFixedMemoryWindowOptionsList even though the actual
element in the json is never used. Similar to existing
SgxEpcProperties.

Update qemu-options.hx to reflect that this is now a -machine
parameter.  The bulk of -M / -machine parameters are documented
under machine, so use that in preference to M.

Update cxl-test and bios-tables-test to reflect new parameters.

Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Ben Widawsky <ben@bwidawsk.net>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Message-Id: <20220608145440.26106-2-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2022-06-09 19:32:49 -04:00
Jonathan Cameron
eb19d9079e cxl/cxl-host: Add memops for CFMWS region.
These memops perform interleave decoding, walking down the
CXL topology from CFMWS described host interleave
decoder via CXL host bridge HDM decoders, through the CXL
root ports and finally call CXL type 3 specific read and write
functions.

Note that, whilst functional the current implementation does
not support:
* switches
* multiple HDM decoders at a given level.
* unaligned accesses across the interleave boundaries

Signed-off-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Message-Id: <20220429144110.25167-34-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2022-05-13 07:57:26 -04:00
Jonathan Cameron
aadfe32091 hw/cxl/host: Add support for CXL Fixed Memory Windows.
The concept of these is introduced in [1] in terms of the
description the CEDT ACPI table. The principal is more general.
Unlike once traffic hits the CXL root bridges, the host system
memory address routing is implementation defined and effectively
static once observable by standard / generic system software.
Each CXL Fixed Memory Windows (CFMW) is a region of PA space
which has fixed system dependent routing configured so that
accesses can be routed to the CXL devices below a set of target
root bridges. The accesses may be interleaved across multiple
root bridges.

For QEMU we could have fully specified these regions in terms
of a base PA + size, but as the absolute address does not matter
it is simpler to let individual platforms place the memory regions.

ExampleS:
-cxl-fixed-memory-window targets.0=cxl.0,size=128G
-cxl-fixed-memory-window targets.0=cxl.1,size=128G
-cxl-fixed-memory-window targets.0=cxl0,targets.1=cxl.1,size=256G,interleave-granularity=2k

Specifies
* 2x 128G regions not interleaved across root bridges, one for each of
  the root bridges with ids cxl.0 and cxl.1
* 256G region interleaved across root bridges with ids cxl.0 and cxl.1
with a 2k interleave granularity.

When system software enumerates the devices below a given root bridge
it can then decide which CFMW to use. If non interleave is desired
(or possible) it can use the appropriate CFMW for the root bridge in
question.  If there are suitable devices to interleave across the
two root bridges then it may use the 3rd CFMS.

A number of other designs were considered but the following constraints
made it hard to adapt existing QEMU approaches to this particular problem.
1) The size must be known before a specific architecture / board brings
   up it's PA memory map.  We need to set up an appropriate region.
2) Using links to the host bridges provides a clean command line interface
   but these links cannot be established until command line devices have
   been added.

Hence the two step process used here of first establishing the size,
interleave-ways and granularity + caching the ids of the host bridges
and then, once available finding the actual host bridges so they can
be used later to support interleave decoding.

[1] CXL 2.0 ECN: CEDT CFMWS & QTG DSM (computeexpresslink.org / specifications)

Signed-off-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Acked-by: Markus Armbruster <armbru@redhat.com> # QAPI Schema
Message-Id: <20220429144110.25167-28-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2022-05-13 07:57:26 -04:00
Ben Widawsky
6e4e3ae936 hw/cxl/component: Implement host bridge MMIO (8.2.5, table 142)
CXL host bridges themselves may have MMIO. Since host bridges don't have
a BAR they are treated as special for MMIO.  This patch includes
i386/pc support.
Also hook up the device reset now that we have have the MMIO
space in which the results are visible.

Note that we duplicate the PCI express case for the aml_build but
the implementations will diverge when the CXL specific _OSC is
introduced.

Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Co-developed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20220429144110.25167-24-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2022-05-13 06:13:36 -04:00
Jonathan Cameron
abb3009baf cxl: Machine level control on whether CXL support is enabled
There are going to be some potential overheads to CXL enablement,
for example the host bridge region reserved in memory maps.
Add a machine level control so that CXL is disabled by default.

Signed-off-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20220429144110.25167-14-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2022-05-13 06:13:36 -04:00
Ben Widawsky
464e14ac43 hw/cxl/device: Implement basic mailbox (8.2.8.4)
This is the beginning of implementing mailbox support for CXL 2.0
devices. The implementation recognizes when the doorbell is rung,
handles the command/payload, clears the doorbell while returning error
codes and data.

Generally the mailbox mechanism is designed to permit communication
between the host OS and the firmware running on the device. For our
purposes, we emulate both the firmware, implemented primarily in
cxl-mailbox-utils.c, and the hardware.

No commands are implemented yet.

Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20220429144110.25167-7-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2022-05-13 06:13:36 -04:00
Ben Widawsky
cd90126b4c hw/cxl/device: Introduce a CXL device (8.2.8)
A CXL device is a type of CXL component. Conceptually, a CXL device
would be a leaf node in a CXL topology. From an emulation perspective,
CXL devices are the most complex and so the actual implementation is
reserved for discrete commits.

This new device type is specifically catered towards the eventual
implementation of a Type3 CXL.mem device, 8.2.8.5 in the CXL 2.0
specification.

Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Adam Manzanares <a.manzanares@samsung.com>
Message-Id: <20220429144110.25167-5-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2022-05-13 06:13:36 -04:00
Ben Widawsky
9e58f52d3f hw/cxl/component: Introduce CXL components (8.1.x, 8.2.5)
A CXL 2.0 component is any entity in the CXL topology. All components
have a analogous function in PCIe. Except for the CXL host bridge, all
have a PCIe config space that is accessible via the common PCIe
mechanisms. CXL components are enumerated via DVSEC fields in the
extended PCIe header space. CXL components will minimally implement some
subset of CXL.mem and CXL.cache registers defined in 8.2.5 of the CXL
2.0 specification. Two headers and a utility library are introduced to
support the minimum functionality needed to enumerate components.

The cxl_pci header manages bits associated with PCI, specifically the
DVSEC and related fields. The cxl_component.h variant has data
structures and APIs that are useful for drivers implementing any of the
CXL 2.0 components. The library takes care of making use of the DVSEC
bits and the CXL.[mem|cache] registers. Per spec, the registers are
little endian.

None of the mechanisms required to enumerate a CXL capable hostbridge
are introduced at this point.

Note that the CXL.mem and CXL.cache registers used are always 4B wide.
It's possible in the future that this constraint will not hold.

Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Adam Manzanares <a.manzanares@samsung.com>
Message-Id: <20220429144110.25167-3-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2022-05-13 06:13:35 -04:00