The XDMA engine embedded in the Aspeed SOCs performs PCI DMA operations
between the SOC (acting as a BMC) and a host processor in a server.
The XDMA engine exists on the AST2400, AST2500, and AST2600 SOCs, so
enable it for all of those. Add trace events on the important register
writes in the XDMA engine.
Signed-off-by: Eddie James <eajames@linux.ibm.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-id: 20190618165311.27066-21-clg@kaod.org
[clg: - changed title ]
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The Aspeed SoCs have two MACs. Extend the Aspeed model to support a
second NIC.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Joel Stanley <joel@jms.id.au>
Message-id: 20190618165311.27066-7-clg@kaod.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The current models of the Aspeed SoCs only have one CPU but future
ones will support SMP. Introduce a new num_cpus field at the SoC class
level to define the number of available CPUs per SoC and also
introduce a 'num-cpus' property to activate the CPUs configured for
the machine.
The max_cpus limit of the machine should depend on the SoC definition
but, unfortunately, these values are not available when the machine
class is initialized. This is the reason why we add a check on
num_cpus in the AspeedSoC realize handler.
SMP support will be activated when models for such SoCs are implemented.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Joel Stanley <joel@jms.id.au>
Message-id: 20190618165311.27066-6-clg@kaod.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
All systems have an RTC.
The IRQ is hooked up but the model does not use it at this stage. There
is no guest code that uses it, so this limitation is acceptable.
Signed-off-by: Joel Stanley <joel@jms.id.au>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20190618165311.27066-5-clg@kaod.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This will simplify the definition of new SoCs, like the AST2600 which
should use a slightly different address space and have a different set
of controllers.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Joel Stanley <joel@jms.id.au>
Message-id: 20190618165311.27066-3-clg@kaod.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This will simplify the definition of new SoCs, like the AST2600 which
should use a different CPU and a different IRQ number layout.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Joel Stanley <joel@jms.id.au>
Message-id: 20190618165311.27066-2-clg@kaod.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Datasheet for i.MX7 is incorrect and i.MX7's PCI IRQ mapping matches
that of i.MX6:
* INTD/MSI 122
* INTC 123
* INTB 124
* INTA 125
Fix all of the relevant code to reflect that fact. Needed by latest
Linux kernels.
(Reference: Linux kernel commit 538d6e9d597584e80 from an
NXP employee confirming that the datasheet is incorrect and
with a report of a test against hardware.)
Signed-off-by: Andrey Smirnov <andrew.smirnov@gmail.com>
Cc: Peter Maydell <peter.maydell@linaro.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: qemu-devel@nongnu.org
Cc: qemu-arm@nongnu.org
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
[PMM: added ref to kernel commit confirming the datasheet error]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Add no-op/unimplemented PCIE PHY IP block. Needed by new kernels to
use PCIE.
Signed-off-by: Andrey Smirnov <andrew.smirnov@gmail.com>
Cc: Peter Maydell <peter.maydell@linaro.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: qemu-devel@nongnu.org
Cc: qemu-arm@nongnu.org
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The SSE-200 hardware has configurable integration settings which
determine whether its two CPUs have the FPU and DSP:
* CPU0_FPU (default 0)
* CPU0_DSP (default 0)
* CPU1_FPU (default 1)
* CPU1_DSP (default 1)
Similarly, the IoTKit has settings for its single CPU:
* CPU0_FPU (default 1)
* CPU0_DSP (default 1)
Of our four boards that use either the IoTKit or the SSE-200:
* mps2-an505, mps2-an521 and musca-a use the default settings
* musca-b1 enables FPU and DSP on both CPUs
Currently QEMU models all these boards using CPUs with
both FPU and DSP enabled. This means that we are incorrect
for mps2-an521 and musca-a, which should not have FPU or DSP
on CPU0.
