The KVM FWNMI capability should be enabled with the "ibm,nmi-register"
rtas call. Although MCEs from KVM will be delivered as architected
interrupts to the guest before "ibm,nmi-register" is called, KVM has
different behaviour depending on whether the guest has enabled FWNMI
(it attempts to do more recovery on behalf of a non-FWNMI guest).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Message-Id: <20200325142906.221248-2-npiggin@gmail.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This function calculates the maximum size of the RMA as implied by the
host's page size of structure of the VRMA (there are a number of other
constraints on the RMA size which will supersede this one in many
circumstances).
The current interface takes the current RMA size estimate, and clamps it
to the VRMA derived size. The only current caller passes in an arguably
wrong value (it will match the current RMA estimate in some but not all
cases).
We want to fix that, but for now just keep concerns separated by having the
KVM helper function just return the VRMA derived limit, and let the caller
combine it with other constraints. We call the new function
kvmppc_vrma_limit() to more clearly indicate its limited responsibility.
The helper should only ever be called in the KVM enabled case, so replace
its !CONFIG_KVM stub with an assert() rather than a dummy value.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cedric Le Goater <clg@fr.ibm.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Upon a machine check exception (MCE) in a guest address space,
KVM causes a guest exit to enable QEMU to build and pass the
error to the guest in the PAPR defined rtas error log format.
This patch builds the rtas error log, copies it to the rtas_addr
and then invokes the guest registered machine check handler. The
handler in the guest takes suitable action(s) depending on the type
and criticality of the error. For example, if an error is
unrecoverable memory corruption in an application inside the
guest, then the guest kernel sends a SIGBUS to the application.
For recoverable errors, the guest performs recovery actions and
logs the error.
Signed-off-by: Aravinda Prasad <arawinda.p@gmail.com>
[Assume SLOF has allocated enough room for rtas error log]
Signed-off-by: Ganesh Goudar <ganeshgr@linux.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20200130184423.20519-5-ganeshgr@linux.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Memory error such as bit flips that cannot be corrected
by hardware are passed on to the kernel for handling.
If the memory address in error belongs to guest then
the guest kernel is responsible for taking suitable action.
Patch [1] enhances KVM to exit guest with exit reason
set to KVM_EXIT_NMI in such cases. This patch handles
KVM_EXIT_NMI exit.
[1] https://www.spinics.net/lists/kvm-ppc/msg12637.html
(e20bbd3d and related commits)
Signed-off-by: Aravinda Prasad <arawinda.p@gmail.com>
Signed-off-by: Ganesh Goudar <ganeshgr@linux.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Message-Id: <20200130184423.20519-4-ganeshgr@linux.ibm.com>
[dwg: #ifdefs to fix compile for 32-bit target]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Introduce fwnmi an spapr capability and add a helper function
which tries to enable it, which would be used by following patch
of the series. This patch by itself does not change the existing
behavior.
Signed-off-by: Aravinda Prasad <arawinda.p@gmail.com>
[eliminate cap_ppc_fwnmi, add fwnmi cap to migration state
and reprhase the commit message]
Signed-off-by: Ganesh Goudar <ganeshgr@linux.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20200130184423.20519-3-ganeshgr@linux.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The kvm_handle_debug function can return 0 to go back into the guest
or return 1 to notify the gdbstub thread and pass control to GDB.
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Message-Id: <20200110151344.278471-2-farosas@linux.ibm.com>
Tested-by: Leonardo Bras <leonardo@ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
We actually want to access the accelerator, not the machine, so
use the current_accel() wrapper instead.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-Id: <20200121110349.25842-10-philmd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Invoking KVM_SVM_OFF ioctl for TCG guests will lead to a QEMU crash.
Fix this by ensuring that we don't call KVM_SVM_OFF ioctl on TCG.
Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Fixes: 4930c1966249 ("ppc/spapr: Support reboot of secure pseries guest")
Signed-off-by: Bharata B Rao <bharata@linux.ibm.com>
Message-Id: <20200102054155.13175-1-bharata@linux.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
A pseries guest can be run as a secure guest on Ultravisor-enabled
POWER platforms. When such a secure guest is reset, we need to
release/reset a few resources both on ultravisor and hypervisor side.
This is achieved by invoking this new ioctl KVM_PPC_SVM_OFF from the
machine reset path.
As part of this ioctl, the secure guest is essentially transitioned
back to normal mode so that it can reboot like a regular guest and
become secure again.
This ioctl has no effect when invoked for a normal guest. If this ioctl
fails for a secure guest, the guest is terminated.
Signed-off-by: Bharata B Rao <bharata@linux.ibm.com>
Message-Id: <20191219031445.8949-3-bharata@linux.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
They were added in "16415335be Use correct input constant" with a
single use in kvm_arch_pre_run but that function's implementation was
removed by "1e8f51e856 ppc: remove idle_timer logic".
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Message-Id: <20191218014616.686124-1-farosas@linux.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Mostly, Error ** is for returning error from the function, so the
callee sets it. However kvmppc_hint_smt_possible gets already filled
errp parameter. It doesn't change the pointer itself, only change the
internal state of referenced Error object. So we can make it Error
*const * errp, to stress the behavior. It will also help coccinelle
script (in future) to distinguish such cases from common errp usage.
While there, rename the function to
kvmppc_error_append_smt_possible_hint().
Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Message-Id: <20191205174635.18758-8-vsementsov@virtuozzo.com>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
[Commit message replaced]
Signed-off-by: Markus Armbruster <armbru@redhat.com>
This reverts commit cdcca22aab.
Commit cdcca22aab is a superseded version of the next commit that
crept in by accident. Revert it, so the final version applies.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
The KVMState struct is opaque, so provide accessors for the fields
that will be moved from current_machine to the accelerator. For now
they just forward to the machine object, but this will change.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make kvmppc_hint_smt_possible hint append helper well formed:
rename errp to errp_in, as it is IN-parameter here (which is unusual
for errp), rename function to be kvmppc_error_append_*_hint.
Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Message-Id: <20191127191434.20945-1-vsementsov@virtuozzo.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
We have to set the default model of all machine classes, not just for
the active one. Otherwise, "query-machines" will indicate the wrong
CPU model (e.g. "power9_v2.0-powerpc64-cpu" instead of
"host-powerpc64-cpu") as "default-cpu-type".
s390x already fixed this in de60a92e "s390x/kvm: Set default cpu model for
all machine classes". This patch applies a similar fix for the pseries-*
machine types on ppc64.
Doing a
{"execute":"query-machines"}
under KVM now results in
{
"hotpluggable-cpus": true,
"name": "pseries-4.2",
"numa-mem-supported": true,
"default-cpu-type": "host-powerpc64-cpu",
"is-default": true,
"cpu-max": 1024,
"deprecated": false,
"alias": "pseries"
},
{
"hotpluggable-cpus": true,
"name": "pseries-4.1",
"numa-mem-supported": true,
"default-cpu-type": "host-powerpc64-cpu",
"cpu-max": 1024,
"deprecated": false
},
...
Libvirt probes all machines via "-machine none,accel=kvm:tcg" and will
currently see the wrong CPU model under KVM.
Reported-by: Jiři Denemark <jdenemar@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Tested-by: Jiri Denemark <jdenemar@redhat.com>
Signed-off-by: Laurent Vivier <lvivier@redhat.com>
There are three page size in qemu:
real host page size
host page size
target page size
All of them have dedicate variable to represent. For the last two, we
use the same form in the whole qemu project, while for the first one we
use two forms: qemu_real_host_page_size and getpagesize().
qemu_real_host_page_size is defined to be a replacement of
getpagesize(), so let it serve the role.
[Note] Not fully tested for some arch or device.
