/* * AArch64 SVE translation * * Copyright (c) 2018 Linaro, Ltd * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/exec-all.h" #include "tcg-op.h" #include "tcg-op-gvec.h" #include "tcg-gvec-desc.h" #include "qemu/log.h" #include "arm_ldst.h" #include "translate.h" #include "internals.h" #include "exec/helper-proto.h" #include "exec/helper-gen.h" #include "exec/log.h" #include "trace-tcg.h" #include "translate-a64.h" /* * Include the generated decoder. */ #include "decode-sve.inc.c" /* * Implement all of the translator functions referenced by the decoder. */ /* Return the offset info CPUARMState of the predicate vector register Pn. * Note for this purpose, FFR is P16. */ static inline int pred_full_reg_offset(DisasContext *s, int regno) { return offsetof(CPUARMState, vfp.pregs[regno]); } /* Return the byte size of the whole predicate register, VL / 64. */ static inline int pred_full_reg_size(DisasContext *s) { return s->sve_len >> 3; } /* Round up the size of a register to a size allowed by * the tcg vector infrastructure. Any operation which uses this * size may assume that the bits above pred_full_reg_size are zero, * and must leave them the same way. * * Note that this is not needed for the vector registers as they * are always properly sized for tcg vectors. */ static int size_for_gvec(int size) { if (size <= 8) { return 8; } else { return QEMU_ALIGN_UP(size, 16); } } static int pred_gvec_reg_size(DisasContext *s) { return size_for_gvec(pred_full_reg_size(s)); } /* Invoke a vector expander on two Zregs. */ static bool do_vector2_z(DisasContext *s, GVecGen2Fn *gvec_fn, int esz, int rd, int rn) { if (sve_access_check(s)) { unsigned vsz = vec_full_reg_size(s); gvec_fn(esz, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), vsz, vsz); } return true; } /* Invoke a vector expander on three Zregs. */ static bool do_vector3_z(DisasContext *s, GVecGen3Fn *gvec_fn, int esz, int rd, int rn, int rm) { if (sve_access_check(s)) { unsigned vsz = vec_full_reg_size(s); gvec_fn(esz, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), vec_full_reg_offset(s, rm), vsz, vsz); } return true; } /* Invoke a vector move on two Zregs. */ static bool do_mov_z(DisasContext *s, int rd, int rn) { return do_vector2_z(s, tcg_gen_gvec_mov, 0, rd, rn); } /* Invoke a vector expander on two Pregs. */ static bool do_vector2_p(DisasContext *s, GVecGen2Fn *gvec_fn, int esz, int rd, int rn) { if (sve_access_check(s)) { unsigned psz = pred_gvec_reg_size(s); gvec_fn(esz, pred_full_reg_offset(s, rd), pred_full_reg_offset(s, rn), psz, psz); } return true; } /* Invoke a vector expander on three Pregs. */ static bool do_vector3_p(DisasContext *s, GVecGen3Fn *gvec_fn, int esz, int rd, int rn, int rm) { if (sve_access_check(s)) { unsigned psz = pred_gvec_reg_size(s); gvec_fn(esz, pred_full_reg_offset(s, rd), pred_full_reg_offset(s, rn), pred_full_reg_offset(s, rm), psz, psz); } return true; } /* Invoke a vector operation on four Pregs. */ static bool do_vecop4_p(DisasContext *s, const GVecGen4 *gvec_op, int rd, int rn, int rm, int rg) { if (sve_access_check(s)) { unsigned psz = pred_gvec_reg_size(s); tcg_gen_gvec_4(pred_full_reg_offset(s, rd), pred_full_reg_offset(s, rn), pred_full_reg_offset(s, rm), pred_full_reg_offset(s, rg), psz, psz, gvec_op); } return true; } /* Invoke a vector move on two Pregs. */ static bool do_mov_p(DisasContext *s, int rd, int rn) { return do_vector2_p(s, tcg_gen_gvec_mov, 0, rd, rn); } /* Set the cpu flags as per a return from an SVE helper. */ static void do_pred_flags(TCGv_i32 t) { tcg_gen_mov_i32(cpu_NF, t); tcg_gen_andi_i32(cpu_ZF, t, 2); tcg_gen_andi_i32(cpu_CF, t, 1); tcg_gen_movi_i32(cpu_VF, 0); } /* Subroutines computing the ARM PredTest psuedofunction. */ static void do_predtest1(TCGv_i64 d, TCGv_i64 g) { TCGv_i32 t = tcg_temp_new_i32(); gen_helper_sve_predtest1(t, d, g); do_pred_flags(t); tcg_temp_free_i32(t); } static void do_predtest(DisasContext *s, int dofs, int gofs, int words) { TCGv_ptr dptr = tcg_temp_new_ptr(); TCGv_ptr gptr = tcg_temp_new_ptr(); TCGv_i32 t; tcg_gen_addi_ptr(dptr, cpu_env, dofs); tcg_gen_addi_ptr(gptr, cpu_env, gofs); t = tcg_const_i32(words); gen_helper_sve_predtest(t, dptr, gptr, t); tcg_temp_free_ptr(dptr); tcg_temp_free_ptr(gptr); do_pred_flags(t); tcg_temp_free_i32(t); } /* For each element size, the bits within a predicate word that are active. */ const uint64_t pred_esz_masks[4] = { 0xffffffffffffffffull, 0x5555555555555555ull, 0x1111111111111111ull, 0x0101010101010101ull }; /* *** SVE Logical - Unpredicated