Create QOM properties on the ARMSSE devices corresponding to the
default h/w integration settings, and make the Musca-B1 board
enable FPU and DSP on both CPUs. This fixes the mps2-an521
and musca-a behaviour, and leaves the musca-b1 and mps2-an505
behaviour unchanged.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-id: 20190517174046.11146-5-peter.maydell@linaro.org
Create "vfp" and "dsp" properties on the armv7m container object
which will be forwarded to its CPU object, so that SoCs can
configure whether the CPU has these features.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-id: 20190517174046.11146-4-peter.maydell@linaro.org
This is the common header guard idiom:
/*
* File comment
*/
#ifndef GUARD_SYMBOL_H
#define GUARD_SYMBOL_H
... actual contents ...
#endif
A few of our headers have some #include before the guard.
target/tilegx/spr_def_64.h has #ifndef __DOXYGEN__ outside the guard.
A few more have the #define elsewhere.
Change them to match the common idiom. For spr_def_64.h, that means
dropping #ifndef __DOXYGEN__. While there, rename guard symbols to
make scripts/clean-header-guards.pl happy.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20190604181618.19980-2-armbru@redhat.com>
[Rebased with conflicts resolved automatically]
No header includes qemu-common.h after this commit, as prescribed by
qemu-common.h's file comment.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20190523143508.25387-5-armbru@redhat.com>
[Rebased with conflicts resolved automatically, except for
include/hw/arm/xlnx-zynqmp.h hw/arm/nrf51_soc.c hw/arm/msf2-soc.c
block/qcow2-refcount.c block/qcow2-cluster.c block/qcow2-cache.c
target/arm/cpu.h target/lm32/cpu.h target/m68k/cpu.h target/mips/cpu.h
target/moxie/cpu.h target/nios2/cpu.h target/openrisc/cpu.h
target/riscv/cpu.h target/tilegx/cpu.h target/tricore/cpu.h
target/unicore32/cpu.h target/xtensa/cpu.h; bsd-user/main.c and
net/tap-bsd.c fixed up]
To be coherent with the other peripherals contained in the
BCM2835PeripheralState structure, directly allocate the PL011State
(instead of using the pl011 uart as a pointer to a SysBusDevice).
Initialize the PL011State with object_initialize() instead of
object_new().
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-Id: <20190507163416.24647-6-philmd@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-id: 20190520214342.13709-5-philmd@redhat.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The header file hw/arm/arm.h now includes only declarations
relating to hw/arm/boot.c functionality. Rename it accordingly,
and adjust its header comment.
The bulk of this commit was created via
perl -pi -e 's|hw/arm/arm.h|hw/arm/boot.h|' hw/arm/*.c include/hw/arm/*.h
In a few cases we can just delete the #include:
hw/arm/msf2-soc.c, include/hw/arm/aspeed_soc.h and
include/hw/arm/bcm2836.h did not require it.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-id: 20190516163857.6430-4-peter.maydell@linaro.org
The system_clock_scale global is used only by the armv7m systick
device; move the extern declaration to the armv7m_systick.h header,
and expand the comment to explain what it is and that it should
ideally be replaced with a different approach.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-id: 20190516163857.6430-2-peter.maydell@linaro.org
Cleaned up with scripts/clean-header-guards.pl.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20190315145123.28030-9-armbru@redhat.com>
We currently use Qemu's default of 128MB. As we know how much ram each
machine ships with, make it easier on users by setting a default.
It can still be overridden with -m on the command line.
Signed-off-by: Joel Stanley <joel@jms.id.au>
Reviewed-by: Andrew Jeffery <andrew@aj.id.au>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190503022958.1394-1-joel@jms.id.au
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The ARM virt machines put firmware in flash memory. To configure it,
you use -drive if=pflash,unit=0,... and optionally -drive
if=pflash,unit=1,...
Why two -drive? This permits setting up one part of the flash memory
read-only, and the other part read/write. It also makes upgrading
firmware on the host easier. Below the hood, we get two separate
flash devices, because we were too lazy to improve our flash device
models to support sector protection.
The problem at hand is to do the same with -blockdev somehow, as one
more step towards deprecating -drive.
We recently solved this problem for x86 PC machines, in commit
ebc29e1bea. See the commit message for design rationale.
This commit solves it for ARM virt basically the same way: new machine
properties pflash0, pflash1 forward to the onboard flash devices'
properties. Requires creating the onboard devices in the
.instance_init() method virt_instance_init(). The existing code to
pick up drives defined with -drive if=pflash is replaced by code to
desugar into the machine properties.
