Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-Id: <20221221131435.3851212-6-armbru@redhat.com>
qemu/coroutine.h and qemu/lockable.h include each other.
They need each other only in macro expansions, so we could simply drop
both inclusions to break the loop, and add suitable includes to files
that expand the macros.
Instead, move a part of qemu/coroutine.h to new qemu/coroutine-core.h
so that qemu/coroutine-core.h doesn't need qemu/lockable.h, and
qemu/lockable.h only needs qemu/coroutine-core.h. Result:
qemu/coroutine.h includes qemu/lockable.h includes
qemu/coroutine-core.h.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20221221131435.3851212-5-armbru@redhat.com>
[Semantic rebase conflict with 7c10cb38cc "accel/tcg: Add debuginfo
support" resolved]
Block layer graph operations are always run under BQL in the main loop.
This is proved by the assertion qemu_in_main_thread() and its wrapper
macro GLOBAL_STATE_CODE.
However, there are also concurrent coroutines running in other iothreads
that always try to traverse the graph. Currently this is protected
(among various other things) by the AioContext lock, but once this is
removed, we need to make sure that reads do not happen while modifying
the graph.
We distinguish between writer (main loop, under BQL) that modifies the
graph, and readers (all other coroutines running in various AioContext),
that go through the graph edges, reading ->parents and->children.
The writer (main loop) has "exclusive" access, so it first waits for any
current read to finish, and then prevents incoming ones from entering
while it has the exclusive access.
The readers (coroutines in multiple AioContext) are free to access the
graph as long the writer is not modifying the graph. In case it is, they
go in a CoQueue and sleep until the writer is done.
If a coroutine changes AioContext, the counter in the original and new
AioContext are left intact, since the writer does not care where the
reader is, but only if there is one.
As a result, some AioContexts might have a negative reader count, to
balance the positive count of the AioContext that took the lock. This
also means that when an AioContext is deleted it may have a nonzero
reader count. In that case we transfer the count to a global shared
counter so that the writer is always aware of all readers.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Message-Id: <20221207131838.239125-3-kwolf@redhat.com>
Reviewed-by: Emanuele Giuseppe Esposito <eesposit@redhat.com>
Reviewed-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
The thread pool regulates itself: when idle, it kills threads until
empty, when in demand, it creates new threads until full. This behaviour
doesn't play well with latency sensitive workloads where the price of
creating a new thread is too high. For example, when paired with qemu's
'-mlock', or using safety features like SafeStack, creating a new thread
has been measured take multiple milliseconds.
In order to mitigate this let's introduce a new 'EventLoopBase'
property to set the thread pool size. The threads will be created during
the pool's initialization or upon updating the property's value, remain
available during its lifetime regardless of demand, and destroyed upon
freeing it. A properly characterized workload will then be able to
configure the pool to avoid any latency spikes.
Signed-off-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Acked-by: Markus Armbruster <armbru@redhat.com>
Message-id: 20220425075723.20019-4-nsaenzju@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Adaptive polling measures the execution time of the polling check plus
handlers called when a polled event becomes ready. Handlers can take a
significant amount of time, making it look like polling was running for
a long time when in fact the event handler was running for a long time.
For example, on Linux the io_submit(2) syscall invoked when a virtio-blk
device's virtqueue becomes ready can take 10s of microseconds. This
can exceed the default polling interval (32 microseconds) and cause
adaptive polling to stop polling.
By excluding the handler's execution time from the polling check we make
the adaptive polling calculation more accurate. As a result, the event
loop now stays in polling mode where previously it would have fallen
back to file descriptor monitoring.
