hbitmap_reset has an unobvious property: it rounds requested region up.
It may provoke bugs, like in recently fixed write-blocking mode of
mirror: user calls reset on unaligned region, not keeping in mind that
there are possible unrelated dirty bytes, covered by rounded-up region
and information of this unrelated "dirtiness" will be lost.
Make hbitmap_reset strict: assert that arguments are aligned, allowing
only one exception when @start + @count == hb->orig_size. It's needed
to comfort users of hbitmap_next_dirty_area, which cares about
hb->orig_size.
Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Message-Id: <20190806152611.280389-1-vsementsov@virtuozzo.com>
[Maintainer edit: Max's suggestions from on-list. --js]
[Maintainer edit: Eric's suggestion for aligned macro. --js]
Signed-off-by: John Snow <jsnow@redhat.com>
Test that hbitmap_next_zero and hbitmap_next_dirty_area can find things
after old bitmap end.
Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Message-id: 20190805164652.42409-1-vsementsov@virtuozzo.com
Tested-by: John Snow <jsnow@redhat.com>
Reviewed-by: John Snow <jsnow@redhat.com>
Signed-off-by: John Snow <jsnow@redhat.com>
This reverts commit a33fbb4f8b.
The functionality is unused.
Note: in addition to automatic revert, drop second parameter in
hbitmap_iter_next() call from hbitmap_next_dirty_area() too.
Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Reviewed-by: John Snow <jsnow@redhat.com>
This reverts commit 269576848e.
The functionality is unused. Drop tests.
Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Reviewed-by: John Snow <jsnow@redhat.com>
Add a function that wraps hbitmap_iter_next() and always calls it in
non-advancing mode first, and in advancing mode next. The result should
always be the same.
By using this function everywhere we called hbitmap_iter_next() before,
we should get good test coverage for non-advancing hbitmap_iter_next().
Signed-off-by: Max Reitz <mreitz@redhat.com>
Reviewed-by: Fam Zheng <famz@redhat.com>
Reviewed-by: John Snow <jsnow@redhat.com>
Message-id: 20180613181823.13618-9-mreitz@redhat.com
Signed-off-by: Max Reitz <mreitz@redhat.com>
This new parameter allows the caller to just query the next dirty
position without moving the iterator.
Signed-off-by: Max Reitz <mreitz@redhat.com>
Reviewed-by: Fam Zheng <famz@redhat.com>
Reviewed-by: John Snow <jsnow@redhat.com>
Message-id: 20180613181823.13618-8-mreitz@redhat.com
Signed-off-by: Max Reitz <mreitz@redhat.com>
Applied using the Coccinelle semantic patch scripts/coccinelle/use_osdep.cocci
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Reviewed-by: John Snow <jsnow@redhat.com>
The function searches for next zero bit.
Also add interface for BdrvDirtyBitmap and unit test.
Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Reviewed-by: John Snow <jsnow@redhat.com>
Message-id: 20171012135313.227864-2-vsementsov@virtuozzo.com
Signed-off-by: Jeff Cody <jcody@redhat.com>
The only client of hbitmap_serialization_granularity() is dirty-bitmap's
bdrv_dirty_bitmap_serialization_align(). Keeping the two names consistent
is worthwhile, and the shorter name is more representative of what the
function returns (the required alignment to be used for start/count of
other serialization functions, where violating the alignment causes
assertion failures).
Signed-off-by: Eric Blake <eblake@redhat.com>
Reviewed-by: John Snow <jsnow@redhat.com>
Reviewed-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Fam Zheng <famz@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Test that hbitmap iter is resistant to bitmap resetting.
Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Signed-off-by: Denis V. Lunev <den@openvz.org>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Reviewed-by: John Snow <jsnow@redhat.com>
Message-id: 20170628120530.31251-5-vsementsov@virtuozzo.com
Signed-off-by: Max Reitz <mreitz@redhat.com>
Add calls to hbitmap_is_serializable() (asserting that it returns true)
where necessary (i.e. before every series of (de-)serialization function
invocations).
Signed-off-by: Max Reitz <mreitz@redhat.com>
Message-Id: <20161115225746.3590-3-mreitz@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Fam Zheng <famz@redhat.com>
Replace (((n) + (d) - 1) /(d)) by DIV_ROUND_UP(n,d).
This patch is the result of coccinelle script
scripts/coccinelle/round.cocci
CC: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: John Snow <jsnow@redhat.com>
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
Remove glib.h includes, as it is provided by osdep.h.
This commit was created with scripts/clean-includes.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Eric Blake <eblake@redhat.com>
Tested-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
Clean up includes so that osdep.h is included first and headers
which it implies are not included manually.
This commit was created with scripts/clean-includes.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Eric Blake <eblake@redhat.com>
Tested-by: Eric Blake <eblake@redhat.com>
My Coccinelle semantic patch finds a few more, because it also fixes up
the equally pointless conditional
if (foo) {
free(foo);
foo = NULL;
}
Result (feel free to squash it into your patch):
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
The function bdrv_clear_dirty_bitmap() is updated to use
faster hbitmap_reset_all() call.
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Signed-off-by: zhanghailiang <zhang.zhanghailiang@huawei.com>
Signed-off-by: Gonglei <arei.gonglei@huawei.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: John Snow <jsnow@redhat.com>
Message-id: 555E868A.60506@cn.fujitsu.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
The general approach is to set bits close to the boundaries of
where we are truncating and ensure that everything appears to
have gone OK.
We test growing and shrinking by different amounts:
- Less than the granularity
- Less than the granularity, but across a boundary
- Less than sizeof(unsigned long)
- Less than sizeof(unsigned long), but across a ulong boundary
- More than sizeof(unsigned long)
Signed-off-by: John Snow <jsnow@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-id: 1429314609-29776-17-git-send-email-jsnow@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
hbitmap_iter_init causes an out-of-bounds access when the "first"
argument is or greater than or equal to the size of the bitmap.
Forbid this with an assertion, and remove the failing testcase.
Reported-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
HBitmaps provides an array of bits. The bits are stored as usual in an
array of unsigned longs, but HBitmap is also optimized to provide fast
iteration over set bits; going from one bit to the next is O(logB n)
worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
that the number of levels is in fact fixed.
In order to do this, it stacks multiple bitmaps with progressively coarser
granularity; in all levels except the last, bit N is set iff the N-th
unsigned long is nonzero in the immediately next level. When iteration
completes on the last level it can examine the 2nd-last level to quickly
skip entire words, and even do so recursively to skip blocks of 64 words or
powers thereof (32 on 32-bit machines).
Given an index in the bitmap, it can be split in group of bits like
this (for the 64-bit case):
bits 0-57 => word in the last bitmap | bits 58-63 => bit in the word
bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
So it is easy to move up simply by shifting the index right by
log2(BITS_PER_LONG) bits. To move down, you shift the index left
similarly, and add the word index within the group. Iteration uses
ffs (find first set bit) to find the next word to examine; this
operation can be done in constant time in most current architectures.
Setting or clearing a range of m bits on all levels, the work to perform
is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
When iterating on a bitmap, each bit (on any level) is only visited
once. Hence, The total cost of visiting a bitmap with m bits in it is
the number of bits that are set in all bitmaps. Unless the bitmap is
extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
cost of advancing from one bit to the next is usually constant.
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>