There are a few behavioral differences, though:
* The flash devices are always present (x86: only present if
configured)
* Flash base addresses and sizes are fixed (x86: sizes depend on
images, mapped back to back below a fixed address)
* -bios configures contents of first pflash (x86: -bios configures ROM
contents)
* -bios is rejected when first pflash is also configured with -machine
pflash0=... (x86: bios is silently ignored then)
* -machine pflash1=... does not require -machine pflash0=... (x86: it
does).
The actual code is a bit simpler than for x86 mostly due to the first
two differences.
Before the patch, all the action is in create_flash(), called from the
machine's .init() method machvirt_init():
main()
machine_run_board_init()
machvirt_init()
create_flash()
create_one_flash() for flash[0]
create
configure
includes obeying -drive if=pflash,unit=0
realize
map
fall back to -bios
create_one_flash() for flash[1]
create
configure
includes obeying -drive if=pflash,unit=1
realize
map
update FDT
To make the machine properties work, we need to move device creation
to its .instance_init() method virt_instance_init().
Another complication is machvirt_init()'s computation of
@firmware_loaded: it predicts what create_flash() will do. Instead of
predicting what create_flash()'s replacement virt_firmware_init() will
do, I decided to have virt_firmware_init() return what it did.
Requires calling it a bit earlier.
Resulting call tree:
main()
current_machine = object_new()
...
virt_instance_init()
virt_flash_create()
virt_flash_create1() for flash[0]
create
configure: set defaults
become child of machine [NEW]
add machine prop pflash0 as alias for drive [NEW]
virt_flash_create1() for flash[1]
create
configure: set defaults
become child of machine [NEW]
add machine prop pflash1 as alias for drive [NEW]
for all machine props from the command line: machine_set_property()
...
property_set_alias() for machine props pflash0, pflash1
...
set_drive() for cfi.pflash01 prop drive
this is how -machine pflash0=... etc set
machine_run_board_init(current_machine);
virt_firmware_init()
pflash_cfi01_legacy_drive()
legacy -drive if=pflash,unit=0 and =1 [NEW]
virt_flash_map()
virt_flash_map1() for flash[0]
configure: num-blocks
realize
map
virt_flash_map1() for flash[1]
configure: num-blocks
realize
map
fall back to -bios
virt_flash_fdt()
update FDT
You have László to thank for making me explain this in detail.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Acked-by: Laszlo Ersek <lersek@redhat.com>
Message-id: 20190416091348.26075-4-armbru@redhat.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Since uWireSlave is only used in this new header, there is no
need to expose it via "qemu/typedefs.h".
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-id: 20190412165416.7977-9-philmd@redhat.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The SMMUNotifierNode struct is not necessary and brings extra
complexity so let's remove it. We now directly track the SMMUDevices
which have registered IOMMU MR notifiers.
This is inspired from the same transformation on intel-iommu
done in commit b4a4ba0d68
("intel-iommu: remove IntelIOMMUNotifierNode")
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Message-id: 20190409160219.19026-1-eric.auger@redhat.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Up to now the memory map has been static and the high IO region
base has always been 256GiB.
This patch modifies the virt_set_memmap() function, which freezes
the memory map, so that the high IO range base becomes floating,
located after the initial RAM and the device memory.
The function computes
- the base of the device memory,
- the size of the device memory,
- the high IO region base
- the highest GPA used in the memory map.
Entries of the high IO region are assigned a base address. The
device memory is initialized.
The highest GPA used in the memory map will be used at VM creation
to choose the requested IPA size.
Setting all the existing highmem IO regions beyond the RAM
allows to have a single contiguous RAM region (initial RAM and
possible hotpluggable device memory). That way we do not need
to do invasive changes in the EDK2 FW to support a dynamic
RAM base.
Still the user cannot request an initial RAM size greater than 255GB.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Message-id: 20190304101339.25970-8-eric.auger@redhat.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
In the prospect to introduce an extended memory map supporting more
RAM, let's split the memory map array into two parts:
- the former a15memmap, renamed base_memmap, contains regions below
and including the RAM. MemMapEntries initialized in this array
have a static size and base address.
