/* * OpenRISC float helper routines * * Copyright (c) 2011-2012 Jia Liu * Feng Gao * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/helper-proto.h" #include "exception.h" #include "fpu/softfloat.h" static int ieee_ex_to_openrisc(int fexcp) { int ret = 0; if (fexcp & float_flag_invalid) { ret |= FPCSR_IVF; } if (fexcp & float_flag_overflow) { ret |= FPCSR_OVF; } if (fexcp & float_flag_underflow) { ret |= FPCSR_UNF; } if (fexcp & float_flag_divbyzero) { ret |= FPCSR_DZF; } if (fexcp & float_flag_inexact) { ret |= FPCSR_IXF; } return ret; } void HELPER(update_fpcsr)(CPUOpenRISCState *env) { int tmp = get_float_exception_flags(&env->fp_status); if (tmp) { set_float_exception_flags(0, &env->fp_status); tmp = ieee_ex_to_openrisc(tmp); if (tmp) { env->fpcsr |= tmp; if (env->fpcsr & FPCSR_FPEE) { helper_exception(env, EXCP_FPE); } } } } void cpu_set_fpcsr(CPUOpenRISCState *env, uint32_t val) { static const int rm_to_sf[] = { float_round_nearest_even, float_round_to_zero, float_round_up, float_round_down }; env->fpcsr = val & 0xfff; set_float_rounding_mode(rm_to_sf[extract32(val, 1, 2)], &env->fp_status); } uint64_t HELPER(itofd)(CPUOpenRISCState *env, uint64_t val) { return int64_to_float64(val, &env->fp_status); } uint32_t HELPER(itofs)(CPUOpenRISCState *env, uint32_t val) { return int32_to_float32(val, &env->fp_status); } uint64_t HELPER(ftoid)(CPUOpenRISCState *env, uint64_t val) { return float64_to_int64_round_to_zero(val, &env->fp_status); } uint32_t HELPER(ftois)(CPUOpenRISCState *env, uint32_t val) { return float32_to_int32_round_to_zero(val, &env->fp_status); } uint64_t HELPER(stod)(CPUOpenRISCState *env, uint32_t val) { return float32_to_float64(val, &env->fp_status); } uint32_t HELPER(dtos)(CPUOpenRISCState *env, uint64_t val) { return float64_to_float32(val, &env->fp_status); } #define FLOAT_CALC(name) \ uint64_t helper_float_ ## name ## _d(CPUOpenRISCState *env, \ uint64_t fdt0, uint64_t fdt1) \ { return float64_ ## name(fdt0, fdt1, &env->fp_status); } \ uint32_t helper_float_ ## name ## _s(CPUOpenRISCState *env, \ uint32_t fdt0, uint32_t fdt1) \ { return float32_ ## name(fdt0, fdt1, &env->fp_status); } FLOAT_CALC(add) FLOAT_CALC(sub) FLOAT_CALC(mul) FLOAT_CALC(div) FLOAT_CALC(rem) #undef FLOAT_CALC uint64_t helper_float_madd_d(CPUOpenRISCState *env, uint64_t a, uint64_t b, uint64_t c) { /* Note that or1ksim doesn't use fused operation. */ b = float64_mul(b, c, &env->fp_status); return float64_add(a, b, &env->fp_status); } uint32_t helper_float_madd_s(CPUOpenRISCState *env, uint32_t a, uint32_t b, uint32_t c) { /* Note that or1ksim doesn't use fused operation. */ b = float32_mul(b, c, &env->fp_status); return float32_add(a, b, &env->fp_status); } #define FLOAT_CMP(name, impl) \ target_ulong helper_float_ ## name ## _d(CPUOpenRISCState *env, \ uint64_t fdt0, uint64_t fdt1) \ { return float64_ ## impl(fdt0, fdt1, &env->fp_status); } \ target_ulong helper_float_ ## name ## _s(CPUOpenRISCState *env, \ uint32_t fdt0, uint32_t fdt1) \ { return float32_ ## impl(fdt0, fdt1, &env->fp_status); } FLOAT_CMP(le, le) FLOAT_CMP(lt, lt) FLOAT_CMP(eq, eq_quiet) FLOAT_CMP(un, unordered_quiet) #undef FLOAT_CMP #define FLOAT_UCMP(name, expr) \ target_ulong helper_float_ ## name ## _d(CPUOpenRISCState *env, \ uint64_t fdt0, uint64_t fdt1) \ { \ FloatRelation r = float64_compare_quiet(fdt0, fdt1, &env->fp_status); \ return expr; \ } \ target_ulong helper_float_ ## name ## _s(CPUOpenRISCState *env, \ uint32_t fdt0, uint32_t fdt1) \ { \ FloatRelation r = float32_compare_quiet(fdt0, fdt1, &env->fp_status); \ return expr; \ } FLOAT_UCMP(ueq, r == float_relation_equal || r == float_relation_unordered) FLOAT_UCMP(ult, r == float_relation_less || r == float_relation_unordered) FLOAT_UCMP(ule, r != float_relation_greater) #undef FLOAT_UCMP