The following data was collected with virtio-blk num-queues=2
event_idx=off using an IOThread. Before:
168k IOPS, IOThread syscalls:
9837.115 ( 0.020 ms): IO iothread1/620155 io_submit(ctx_id: 140512552468480, nr: 16, iocbpp: 0x7fcb9f937db0) = 16
9837.158 ( 0.002 ms): IO iothread1/620155 write(fd: 103, buf: 0x556a2ef71b88, count: 8) = 8
9837.161 ( 0.001 ms): IO iothread1/620155 write(fd: 104, buf: 0x556a2ef71b88, count: 8) = 8
9837.163 ( 0.001 ms): IO iothread1/620155 ppoll(ufds: 0x7fcb90002800, nfds: 4, tsp: 0x7fcb9f1342d0, sigsetsize: 8) = 3
9837.164 ( 0.001 ms): IO iothread1/620155 read(fd: 107, buf: 0x7fcb9f939cc0, count: 512) = 8
9837.174 ( 0.001 ms): IO iothread1/620155 read(fd: 105, buf: 0x7fcb9f939cc0, count: 512) = 8
9837.176 ( 0.001 ms): IO iothread1/620155 read(fd: 106, buf: 0x7fcb9f939cc0, count: 512) = 8
9837.209 ( 0.035 ms): IO iothread1/620155 io_submit(ctx_id: 140512552468480, nr: 32, iocbpp: 0x7fca7d0cebe0) = 32
174k IOPS (+3.6%), IOThread syscalls:
9809.566 ( 0.036 ms): IO iothread1/623061 io_submit(ctx_id: 140539805028352, nr: 32, iocbpp: 0x7fd0cdd62be0) = 32
9809.625 ( 0.001 ms): IO iothread1/623061 write(fd: 103, buf: 0x5647cfba5f58, count: 8) = 8
9809.627 ( 0.002 ms): IO iothread1/623061 write(fd: 104, buf: 0x5647cfba5f58, count: 8) = 8
9809.663 ( 0.036 ms): IO iothread1/623061 io_submit(ctx_id: 140539805028352, nr: 32, iocbpp: 0x7fd0d0388b50) = 32
Notice that ppoll(2) and eventfd read(2) syscalls are eliminated because
the IOThread stays in polling mode instead of falling back to file
descriptor monitoring.
As usual, polling is not implemented on Windows so this patch ignores
the new io_poll_read() callback in aio-win32.c.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Stefano Garzarella <sgarzare@redhat.com>
Message-id: 20211207132336.36627-2-stefanha@redhat.com
[Fixed up aio_set_event_notifier() calls in
tests/unit/test-fdmon-epoll.c added after this series was queued.
--Stefan]
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
The `aio-max-batch` parameter will be propagated to AIO engines
and it will be used to control the maximum number of queued requests.
When there are in queue a number of requests equal to `aio-max-batch`,
the engine invokes the system call to forward the requests to the kernel.
This parameter allows us to control the maximum batch size to reduce
the latency that requests might accumulate while queued in the AIO
engine queue.
If `aio-max-batch` is equal to 0 (default value), the AIO engine will
use its default maximum batch size value.
Signed-off-by: Stefano Garzarella <sgarzare@redhat.com>
Message-id: 20210721094211.69853-3-sgarzare@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
It can be difficult to debug issues with BHs in production environments.
Although BHs can usually be identified by looking up their ->cb()
function pointer, this requires debug information for the program. It is
also not possible to print human-readable diagnostics about BHs because
they have no identifier.
This patch adds a name to each BH. The name is not unique per instance
but differentiates between cb() functions, which is usually enough. It's
done by changing aio_bh_new() and friends to macros that stringify cb.
The next patch will use the name field when reporting leaked BHs.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-Id: <20210414200247.917496-2-stefanha@redhat.com>
If we want to wake up a coroutine from a worker thread, aio_co_wake()
currently does not work. In that scenario, aio_co_wake() calls
aio_co_enter(), but there is no current AioContext and therefore
qemu_get_current_aio_context() returns the main thread. aio_co_wake()
then attempts to call aio_context_acquire() instead of going through
aio_co_schedule().
The default case of qemu_get_current_aio_context() was added to cover
synchronous I/O started from the vCPU thread, but the main and vCPU
threads are quite different. The main thread is an I/O thread itself,
only running a more complicated event loop; the vCPU thread instead
is essentially a worker thread that occasionally calls
qemu_mutex_lock_iothread(). It is only in those critical sections
that it acts as if it were the home thread of the main AioContext.