- extended_memmap, only initialized with entries located after the
RAM. MemMapEntries initialized in this array only get their size
initialized. Their base address is dynamically computed depending
on the the top of the RAM, with same alignment as their size.
Eventually base_memmap entries are copied into the extended_memmap
array. Using two separate arrays however clarifies which entries
are statically allocated and those which are dynamically allocated.
This new split will allow to grow the RAM size without changing the
description of the high IO entries.
We introduce a new virt_set_memmap() helper function which
"freezes" the memory map. We call it in machvirt_init as
memory attributes of the machine are not yet set when
virt_instance_init() gets called.
The memory map is unchanged (the top of the initial RAM still is
256GiB). Then come the high IO regions with same layout as before.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Message-id: 20190304101339.25970-4-eric.auger@redhat.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
In preparation for a split of the memory map into a static
part and a dynamic part floating after the RAM, let's rename the
regions located after the RAM
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Message-id: 20190304101339.25970-3-eric.auger@redhat.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Create and connect the MHUs in the SSE-200.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190219125808.25174-3-peter.maydell@linaro.org
The region 0x40010000 .. 0x4001ffff and its secure-only alias
at 0x50010000... are for per-CPU devices. We implement this by
giving each CPU its own container memory region, where the
per-CPU devices live. Unfortunately, the alias region which
makes devices mapped at 0x4... addresses also appear at 0x5...
is only implemented in the overall "all CPUs" container. The
effect of this bug is that the CPU_IDENTITY register block appears
only at 0x4001f000, but not at the 0x5001f000 alias where it should
also appear. Guests (like very recent Arm Trusted Firmware-M)
which try to access it at 0x5001f000 will crash.
Fix this by moving the handling for this alias from the "all CPUs"
container to the per-CPU container. (We leave the aliases for
0x1... and 0x3... in the overall container, because there are
no per-CPU devices there.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20190215180500.6906-1-peter.maydell@linaro.org
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
The Musca boards have DAPLink firmware that sets the initial
secure VTOR value (the location of the vector table) differently
depending on the boot mode (from flash, from RAM, etc). Export
the init-svtor as a QOM property of the ARMSSE object so that
the board can change it.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
In commit 4b635cf7a9 we added a QOM property to the ARMSSE
object, but forgot to add it to the documentation comment in the
header. Correct the omission.
Fixes: 4b635cf7a9 ("hw/arm/armsse: Make SRAM bank size configurable")
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Add a model of the SSE-200, now we have put in all
the code that lets us make it different from the IoTKit.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190121185118.18550-22-peter.maydell@linaro.org
Instantiate a copy of the CPU_IDENTITY register block for each CPU
in an SSE-200.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190121185118.18550-21-peter.maydell@linaro.org
The SSE-200 has a "CPU local security control" register bank; add an
unimplemented-device stub for it. (The register bank has only one
interesting register, which allows the guest to lock down changes
to various CPU registers so they cannot be modified further. We
don't support that in our Cortex-M33 model anyway.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190121185118.18550-19-peter.maydell@linaro.org
The SSE-200 gives each CPU a register bank to use to control its
L1 instruction cache. Put in an unimplemented-device stub for this.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190121185118.18550-18-peter.maydell@linaro.org
Add unimplemented-device stubs for the various Power Policy Unit
devices that the SSE-200 has.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190121185118.18550-17-peter.maydell@linaro.org
The SSE-200 has two Message Handling Units (MHUs), which sit behind
the APB PPC0. Wire up some unimplemented-device stubs for these,
since we don't yet implement a real model of this device.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190121185118.18550-16-peter.maydell@linaro.org
Create a cluster object to hold each CPU in the SSE. They are
logically distinct and may be configured differently (for instance
one may not have an FPU where the other does).