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Message-Id: <20191013021145.16011-3-richardw.yang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On POWER8 systems the Directed Privileged Door-bell Exception State
register (DPDES) stores doorbell pending status, one bit per a thread
of a core, set by "msgsndp" instruction. The register is shared among
threads of the same core and KVM on POWER9 emulates it in a similar way
(POWER9 does not have DPDES).
DPDES is shared but QEMU assumes all SPRs are per thread so the only safe
way to write DPDES back to VCPU before running a guest is doing so
while all threads are pulled out of the guest so DPDES cannot change.
There is only one situation when this condition is met: incoming migration
when all threads are stopped. Otherwise any QEMU HMP/QMP command causing
kvm_arch_put_registers() (for example printing registers or dumping memory)
can clobber DPDES in a race with other vcpu threads.
This changes DPDES handling so it is not written to KVM at runtime.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Message-Id: <20190923084110.34643-1-aik@ozlabs.ru>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The logic is broken for multiple vcpu guests, also causing memory leak.
The logic is in place to handle kvm not having KVM_CAP_PPC_IRQ_LEVEL,
which is part of the kernel now since 2.6.37. Instead of fixing the
leak, drop the redundant logic which is not excercised on new kernels
anymore. Exit with error on older kernels.
Signed-off-by: Shivaprasad G Bhat <sbhat@linux.ibm.com>
Message-Id: <156406409479.19996.7606556689856621111.stgit@lep8c.aus.stglabs.ibm.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
In my "build everything" tree, changing sysemu/sysemu.h triggers a
recompile of some 5400 out of 6600 objects (not counting tests and
objects that don't depend on qemu/osdep.h).
Almost a third of its inclusions are actually superfluous. Delete
them. Downgrade two more to qapi/qapi-types-run-state.h, and move one
from char/serial.h to char/serial.c.
hw/semihosting/config.c, monitor/monitor.c, qdev-monitor.c, and
stubs/semihost.c define variables declared in sysemu/sysemu.h without
including it. The compiler is cool with that, but include it anyway.
This doesn't reduce actual use much, as it's still included into
widely included headers. The next commit will tackle that.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <20190812052359.30071-27-armbru@redhat.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
In my "build everything" tree, changing qemu/main-loop.h triggers a
recompile of some 5600 out of 6600 objects (not counting tests and
objects that don't depend on qemu/osdep.h). It includes block/aio.h,
which in turn includes qemu/event_notifier.h, qemu/notify.h,
qemu/processor.h, qemu/qsp.h, qemu/queue.h, qemu/thread-posix.h,
qemu/thread.h, qemu/timer.h, and a few more.
Include qemu/main-loop.h only where it's needed. Touching it now
recompiles only some 1700 objects. For block/aio.h and
qemu/event_notifier.h, these numbers drop from 5600 to 2800. For the
others, they shrink only slightly.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20190812052359.30071-21-armbru@redhat.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
In my "build everything" tree, changing hw/hw.h triggers a recompile
of some 2600 out of 6600 objects (not counting tests and objects that
don't depend on qemu/osdep.h).
The previous commits have left only the declaration of hw_error() in
hw/hw.h. This permits dropping most of its inclusions. Touching it
now recompiles less than 200 objects.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <20190812052359.30071-19-armbru@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
In my "build everything" tree, changing migration/qemu-file-types.h
triggers a recompile of some 2600 out of 6600 objects (not counting
tests and objects that don't depend on qemu/osdep.h).
The culprit is again hw/hw.h, which supposedly includes it for
convenience.