Therefore, this patch detaches qemu_get_current_aio_context() from
iothreads, which is a useless complication. The AioContext pointer
is stored directly in the thread-local variable, including for the
main loop. Worker threads (including vCPU threads) optionally behave
as temporary home threads if they have taken the big QEMU lock,
but if that is not the case they will always schedule coroutines
on remote threads via aio_co_schedule().
With this change, the stub qemu_mutex_iothread_locked() must be changed
from true to false. The previous value of true was needed because the
main thread did not have an AioContext in the thread-local variable,
but now it does have one.
Reported-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210609122234.544153-1-pbonzini@redhat.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Tested-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
[eblake: tweak commit message per Vladimir's review]
Signed-off-by: Eric Blake <eblake@redhat.com>
Add a function that can be used to move the currently running coroutine
to a different AioContext (and therefore potentially a different
thread).
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-Id: <20201005155855.256490-12-kwolf@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
clang's C11 atomic_fetch_*() functions only take a C11 atomic type
pointer argument. QEMU uses direct types (int, etc) and this causes a
compiler error when a QEMU code calls these functions in a source file
that also included <stdatomic.h> via a system header file:
$ CC=clang CXX=clang++ ./configure ... && make
../util/async.c:79:17: error: address argument to atomic operation must be a pointer to _Atomic type ('unsigned int *' invalid)
Avoid using atomic_*() names in QEMU's atomic.h since that namespace is
used by <stdatomic.h>. Prefix QEMU's APIs with 'q' so that atomic.h
and <stdatomic.h> can co-exist. I checked /usr/include on my machine and
searched GitHub for existing "qatomic_" users but there seem to be none.
This patch was generated using:
$ git grep -h -o '\<atomic\(64\)\?_[a-z0-9_]\+' include/qemu/atomic.h | \
sort -u >/tmp/changed_identifiers
$ for identifier in $(</tmp/changed_identifiers); do
sed -i "s%\<$identifier\>%q$identifier%g" \
$(git grep -I -l "\<$identifier\>")
done
I manually fixed line-wrap issues and misaligned rST tables.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200923105646.47864-1-stefanha@redhat.com>
The glib event loop does not call fdmon_io_uring_wait() so fd handlers
waiting to be submitted build up in the list. There is no benefit is
using io_uring when the glib GSource is being used, so disable it
instead of implementing a more complex fix.
This fixes a memory leak where AioHandlers would build up and increasing
amounts of CPU time were spent iterating them in aio_pending(). The
symptom is that guests become slow when QEMU is built with io_uring
support.
Buglink: https://bugs.launchpad.net/qemu/+bug/1877716
Fixes: 73fd282e7b6dd4e4ea1c3bbb3d302c8db51e4ccf ("aio-posix: add io_uring fd monitoring implementation")
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Tested-by: Oleksandr Natalenko <oleksandr@redhat.com>
Message-id: 20200511183630.279750-3-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Any thread that is not a iothread returns NULL for qemu_get_current_aio_context().
As a result, it would also return true for
in_aio_context_home_thread(qemu_get_aio_context()), causing
AIO_WAIT_WHILE to invoke aio_poll() directly. This is incorrect
if the BQL is not held, because aio_poll() does not expect to
run concurrently from multiple threads, and it can actually
happen when savevm writes to the vmstate file from the
migration thread.
Therefore, restrict in_aio_context_home_thread to return true
for the main AioContext only if the BQL is held.
The function is moved to aio-wait.h because it is mostly used
there and to avoid a circular reference between main-loop.h
and block/aio.h.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200407140746.8041-5-pbonzini@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
When there are many poll handlers it's likely that some of them are idle
most of the time. Remove handlers that haven't had activity recently so
that the polling loop scales better for guests with a large number of
devices.
This feature only takes effect for the Linux io_uring fd monitoring
implementation because it is capable of combining fd monitoring with
userspace polling. The other implementations can't do that and risk
starving fds in favor of poll handlers, so don't try this optimization
when they are in use.
IOPS improves from 10k to 105k when the guest has 100
virtio-blk-pci,num-queues=32 devices and 1 virtio-blk-pci,num-queues=1
device for rw=randread,iodepth=1,bs=4k,ioengine=libaio on NVMe.
