/* * Target-specific parts of the CPU object * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qapi/error.h" #include "exec/target_page.h" #include "hw/qdev-core.h" #include "hw/qdev-properties.h" #include "qemu/error-report.h" #include "migration/vmstate.h" #ifdef CONFIG_USER_ONLY #include "qemu.h" #else #include "hw/core/sysemu-cpu-ops.h" #include "exec/address-spaces.h" #endif #include "sysemu/tcg.h" #include "sysemu/kvm.h" #include "sysemu/replay.h" #include "exec/cpu-common.h" #include "exec/exec-all.h" #include "exec/translate-all.h" #include "exec/log.h" #include "hw/core/accel-cpu.h" #include "trace/trace-root.h" #include "qemu/accel.h" uintptr_t qemu_host_page_size; intptr_t qemu_host_page_mask; #ifndef CONFIG_USER_ONLY static int cpu_common_post_load(void *opaque, int version_id) { CPUState *cpu = opaque; /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the version_id is increased. */ cpu->interrupt_request &= ~0x01; tlb_flush(cpu); /* loadvm has just updated the content of RAM, bypassing the * usual mechanisms that ensure we flush TBs for writes to * memory we've translated code from. So we must flush all TBs, * which will now be stale. */ tb_flush(cpu); return 0; } static int cpu_common_pre_load(void *opaque) { CPUState *cpu = opaque; cpu->exception_index = -1; return 0; } static bool cpu_common_exception_index_needed(void *opaque) { CPUState *cpu = opaque; return tcg_enabled() && cpu->exception_index != -1; } static const VMStateDescription vmstate_cpu_common_exception_index = { .name = "cpu_common/exception_index", .version_id = 1, .minimum_version_id = 1, .needed = cpu_common_exception_index_needed, .fields = (VMStateField[]) { VMSTATE_INT32(exception_index, CPUState), VMSTATE_END_OF_LIST() } }; static bool cpu_common_crash_occurred_needed(void *opaque) { CPUState *cpu = opaque; return cpu->crash_occurred; } static const VMStateDescription vmstate_cpu_common_crash_occurred = { .name = "cpu_common/crash_occurred", .version_id = 1, .minimum_version_id = 1, .needed = cpu_common_crash_occurred_needed, .fields = (VMStateField[]) { VMSTATE_BOOL(crash_occurred, CPUState), VMSTATE_END_OF_LIST() } }; const VMStateDescription vmstate_cpu_common = { .name = "cpu_common", .version_id = 1, .minimum_version_id = 1, .pre_load = cpu_common_pre_load, .post_load = cpu_common_post_load, .fields = (VMStateField[]) { VMSTATE_UINT32(halted, CPUState), VMSTATE_UINT32(interrupt_request, CPUState), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription*[]) { &vmstate_cpu_common_exception_index, &vmstate_cpu_common_crash_occurred, NULL } }; #endif void cpu_exec_realizefn(CPUState *cpu, Error **errp) { #ifndef CONFIG_USER_ONLY CPUClass *cc = CPU_GET_CLASS(cpu); #endif cpu_list_add(cpu); if (!accel_cpu_realizefn(cpu, errp)) { return; } /* NB: errp parameter is unused currently */ if (tcg_enabled()) { tcg_exec_realizefn(cpu, errp); } #ifdef CONFIG_USER_ONLY assert(qdev_get_vmsd(DEVICE(cpu)) == NULL || qdev_get_vmsd(DEVICE(cpu))->unmigratable); #else if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu); } if (cc->sysemu_ops->legacy_vmsd != NULL) { vmstate_register(NULL, cpu->cpu_index, cc->sysemu_ops->legacy_vmsd, cpu); } #endif /* CONFIG_USER_ONLY */ } void cpu_exec_unrealizefn(CPUState *cpu) { #ifndef CONFIG_USER_ONLY CPUClass *cc = CPU_GET_CLASS(cpu); if (cc->sysemu_ops->legacy_vmsd != NULL) { vmstate_unregister(NULL, cc->sysemu_ops->legacy_vmsd, cpu); } if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { vmstate_unregister(NULL, &vmstate_cpu_common, cpu); } #endif if (tcg_enabled()) { tcg_exec_unrealizefn(cpu); } cpu_list_remove(cpu); } /* * This can't go in hw/core/cpu.c because that file is compiled only * once for both user-mode and system builds. */ static Property cpu_common_props[] = { #ifdef CONFIG_USER_ONLY /* * Create a property for the user-only object, so users can * adjust prctl(PR_SET_UNALIGN) from the command-line. * Has no effect if the target does not support the feature. */ DEFINE_PROP_BOOL("prctl-unalign-sigbus", CPUState, prctl_unalign_sigbus, false), #else /* * Create a memory property for softmmu CPU object, so users can * wire up its memory. The default if no link is set up is to use * the system address space. */ DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION, MemoryRegion *), #endif DEFINE_PROP_END_OF_LIST(), }; static bool cpu_get_start_powered_off(Object *obj, Error **errp) { CPUState *cpu = CPU(obj); return cpu->start_powered_off; } static void cpu_set_start_powered_off(Object *obj, bool value, Error **errp) { CPUState *cpu = CPU(obj); cpu->start_powered_off = value; } void cpu_class_init_props(DeviceClass *dc) { ObjectClass *oc = OBJECT_CLASS(dc); device_class_set_props(dc, cpu_common_props); /* * We can't use DEFINE_PROP_BOOL in the Property array for this * property, because we want this to be settable after realize. */ object_class_property_add_bool(oc, "start-powered-off", cpu_get_start_powered_off, cpu_set_start_powered_off); } void cpu_exec_initfn(CPUState *cpu) { cpu->as = NULL; cpu->num_ases = 0; #ifndef CONFIG_USER_ONLY cpu->thread_id = qemu_get_thread_id(); cpu->memory = get_system_memory(); object_ref(OBJECT(cpu->memory)); #endif } const char *parse_cpu_option(const char *cpu_option) { ObjectClass *oc; CPUClass *cc; gchar **model_pieces; const char *cpu_type; model_pieces = g_strsplit(cpu_option, ",", 2); if (!model_pieces[0]) { error_report("-cpu option cannot be empty"); exit(1); } oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]); if (oc == NULL) { error_report("unable to find CPU model '%s'", model_pieces[0]); g_strfreev(model_pieces); exit(EXIT_FAILURE); } cpu_type = object_class_get_name(oc); cc = CPU_CLASS(oc); cc->parse_features(cpu_type, model_pieces[1], &error_fatal); g_strfreev(model_pieces); return cpu_type; } void list_cpus(const char *optarg) { /* XXX: implement xxx_cpu_list for targets that still miss it */ #if defined(cpu_list) cpu_list(); #endif } #if defined(CONFIG_USER_ONLY) void tb_invalidate_phys_addr(target_ulong addr) { mmap_lock(); tb_invalidate_phys_page_range(addr, addr + 1); mmap_unlock(); } #else void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs) { ram_addr_t ram_addr; MemoryRegion *mr; hwaddr l = 1; if (!tcg_enabled()) { return; } RCU_READ_LOCK_GUARD(); mr = address_space_translate(as, addr, &addr, &l, false, attrs); if (!(memory_region_is_ram(mr) || memory_region_is_romd(mr))) { return; } ram_addr = memory_region_get_ram_addr(mr) + addr; tb_invalidate_phys_page_range(ram_addr, ram_addr + 1); } #endif /* Add a breakpoint. */ int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, CPUBreakpoint **breakpoint) { CPUClass *cc = CPU_GET_CLASS(cpu); CPUBreakpoint *bp; if (cc->gdb_adjust_breakpoint) { pc = cc->gdb_adjust_breakpoint(cpu, pc); } bp = g_malloc(sizeof(*bp)); bp->pc = pc; bp->flags = flags; /* keep all GDB-injected breakpoints in front */ if (flags & BP_GDB) { QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); } else { QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); } if (breakpoint) { *breakpoint = bp; } trace_breakpoint_insert(cpu->cpu_index, pc, flags); return 0; } /* Remove a specific breakpoint. */ int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) { CPUClass *cc = CPU_GET_CLASS(cpu); CPUBreakpoint *bp; if (cc->gdb_adjust_breakpoint) { pc = cc->gdb_adjust_breakpoint(cpu, pc); } QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { if (bp->pc == pc && bp->flags == flags) { cpu_breakpoint_remove_by_ref(cpu, bp); return 0; } } return -ENOENT; } /* Remove a specific breakpoint by reference. */ void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *bp) { QTAILQ_REMOVE(&cpu->breakpoints, bp, entry); trace_breakpoint_remove(cpu->cpu_index, bp->pc, bp->flags); g_free(bp); } /* Remove all matching breakpoints. */ void cpu_breakpoint_remove_all(CPUState *cpu, int mask) { CPUBreakpoint *bp, *next; QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { if (bp->flags & mask) { cpu_breakpoint_remove_by_ref(cpu, bp); } } } /* enable or disable single step mode. EXCP_DEBUG is returned by the CPU loop after each instruction */ void cpu_single_step(CPUState *cpu, int enabled) { if (cpu->singlestep_enabled != enabled) { cpu->singlestep_enabled = enabled; if (kvm_enabled()) { kvm_update_guest_debug(cpu, 0); } trace_breakpoint_singlestep(cpu->cpu_index, enabled); } } void cpu_abort(CPUState *cpu, const char *fmt, ...) { va_list ap; va_list ap2; va_start(ap, fmt); va_copy(ap2, ap); fprintf(stderr, "qemu: fatal: "); vfprintf(stderr, fmt, ap); fprintf(stderr, "\n"); cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP); if (qemu_log_separate()) { FILE *logfile = qemu_log_trylock(); if (logfile) { fprintf(logfile, "qemu: fatal: "); vfprintf(logfile, fmt, ap2); fprintf(logfile, "\n"); cpu_dump_state(cpu, logfile, CPU_DUMP_FPU | CPU_DUMP_CCOP); qemu_log_unlock(logfile); } } va_end(ap2); va_end(ap); replay_finish(); #if defined(CONFIG_USER_ONLY) { struct sigaction act; sigfillset(&act.sa_mask); act.sa_handler = SIG_DFL; act.sa_flags = 0; sigaction(SIGABRT, &act, NULL); } #endif abort(); } /* physical memory access (slow version, mainly for debug) */ #if defined(CONFIG_USER_ONLY) int cpu_memory_rw_debug(CPUState *cpu, vaddr addr, void *ptr, size_t len, bool is_write) { int flags; vaddr l, page; void * p; uint8_t *buf = ptr; while (len > 0) { page = addr & TARGET_PAGE_MASK; l = (page + TARGET_PAGE_SIZE) - addr; if (l > len) l = len; flags = page_get_flags(page); if (!(flags & PAGE_VALID)) return -1; if (is_write) { if (!(flags & PAGE_WRITE)) return -1; /* XXX: this code should not depend on lock_user */ if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) return -1; memcpy(p, buf, l); unlock_user(p, addr, l); } else { if (!(flags & PAGE_READ)) return -1; /* XXX: this code should not depend on lock_user */ if (!(p = lock_user(VERIFY_READ, addr, l, 1))) return -1; memcpy(buf, p, l); unlock_user(p, addr, 0); } len -= l; buf += l; addr += l; } return 0; } #endif bool target_words_bigendian(void) { #if TARGET_BIG_ENDIAN return true; #else return false; #endif } void page_size_init(void) { /* NOTE: we can always suppose that qemu_host_page_size >= TARGET_PAGE_SIZE */ if (qemu_host_page_size == 0) { qemu_host_page_size = qemu_real_host_page_size(); } if (qemu_host_page_size < TARGET_PAGE_SIZE) { qemu_host_page_size = TARGET_PAGE_SIZE; } qemu_host_page_mask = -(intptr_t)qemu_host_page_size; }