Include migration/qemu-file-types.h only where it's needed. Touching
it now recompiles less than 200 objects.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20190812052359.30071-10-armbru@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Introduce a KVM helper and its stub instead of guarding the code with
CONFIG_KVM.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <156051055736.224162.11641594431517798715.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
gcc9 reports :
In file included from /usr/include/string.h:494,
from ./include/qemu/osdep.h:101,
from ./target/ppc/kvm.c:17:
In function ‘strncpy’,
inlined from ‘kvmppc_define_rtas_kernel_token’ at ./target/ppc/kvm.c:2648:5:
/usr/include/bits/string_fortified.h:106:10: error: ‘__builtin_strncpy’ specified bound 120 equals destination size [-Werror=stringop-truncation]
106 | return __builtin___strncpy_chk (__dest, __src, __len, __bos (__dest));
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190615081252.28602-1-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Simiar to how kvm_init_vcpu() calls kvm_arch_init_vcpu() to perform
arch-dependent initialisation, introduce kvm_arch_destroy_vcpu()
to be called from kvm_destroy_vcpu() to perform arch-dependent
destruction.
This was added because some architectures (Such as i386)
currently do not free memory that it have allocated in
kvm_arch_init_vcpu().
Suggested-by: Maran Wilson <maran.wilson@oracle.com>
Reviewed-by: Maran Wilson <maran.wilson@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Message-Id: <20190619162140.133674-3-liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Cleanup in the boilerplate that each target must define.
Replace ppc_env_get_cpu with env_archcpu. The combination
CPU(ppc_env_get_cpu) should have used ENV_GET_CPU to begin;
use env_cpu now.
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
This introduces a set of helpers when KVM is in use, which create the
KVM XIVE device, initialize the interrupt sources at a KVM level and
connect the interrupt presenters to the vCPU.
They also handle the initialization of the TIMA and the source ESB
memory regions of the controller. These have a different type under
KVM. They are 'ram device' memory mappings, similarly to VFIO, exposed
to the guest and the associated VMAs on the host are populated
dynamically with the appropriate pages using a fault handler.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20190513084245.25755-3-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Boxuan Li <liboxuan@connect.hku.hk>
Message-Id: <20190430172842.27369-1-liboxuan@connect.hku.hk>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Here's the first ppc target pull request for qemu-4.1. This has a
number of things that have accumulated while qemu-4.0 was frozen.
* A number of emulated MMU improvements from Ben Herrenschmidt
* Assorted cleanups fro Greg Kurz
* A large set of mostly mechanical cleanups from me to make target/ppc
much closer to compliant with the modern coding style
* Support for passthrough of NVIDIA GPUs using NVLink2
As well as some other assorted fixes.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEdfRlhq5hpmzETofcbDjKyiDZs5IFAlzCnusACgkQbDjKyiDZ
s5LfhhAAuem5UBGKPKPj33c87HC+GGG+S4y89ic3ebyKplWulGgouHCa4Dnc7Y5m
9MfIEcljRDpuRJCEONo6yg9aaRb3cW2Go9TpTwxmF8o1suG/v5bIQIdiRbBuMa2t
yhNujVg5kkWSU1G4mCZjL9FS2ADPsxsKZVd73DPEqjlNJg981+2qtSnfR8SXhfnk
dSSKxyfC6Hq1+uhGkLI+xtft+BCTWOstjz+efHpZ5l2mbiaMeh7zMKrIXXy/FtKA
ufIyxbZznMS5MAZk7t90YldznfwOCqfh3di1kx8GTZ40LkBKbuI5LLHTG0sT75z5
LHwFuLkBgWmS8RyIRRh9opr7ifrayHx8bQFpW368Qu+PbPzUCcTVIrWUfPmaNR74
CkYJvhiYZfTwKtUeP7b2wUkHpZF4KINI4TKNaS4QAlm3DNbO67DFYkBrytpXsSzv
smEpe+sqlbY40olw9q4ESP80r+kGdEPLkRjfdj0R7qS4fsqAH1bjuSkNqlPaCTJQ
hNsoz2D+f56z0bBq4x8FRzDpqnBkdy4x6PlLxkJuAaV7WAtvq7n7tiMA3TRr/rIB
OYFP2xPNajjP8MfyOB94+S4WDltmsgXoM7HyyvrKp2JBpe7mFjpep5fMp5GUpweV
OOYrTsN1Nuu3kFpeimEc+IOyp1BWXnJF4vHhKTOqHeqZEs5Fgus=
=RpAK
-----END PGP SIGNATURE-----
Merge remote-tracking branch 'remotes/dgibson/tags/ppc-for-4.1-20190426' into staging
ppc patch queue 2019-04-26
Here's the first ppc target pull request for qemu-4.1. This has a
number of things that have accumulated while qemu-4.0 was frozen.