[Clarified aio_poll_handlers locking discipline explanation in comment
after discussion with Paolo Bonzini <pbonzini@redhat.com>.
--Stefan]
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Link: https://lore.kernel.org/r/20200305170806.1313245-8-stefanha@redhat.com
Message-Id: <20200305170806.1313245-8-stefanha@redhat.com>
Unlike ppoll(2) and epoll(7), Linux io_uring completions can be polled
from userspace. Previously userspace polling was only allowed when all
AioHandler's had an ->io_poll() callback. This prevented starvation of
fds by userspace pollable handlers.
Add the FDMonOps->need_wait() callback that enables userspace polling
even when some AioHandlers lack ->io_poll().
For example, it's now possible to do userspace polling when a TCP/IP
socket is monitored thanks to Linux io_uring.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Link: https://lore.kernel.org/r/20200305170806.1313245-7-stefanha@redhat.com
Message-Id: <20200305170806.1313245-7-stefanha@redhat.com>
The recent Linux io_uring API has several advantages over ppoll(2) and
epoll(2). Details are given in the source code.
Add an io_uring implementation and make it the default on Linux.
Performance is the same as with epoll(7) but later patches add
optimizations that take advantage of io_uring.
It is necessary to change how aio_set_fd_handler() deals with deleting
AioHandlers since removing monitored file descriptors is asynchronous in
io_uring. fdmon_io_uring_remove() marks the AioHandler deleted and
aio_set_fd_handler() will let it handle deletion in that case.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Link: https://lore.kernel.org/r/20200305170806.1313245-6-stefanha@redhat.com
Message-Id: <20200305170806.1313245-6-stefanha@redhat.com>
The AioHandler *node, bool is_new arguments are more complicated to
think about than simply being given AioHandler *old_node, AioHandler
*new_node.
Furthermore, the new Linux io_uring file descriptor monitoring mechanism
added by the new patch requires access to both the old and the new
nodes. Make this change now in preparation.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Link: https://lore.kernel.org/r/20200305170806.1313245-5-stefanha@redhat.com
Message-Id: <20200305170806.1313245-5-stefanha@redhat.com>
The ppoll(2) and epoll(7) file descriptor monitoring implementations are
mixed with the core util/aio-posix.c code. Before adding another
implementation for Linux io_uring, extract out the existing
ones so there is a clear interface and the core code is simpler.
The new interface is AioContext->fdmon_ops, a pointer to a FDMonOps
struct. See the patch for details.
Semantic changes:
1. ppoll(2) now reflects events from pollfds[] back into AioHandlers
while we're still on the clock for adaptive polling. This was
already happening for epoll(7), so if it's really an issue then we'll
need to fix both in the future.
2. epoll(7)'s fallback to ppoll(2) while external events are disabled
was broken when the number of fds exceeded the epoll(7) upgrade
threshold. I guess this code path simply wasn't tested and no one
noticed the bug. I didn't go out of my way to fix it but the correct
code is simpler than preserving the bug.
I also took some liberties in removing the unnecessary
AioContext->epoll_available (just check AioContext->epollfd != -1
instead) and AioContext->epoll_enabled (it's implicit if our
AioContext->fdmon_ops callbacks are being invoked) fields.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Link: https://lore.kernel.org/r/20200305170806.1313245-4-stefanha@redhat.com
Message-Id: <20200305170806.1313245-4-stefanha@redhat.com>
It is not necessary to scan all AioHandlers for deletion. Keep a list
of deleted handlers instead of scanning the full list of all handlers.
The AioHandler->deleted field can be dropped. Let's check if the
handler has been inserted into the deleted list instead. Add a new
QLIST_IS_INSERTED() API for this check.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Sergio Lopez <slp@redhat.com>
Message-id: 20200214171712.541358-5-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
The ctx->first_bh list contains all created BHs, including those that
are not scheduled. The list is iterated by the event loop and therefore
has O(n) time complexity with respected to the number of created BHs.