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190121185118.18550-14-peter.maydell@linaro.org
Give each CPU its own container memory region. This is necessary
for two reasons:
* some devices are instantiated one per CPU and the CPU sees only
its own device
* since a memory region can only be put into one container, we must
give each armv7m object a different MemoryRegion as its 'memory'
property, or a dual-CPU configuration will assert on realize when
the second armv7m object tries to put the MR into a container when
it is already in the first armv7m object's container
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190121185118.18550-13-peter.maydell@linaro.org
The SSE-200 has two Cortex-M33 CPUs. These see the same view
of memory, with the exception of the "private CPU region" which
has per-CPU devices. Internal device interrupts for SSE-200
devices are mostly wired up to both CPUs, with the exception of
a few per-CPU devices. External GPIO inputs on the SSE-200
device are provided for the second CPU's interrupts above 32,
as is already the case for the first CPU.
Refactor the code to support creation of multiple CPUs.
For the moment we leave all CPUs with the same view of
memory: this will not work in the multiple-CPU case, but
we will fix this in the following commit.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190121185118.18550-12-peter.maydell@linaro.org
For the IoTKit the SRAM bank size is always 32K (15 bits); for the
SSE-200 this is a configurable parameter, which defaults to 32K but
can be changed when it is built into a particular SoC. For instance
the Musca-B1 board sets it to 128K (17 bits).
Make the bank size a QOM property. We follow the SSE-200 hardware in
naming the parameter SRAM_ADDR_WIDTH, which specifies the number of
address bits of a single SRAM bank.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190121185118.18550-11-peter.maydell@linaro.org
The SSE-200 has four banks of SRAM, each with its own
Memory Protection Controller, where the IoTKit has only one.
Make the number of SRAM banks a field in ARMSSEInfo.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190121185118.18550-10-peter.maydell@linaro.org
Rename the files that used to be iotkit.[ch] to
armsse.[ch] to reflect the fact they new cover
multiple Arm subsystems for embedded.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190121185118.18550-8-peter.maydell@linaro.org
The Arm SSE-200 Subsystem for Embedded is a revised and
extended version of the older IoTKit SoC. Prepare for
adding a model of it by refactoring the IoTKit code into
an abstract base class which contains the functionality,
driven by a class data block specific to each subclass.
(This is the same approach used by the existing bcm283x
SoC family implementation.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190121185118.18550-6-peter.maydell@linaro.org
The Arm IoTKit was effectively the forerunner of a series of
subsystems for embedded SoCs, named the SSE-050, SSE-100 and SSE-200:
https://developer.arm.com/products/system-design/subsystems
These are generally quite similar, though later iterations have
extra devices that earlier ones do not.
We want to add a model of the SSE-200, which means refactoring the
IoTKit code into an abstract base class and subclasses (using the
same design that the bcm283x SoC and Aspeed SoC family
implementations do). As a first step, rename the IoTKit struct and
QOM macros to ARMSSE, which is what we're going to name the base
class. We temporarily retain TYPE_IOTKIT to avoid changing the
code that instantiates a TYPE_IOTKIT device here and then changing
it back again when it is re-introduced as a subclass.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190121185118.18550-5-peter.maydell@linaro.org
Expose "start-powered-off" as a property of the ARMv7M container,
which we just pass through to the CPU object in the same way that we
do for "init-svtor" and "idau". (We want this for the SSE-200, which
powers up only the first CPU at reset and leaves the second powered
down.)
As with the other CPU properties here, we can't just use alias
properties, because the CPU QOM object is not created until armv7m
realize time.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190121185118.18550-4-peter.maydell@linaro.org
Recent microbit firmwares panic if the TWI magnetometer/accelerometer
devices are not detected during startup. We don't implement TWI (I2C)
so let's stub out these devices just to let the firmware boot.
Signed-off by: Steffen Görtz <contrib@steffen-goertz.de>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-id: 20190110094020.18354-2-stefanha@redhat.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
[PMM: fixed comment style]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
There is only one header file requiring this typedef (hw/arm/pxa.h),
let it include "hw/pcmcia.h" directly to simplify "qemu/typedefs.h".
To clean "qemu/typedefs.h", move the declaration to "hw/pcmcia.h"
(removing the forward declaration).
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
[thuth: slightly tweaked commit message]
Signed-off-by: Thomas Huth <thuth@redhat.com>
This stubs enables the microbit-micropython firmware to run
on the microbit machine.
Signed-off-by: Steffen Görtz <contrib@steffen-goertz.de>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-id: 20190103091119.9367-12-stefanha@redhat.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>