* A number of emulated MMU improvements from Ben Herrenschmidt
* Assorted cleanups fro Greg Kurz
* A large set of mostly mechanical cleanups from me to make target/ppc
much closer to compliant with the modern coding style
* Support for passthrough of NVIDIA GPUs using NVLink2
As well as some other assorted fixes.
# gpg: Signature made Fri 26 Apr 2019 07:02:19 BST
# gpg: using RSA key 75F46586AE61A66CC44E87DC6C38CACA20D9B392
# gpg: Good signature from "David Gibson <david@gibson.dropbear.id.au>" [full]
# gpg: aka "David Gibson (Red Hat) <dgibson@redhat.com>" [full]
# gpg: aka "David Gibson (ozlabs.org) <dgibson@ozlabs.org>" [full]
# gpg: aka "David Gibson (kernel.org) <dwg@kernel.org>" [unknown]
# Primary key fingerprint: 75F4 6586 AE61 A66C C44E 87DC 6C38 CACA 20D9 B392
* remotes/dgibson/tags/ppc-for-4.1-20190426: (36 commits)
target/ppc: improve performance of large BAT invalidations
ppc/hash32: Rework R and C bit updates
ppc/hash64: Rework R and C bit updates
ppc/spapr: Use proper HPTE accessors for H_READ
target/ppc: Don't check UPRT in radix mode when in HV real mode
target/ppc/kvm: Convert DPRINTF to traces
target/ppc/trace-events: Fix trivial typo
spapr: Drop duplicate PCI swizzle code
spapr_pci: Get rid of duplicate code for node name creation
target/ppc: Style fixes for translate/spe-impl.inc.c
target/ppc: Style fixes for translate/vmx-impl.inc.c
target/ppc: Style fixes for translate/vsx-impl.inc.c
target/ppc: Style fixes for translate/fp-impl.inc.c
target/ppc: Style fixes for translate.c
target/ppc: Style fixes for translate_init.inc.c
target/ppc: Style fixes for monitor.c
target/ppc: Style fixes for mmu_helper.c
target/ppc: Style fixes for mmu-hash64.[ch]
target/ppc: Style fixes for mmu-hash32.[ch]
target/ppc: Style fixes for misc_helper.c
...
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <155445152490.302073.17033451726459859333.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Rename qemu_getrampagesize() to qemu_minrampagesize(). While at it,
properly rename find_max_supported_pagesize() to
find_min_backend_pagesize().
s390x is actually interested into the maximum ram pagesize, so
introduce and use qemu_maxrampagesize().
Add a TODO, indicating that looking at any mapped memory backends is not
100% correct in some cases.
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20190417113143.5551-3-david@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
The qemu coding standard is to use CamelCase for type and structure names,
and the pseries code follows that... sort of. There are quite a lot of
places where we bend the rules in order to preserve the capitalization of
internal acronyms like "PHB", "TCE", "DIMM" and most commonly "sPAPR".
That was a bad idea - it frequently leads to names ending up with hard to
read clusters of capital letters, and means they don't catch the eye as
type identifiers, which is kind of the point of the CamelCase convention in
the first place.
In short, keeping type identifiers look like CamelCase is more important
than preserving standard capitalization of internal "words". So, this
patch renames a heap of spapr internal type names to a more standard
CamelCase.
In addition to case changes, we also make some other identifier renames:
VIOsPAPR* -> SpaprVio*
The reverse word ordering was only ever used to mitigate the capital
cluster, so revert to the natural ordering.