Rewrite BHs so that only scheduled or deleted BHs are enqueued.
Only BHs that actually require action will be iterated.
One semantic change is required: qemu_bh_delete() enqueues the BH and
therefore invokes aio_notify(). The
tests/test-aio.c:test_source_bh_delete_from_cb() test case assumed that
g_main_context_iteration(NULL, false) returns false after
qemu_bh_delete() but it now returns true for one iteration. Fix up the
test case.
This patch makes aio_compute_timeout() and aio_bh_poll() drop from a CPU
profile reported by perf-top(1). Previously they combined to 9% CPU
utilization when AioContext polling is commented out and the guest has 2
virtio-blk,num-queues=1 and 99 virtio-blk,num-queues=32 devices.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-id: 20200221093951.1414693-1-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Aborts when sqe fails to be set as sqes cannot be returned to the
ring. Adds slow path for short reads for older kernels
Signed-off-by: Aarushi Mehta <mehta.aaru20@gmail.com>
Acked-by: Stefano Garzarella <sgarzare@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-id: 20200120141858.587874-5-stefanha@redhat.com
Message-Id: <20200120141858.587874-5-stefanha@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
No header includes qemu-common.h after this commit, as prescribed by
qemu-common.h's file comment.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20190523143508.25387-5-armbru@redhat.com>
[Rebased with conflicts resolved automatically, except for
include/hw/arm/xlnx-zynqmp.h hw/arm/nrf51_soc.c hw/arm/msf2-soc.c
block/qcow2-refcount.c block/qcow2-cluster.c block/qcow2-cache.c
target/arm/cpu.h target/lm32/cpu.h target/m68k/cpu.h target/mips/cpu.h
target/moxie/cpu.h target/nios2/cpu.h target/openrisc/cpu.h
target/riscv/cpu.h target/tilegx/cpu.h target/tricore/cpu.h
target/unicore32/cpu.h target/xtensa/cpu.h; bsd-user/main.c and
net/tap-bsd.c fixed up]
Attributes are simple flags, associated with individual timers for their
whole lifetime. They intended to be used to mark individual timers for
special handling when they fire.
New/init functions family in timer interface updated and refactored (new
'attribute' argument added, timer_list replaced with timer_list_group+type
combinations, comments improved to avoid info duplication). Also existing
aio interface extended with attribute-enabled variants of functions,
which create/initialize timers.
Signed-off-by: Artem Pisarenko <artem.k.pisarenko@gmail.com>
Message-Id: <f47b81dbce734e9806f9516eba8ca588e6321c2f.1539764043.git.artem.k.pisarenko@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
laio_init() can fail for a couple of reasons, which will lead to a NULL
pointer dereference in laio_attach_aio_context().
To solve this, add a aio_setup_linux_aio() function which is called
early in raw_open_common. If this fails, propagate the error up. The
signature of aio_get_linux_aio() was not modified, because it seems
preferable to return the actual errno from the possible failing
initialization calls.
Additionally, when the AioContext changes, we need to associate a
LinuxAioState with the new AioContext. Use the bdrv_attach_aio_context
callback and call the new aio_setup_linux_aio(), which will allocate a
new AioContext if needed, and return errors on failures. If it fails for
any reason, fallback to threaded AIO with an error message, as the
device is already in-use by the guest.
Add an assert that aio_get_linux_aio() cannot return NULL.
Signed-off-by: Nishanth Aravamudan <naravamudan@digitalocean.com>
Message-id: 20180622193700.6523-1-naravamudan@digitalocean.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
When we call addIOThread, the epollfd created in aio_context_setup,
but not close it in the process of delIOThread, so the epollfd will leak.
Reorder the code in aio_epoll_disable and reuse it.
Signed-off-by: Jie Wang <wangjie88@huawei.com>
Message-Id: <1526517763-11108-1-git-send-email-wangjie88@huawei.com>
Reviewed-by: Fam Zheng <famz@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
[Mention change to aio_epoll_disable in commit message. - Fam]
Signed-off-by: Fam Zheng <famz@redhat.com>
The name aio_context_in_iothread() is misleading because it also returns
true when called on the main AioContext from the main loop thread, which
is not an IOThread.