VIOsPAPRVTYDevice -> SpaprVioVty
VIOsPAPRVLANDevice -> SpaprVioVlan
Brevity, since the "Device" didn't add useful information
sPAPRDRConnector -> SpaprDrc
sPAPRDRConnectorClass -> SpaprDrcClass
Brevity, and makes it clearer this is the same thing as a "DRC"
mentioned in many other places in the code
This is 100% a mechanical search-and-replace patch. It will, however,
conflict with essentially any and all outstanding patches touching the
spapr code.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The H_CALL H_PAGE_INIT can be used to zero or copy a page of guest
memory. Enable the in-kernel H_PAGE_INIT handler.
The in-kernel handler takes half the time to complete compared to
handling the H_CALL in userspace.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Message-Id: <20190306060608.19935-1-sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
There are four scenarios being handled in this function:
- single stepping
- hardware breakpoints
- software breakpoints
- fallback (no debug supported)
A future patch will add code to handle specific single step and
software breakpoints cases so let's split each scenario into its own
function now to avoid hurting readability.
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Message-Id: <20190228225759.21328-5-farosas@linux.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This is in preparation for a refactoring of the kvm_handle_debug
function in the next patch.
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Message-Id: <20190228225759.21328-4-farosas@linux.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Introduce a new spapr_cap SPAPR_CAP_CCF_ASSIST to be used to indicate
the requirement for a hw-assisted version of the count cache flush
workaround.
The count cache flush workaround is a software workaround which can be
used to flush the count cache on context switch. Some revisions of
hardware may have a hardware accelerated flush, in which case the
software flush can be shortened. This cap is used to set the
availability of such hardware acceleration for the count cache flush
routine.
The availability of such hardware acceleration is indicated by the
H_CPU_CHAR_BCCTR_FLUSH_ASSIST flag being set in the characteristics
returned from the KVM_PPC_GET_CPU_CHAR ioctl.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Message-Id: <20190301031912.28809-2-sjitindarsingh@gmail.com>
[dwg: Small style fixes]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The spapr_cap SPAPR_CAP_IBS is used to indicate the level of capability
for mitigations for indirect branch speculation. Currently the available
values are broken (default), fixed-ibs (fixed by serialising indirect
branches) and fixed-ccd (fixed by diabling the count cache).
Introduce a new value for this capability denoted workaround, meaning that
software can work around the issue by flushing the count cache on
context switch. This option is available if the hypervisor sets the
H_CPU_BEHAV_FLUSH_COUNT_CACHE flag in the cpu behaviours returned from
the KVM_PPC_GET_CPU_CHAR ioctl.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Message-Id: <20190301031912.28809-1-sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Implement support to allow KVM guests to take advantage of the large
decrementer introduced on POWER9 cpus.
To determine if the host can support the requested large decrementer
size, we check it matches that specified in the ibm,dec-bits device-tree
property. We also need to enable it in KVM by setting the LPCR_LD bit in
the LPCR. Note that to do this we need to try and set the bit, then read
it back to check the host allowed us to set it, if so we can use it but
if we were unable to set it the host cannot support it and we must not
use the large decrementer.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190301024317.22137-3-sjitindarsingh@gmail.com>
[dwg: Small style fixes]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
It has been there since the enablement of PR KVM for PAPR, ie, commit
f61b4bedaf in 2011. Not sure why at that time, but it is definitely
not needed with the current code.
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The VSX register array is a block of 64 128-bit registers where the first 32
registers consist of the existing 64-bit FP registers extended to 128-bit
using new VSR registers, and the last 32 registers are the VMX 128-bit
registers as show below:
64-bit 64-bit
+--------------------+--------------------+
| FP0 | | VSR0
+--------------------+--------------------+
| FP1 | | VSR1
+--------------------+--------------------+
| ... | ... | ...
+--------------------+--------------------+
| FP30 | | VSR30
+--------------------+--------------------+
| FP31 | | VSR31
+--------------------+--------------------+
| VMX0 | VSR32
+-----------------------------------------+
| VMX1 | VSR33
+-----------------------------------------+
| ... | ...