This patch renames it to in_aio_context_home_thread() and expands the
doc comment to make the semantics clearer.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
The main loop uses aio_disable_external()/aio_enable_external() to
temporarily disable processing of external AioContext clients like
device emulation.
This allows monitor commands to quiesce I/O and prevent the guest from
submitting new requests while a monitor command is in progress.
The aio_enable_external() API is currently broken when an IOThread is in
aio_poll() waiting for fd activity when the main loop re-enables
external clients. Incrementing ctx->external_disable_cnt does not wake
the IOThread from ppoll(2) so fd processing remains suspended and leads
to unresponsive emulated devices.
This patch adds an aio_notify() call to aio_enable_external() so the
IOThread is kicked out of ppoll(2) and will re-arm the file descriptors.
The bug can be reproduced as follows:
$ qemu -M accel=kvm -m 1024 \
-object iothread,id=iothread0 \
-device virtio-scsi-pci,iothread=iothread0,id=virtio-scsi-pci0 \
-drive if=none,id=drive0,aio=native,cache=none,format=raw,file=test.img \
-device scsi-hd,id=scsi-hd0,drive=drive0 \
-qmp tcp::5555,server,nowait
$ scripts/qmp/qmp-shell localhost:5555
(qemu) blockdev-snapshot-sync device=drive0 snapshot-file=sn1.qcow2
mode=absolute-paths format=qcow2
After blockdev-snapshot-sync completes the SCSI disk will be
unresponsive. This leads to request timeouts inside the guest.
Reported-by: Qianqian Zhu <qizhu@redhat.com>
Reviewed-by: Fam Zheng <famz@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-id: 20170508180705.20609-1-stefanha@redhat.com
Suggested-by: Fam Zheng <famz@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
They start the coroutine on the specified context.
Signed-off-by: Fam Zheng <famz@redhat.com>
Acked-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Kevin Wolf <kwolf@redhat.com>
This patch prepares for the removal of unnecessary lockcnt inc/dec pairs.
Extract the dispatching loop for file descriptor handlers into a new
function aio_dispatch_handlers, and then inline aio_dispatch into
aio_poll.
aio_dispatch can now become void.
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Fam Zheng <famz@redhat.com>
Reviewed-by: Daniel P. Berrange <berrange@redhat.com>
Message-id: 20170213135235.12274-17-pbonzini@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
aio_co_wake provides the infrastructure to start a coroutine on a "home"
AioContext. It will be used by CoMutex and CoQueue, so that coroutines
don't jump from one context to another when they go to sleep on a
mutex or waitqueue. However, it can also be used as a more efficient
alternative to one-shot bottom halves, and saves the effort of tracking
which AioContext a coroutine is running on.
aio_co_schedule is the part of aio_co_wake that starts a coroutine
on a remove AioContext, but it is also useful to implement e.g.
bdrv_set_aio_context callbacks.
The implementation of aio_co_schedule is based on a lock-free
multiple-producer, single-consumer queue. The multiple producers use
cmpxchg to add to a LIFO stack. The consumer (a per-AioContext bottom
half) grabs all items added so far, inverts the list to make it FIFO,
and goes through it one item at a time until it's empty. The data
structure was inspired by OSv, which uses it in the very code we'll
"port" to QEMU for the thread-safe CoMutex.
Most of the new code is really tests.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Fam Zheng <famz@redhat.com>
Message-id: 20170213135235.12274-3-pbonzini@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
This will make it possible to walk the list of bottom halves without
holding the AioContext lock---and in turn to call bottom half
handlers without holding the lock.
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Fam Zheng <famz@redhat.com>
Message-id: 20170112180800.21085-4-pbonzini@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
This will be used for AioHandlers too. There is going to be little
or no contention, so it is better to reuse the same lock.
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Fam Zheng <famz@redhat.com>
Message-id: 20170112180800.21085-2-pbonzini@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
This patch is based on the algorithm for the kvm.ko halt_poll_ns
parameter in Linux. The initial polling time is zero.