+-----------------------------------------+
| VMX30 | VSR62
+-----------------------------------------+
| VMX31 | VSR63
+-----------------------------------------+
In order to allow for future conversion of VSX instructions to use TCG vector
operations, recreate the same layout using an aligned version of the existing
vsr register array.
Since the old fpr and avr register arrays are removed, the existing callers
must also be updated to use the correct offset in the vsr register array. This
also includes switching the relevant VMState fields over to using subarrays
to make sure that migration is preserved.
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Add the spapr cap SPAPR_CAP_NESTED_KVM_HV to be used to control the
availability of nested kvm-hv to the level 1 (L1) guest.
Assuming a hypervisor with support enabled an L1 guest can be allowed to
use the kvm-hv module (and thus run it's own kvm-hv guests) by setting:
-machine pseries,cap-nested-hv=true
or disabled with:
-machine pseries,cap-nested-hv=false
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Set the newly added register(KVM_REG_PPC_ONLINE) to indicate if the vcpu is
online(1) or offline(0)
KVM will use this information to set the RWMR register, which controls the PURR
and SPURR accumulation.
CC: paulus@samba.org
Signed-off-by: Nikunj A Dadhania <nikunj@linux.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
There is no known available OS for ppc around anymore that uses page
sizes below 4k, so it does not make much sense that we keep wasting
our time on building and testing the ppcemb-softmmu target. It has
been deprecated since two releases, and nobody complained, so let's
remove this now.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
In a future patch the machine code will need to retrieve the MMU
information from KVM during machine initialization before the CPUs
are created.
Actually, KVM_PPC_GET_SMMU_INFO is a VM class ioctl, and thus, we
don't need to have a CPU object around. We just need for KVM to
be initialized and use the kvm_state global. This patch just does
that.
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Now that we're checking our MMU configuration is supported by KVM,
rather than adjusting it to KVM, it doesn't really make sense to
have a fallback for kvm_get_smmu_info(). If KVM is too old or buggy
to provide the details, we should rather treat this as an error.
This patch thus adds error reporting to kvm_get_smmu_info() and get
rid of the fallback code. QEMU will now terminate if KVM fails to
provide MMU details. This may break some very old setups, but the
simplification is worth the sacrifice.
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Currently during KVM initialization on POWER, kvm_fixup_page_sizes()
rewrites a bunch of information in the cpu state to reflect the
capabilities of the host MMU and KVM. This overwrites the information
that's already there reflecting how the TCG implementation of the MMU will
operate.
This means that we can get guest-visibly different behaviour between KVM
and TCG (and between different KVM implementations). That's bad. It also
prevents migration between KVM and TCG.
The pseries machine type now has filtering of the pagesizes it allows the
guest to use which means it can present a consistent model of the MMU
across all accelerators.
So, we can now replace kvm_fixup_page_sizes() with kvm_check_mmu() which
merely verifies that the expected cpu model can be faithfully handled by
KVM, rather than updating the cpu model to match KVM.
We call kvm_check_mmu() from the spapr cpu reset code. This is a hack:
conceptually it makes more sense where fixup_page_sizes() was - in the KVM
cpu init path. However, doing that would require moving the platform's
pagesize filtering much earlier, which would require a lot of work making
further adjustments. There wouldn't be a lot of concrete point to doing
that, since the only KVM implementation which has the awkward MMU
restrictions is KVM HV, which can only work with an spapr guest anyway.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
The way we used to handle KVM allowable guest pagesizes for PAPR guests
required some convoluted checking of memory attached to the guest.
The allowable pagesizes advertised to the guest cpus depended on the memory
which was attached at boot, but then we needed to ensure that any memory
later hotplugged didn't change which pagesizes were allowed.
Now that we have an explicit machine option to control the allowable
maximum pagesize we can simplify this. We just check all memory backends
against that declared pagesize. We check base and cold-plugged memory at
reset time, and hotplugged memory at pre_plug() time.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>