If the event loop is woken up within the maximum polling time it means
polling could be effective, so grow polling time.
If the event loop is woken up beyond the maximum polling time it means
polling is not effective, so shrink polling time.
If the event loop makes progress within the current polling time then
the sweet spot has been reached.
This algorithm adjusts the polling time so it can adapt to variations in
workloads. The goal is to reach the sweet spot while also recognizing
when polling would hurt more than help.
Two new trace events, poll_grow and poll_shrink, are added for observing
polling time adjustment.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-id: 20161201192652.9509-13-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
The begin and end callbacks can be used to prepare for the polling loop
and clean up when polling stops. Note that they may only be called once
for multiple aio_poll() calls if polling continues to succeed. Once
polling fails the end callback is invoked before aio_poll() resumes file
descriptor monitoring.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-id: 20161201192652.9509-11-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
The AioContext event loop uses ppoll(2) or epoll_wait(2) to monitor file
descriptors or until a timer expires. In cases like virtqueues, Linux
AIO, and ThreadPool it is technically possible to wait for events via
polling (i.e. continuously checking for events without blocking).
Polling can be faster than blocking syscalls because file descriptors,
the process scheduler, and system calls are bypassed.
The main disadvantage to polling is that it increases CPU utilization.
In classic polling configuration a full host CPU thread might run at
100% to respond to events as quickly as possible. This patch implements
a timeout so we fall back to blocking syscalls if polling detects no
activity. After the timeout no CPU cycles are wasted on polling until
the next event loop iteration.
The run_poll_handlers_begin() and run_poll_handlers_end() trace events
are added to aid performance analysis and troubleshooting. If you need
to know whether polling mode is being used, trace these events to find
out.
Note that the AioContext is now re-acquired before disabling notify_me
in the non-polling case. This makes the code cleaner since notify_me
was enabled outside the non-polling AioContext release region. This
change is correct since it's safe to keep notify_me enabled longer
(disabling is an optimization) but potentially causes unnecessary
event_notifer_set() calls. I think the chance of performance regression
is small here.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-id: 20161201192652.9509-4-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
The new AioPollFn io_poll() argument to aio_set_fd_handler() and
aio_set_event_handler() is used in the next patch.
Keep this code change separate due to the number of files it touches.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-id: 20161201192652.9509-3-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Polling mode will not call ppoll(2)/epoll_wait(2). Therefore we know
there are no fds ready and should avoid looping over fd handlers in
aio_dispatch().
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-id: 20161201192652.9509-2-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Commit 87f68d318222563822b5c6b28192215fc4b4e441 (block: drop aio
functions that operate on the main AioContext) drops qemu_aio_wait
function references mostly while leaves these behind, clean up them.
Signed-off-by: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Message-Id: <1480566640-27264-3-git-send-email-baiyaowei@cmss.chinamobile.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It is simpler and a bit faster, and QEMU does not need the contention
callbacks (and thus the fairness) anymore.
Reviewed-by: Fam Zheng <famz@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <1477565348-5458-21-git-send-email-pbonzini@redhat.com>
Signed-off-by: Fam Zheng <famz@redhat.com>
This is the first step towards having fine-grained critical sections in
dataplane threads, which will resolve lock ordering problems between
address_space_* functions (which need the BQL when doing MMIO, even
after we complete RCU-based dispatch) and the AioContext.
Because AioContext does not use contention callbacks anymore, the
unit test has to be changed.
Previously applied as a0710f7995f914e3044e5899bd8ff6c43c62f916 and
then reverted.
Reviewed-by: Fam Zheng <famz@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <1477565348-5458-19-git-send-email-pbonzini@redhat.com>
Signed-off-by: Fam Zheng <famz@redhat.com>
This will be used by BDRV_POLL_WHILE (and thus by bdrv_drain)
to choose how to wait for I/O completion.
Reviewed-by: Fam Zheng <famz@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <1477565348-5458-12-git-send-email-pbonzini@redhat.com>
Signed-off-by: Fam Zheng <famz@redhat.com>
qemu_bh_delete is already clearing bh->scheduled at the same time
as it's setting bh->deleted. Since it's not using any memory
barriers, there is no synchronization going on for bh->deleted,
and this makes the bh->deleted checks superfluous in aio_compute_timeout,
aio_bh_poll and aio_ctx_check.
Just remove them, and put the (bh->scheduled && bh->deleted) combo
to work in a new function aio_bh_schedule_oneshot. The new function
removes the need to save the QEMUBH pointer between the creation
and the execution of the bottom half.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Correct comments of field notify_me
Cc: Kevin Wolf <kwolf@redhat.com>
Cc: Max Reitz <mreitz@redhat.com>
Signed-off-by: Cao jin <caoj.fnst@cn.fujitsu.com>
Message-id: 1468575858-22975-1-git-send-email-caoj.fnst@cn.fujitsu.com
Signed-off-by: Max Reitz <mreitz@redhat.com>
Parameter **errp of aio_context_setup() is useless, remove it
and clean up the related code.
Cc: Stefan Hajnoczi <stefanha@redhat.com>
Cc: Fam Zheng <famz@redhat.com>
Cc: Eric Blake <eblake@redhat.com>
Signed-off-by: Cao jin <caoj.fnst@cn.fujitsu.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-id: 1468578524-23433-1-git-send-email-caoj.fnst@cn.fujitsu.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
This has better performance because it executes fewer system calls
and does not use a bottom half per disk.
Originally proposed by Ming Lei.
[Changed #include "raw-aio.h" to "block/raw-aio.h" in win32-aio.c to fix
build error as reported by Peter Maydell <peter.maydell@linaro.org>.
--Stefan]
Acked-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-id: 1467650000-51385-1-git-send-email-pbonzini@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
squash! linux-aio: share one LinuxAioState within an AioContext
Re-run scripts/clean-includes to apply the previous commit's
corrections and updates. Besides redundant qemu/typedefs.h, this only
finds a redundant config-host.h include in ui/egl-helpers.c. No idea
how that escaped the previous runs.
Some manual whitespace trimming around dropped includes squashed in.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To minimize code duplication, epoll is hooked into aio-posix's
aio_poll() instead of rolling its own. This approach also has both
compile-time and run-time switchability.
1) When QEMU starts with a small number of fds in the event loop, ppoll
is used.
2) When QEMU starts with a big number of fds, or when more devices are
hot plugged, epoll kicks in when the number of fds hits the threshold.
3) Some fds may not support epoll, such as tty based stdio. In this
case, it falls back to ppoll.
A rough benchmark with scsi-disk on virtio-scsi dataplane (epoll gets
enabled from 64 onward). Numbers are in MB/s.
===============================================
| master | epoll
| |
scsi disks # | read randrw | read randrw
-------------|----------------|----------------
1 | 86 36 | 92 45
8 | 87 43 | 86 41
64 | 71 32 | 70 38
128 | 48 24 | 58 31
256 | 37 19 | 57 28
===============================================
To comply with aio_{disable,enable}_external, we always use ppoll when
aio_external_disabled() is true.
[Removed #ifdef CONFIG_EPOLL around AioContext epollfd field declaration
since the field is also referenced outside CONFIG_EPOLL code.
--Stefan]
Signed-off-by: Fam Zheng <famz@redhat.com>
Message-id: 1446177989-6702-4-git-send-email-famz@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
This is the place to initialize platform specific bits of AioContext.
Signed-off-by: Fam Zheng <famz@redhat.com>
Message-id: 1446177989-6702-3-git-send-email-famz@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
This allows AioContext users to check the enable/disable state of
external clients.
Signed-off-by: Fam Zheng <famz@redhat.com>
Message-id: 1446177989-6702-2-git-send-email-famz@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
This patch introduces aio_bh_call function. It is used to execute
bottom halves as callbacks without adding them to the queue.
Signed-off-by: Pavel Dovgalyuk <pavel.dovgaluk@ispras.ru>
Message-Id: <20150917162450.8676.56980.stgit@PASHA-ISP.def.inno>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Pavel Dovgalyuk <Pavel.Dovgaluk@ispras.ru>