Group */ static bool trans_AND_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { return do_vector3_z(s, tcg_gen_gvec_and, 0, a->rd, a->rn, a->rm); } static bool trans_ORR_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { if (a->rn == a->rm) { /* MOV */ return do_mov_z(s, a->rd, a->rn); } else { return do_vector3_z(s, tcg_gen_gvec_or, 0, a->rd, a->rn, a->rm); } } static bool trans_EOR_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { return do_vector3_z(s, tcg_gen_gvec_xor, 0, a->rd, a->rn, a->rm); } static bool trans_BIC_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn) { return do_vector3_z(s, tcg_gen_gvec_andc, 0, a->rd, a->rn, a->rm); } /* *** SVE Predicate Logical Operations Group */ static bool do_pppp_flags(DisasContext *s, arg_rprr_s *a, const GVecGen4 *gvec_op) { if (!sve_access_check(s)) { return true; } unsigned psz = pred_gvec_reg_size(s); int dofs = pred_full_reg_offset(s, a->rd); int nofs = pred_full_reg_offset(s, a->rn); int mofs = pred_full_reg_offset(s, a->rm); int gofs = pred_full_reg_offset(s, a->pg); if (psz == 8) { /* Do the operation and the flags generation in temps. */ TCGv_i64 pd = tcg_temp_new_i64(); TCGv_i64 pn = tcg_temp_new_i64(); TCGv_i64 pm = tcg_temp_new_i64(); TCGv_i64 pg = tcg_temp_new_i64(); tcg_gen_ld_i64(pn, cpu_env, nofs); tcg_gen_ld_i64(pm, cpu_env, mofs); tcg_gen_ld_i64(pg, cpu_env, gofs); gvec_op->fni8(pd, pn, pm, pg); tcg_gen_st_i64(pd, cpu_env, dofs); do_predtest1(pd, pg); tcg_temp_free_i64(pd); tcg_temp_free_i64(pn); tcg_temp_free_i64(pm); tcg_temp_free_i64(pg); } else { /* The operation and flags generation is large. The computation * of the flags depends on the original contents of the guarding * predicate. If the destination overwrites the guarding predicate, * then the easiest way to get this right is to save a copy. */ int tofs = gofs; if (a->rd == a->pg) { tofs = offsetof(CPUARMState, vfp.preg_tmp); tcg_gen_gvec_mov(0, tofs, gofs, psz, psz); } tcg_gen_gvec_4(dofs, nofs, mofs, gofs, psz, psz, gvec_op); do_predtest(s, dofs, tofs, psz / 8); } return true; } static void gen_and_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg) { tcg_gen_and_i64(pd, pn, pm); tcg_gen_and_i64(pd, pd, pg); } static void gen_and_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn, TCGv_vec pm, TCGv_vec pg) { tcg_gen_and_vec(vece, pd, pn, pm); tcg_gen_and_vec(vece, pd, pd, pg); } static bool trans_AND_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn) { static const GVecGen4 op = { .fni8 = gen_and_pg_i64, .fniv = gen_and_pg_vec, .fno = gen_helper_sve_and_pppp, .prefer_i64 = TCG_TARGET_REG_BITS == 64, }; if (a->s) { return do_pppp_flags(s, a, &op); } else if (a->rn == a->rm) { if (a->pg == a->rn) { return do_mov_p(s, a->rd, a->rn); } else { return do_vector3_p(s, tcg_gen_gvec_and, 0, a->rd, a->rn, a->pg); } } else if (a->pg == a->rn || a->pg == a->rm) { return do_vector3_p(s, tcg_gen_gvec_and, 0, a->rd, a->rn, a->rm); } else { return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg); } } static void gen_bic_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg) { tcg_gen_andc_i64(pd, pn, pm); tcg_gen_and_i64(pd, pd, pg); } static void gen_bic_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn, TCGv_vec pm, TCGv_vec pg) { tcg_gen_andc_vec(vece, pd, pn, pm); tcg_gen_and_vec(vece, pd, pd, pg); } static bool trans_BIC_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn) { static const GVecGen4 op = { .fni8 = gen_bic_pg_i64, .fniv = gen_bic_pg_vec, .fno = gen_helper_sve_bic_pppp, .prefer_i64 = TCG_TARGET_REG_BITS == 64, }; if (a->s) { return do_pppp_flags(s, a, &op); } else if (a->pg == a->rn) { return do_vector3_p(s, tcg_gen_gvec_andc, 0, a->rd, a->rn, a->rm); } else { return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg); } } static void gen_eor_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg) { tcg_gen_xor_i64(pd, pn, pm); tcg_gen_and_i64(pd, pd, pg); } static void gen_eor_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn, TCGv_vec pm, TCGv_vec pg) { tcg_gen_xor_vec(vece, pd, pn, pm); tcg_gen_and_vec(vece, pd, pd, pg); } static bool trans_EOR_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn) { static const GVecGen4 op = { .fni8 = gen_eor_pg_i64, .fniv = gen_eor_pg_vec, .fno = gen_helper_sve_eor_pppp, .prefer_i64 = TCG_TARGET_REG_BITS == 64, }; if (a->s) { return do_pppp_flags(s, a, &op); } else { return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg); } } static void gen_sel_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg) { tcg_gen_and_i64(pn, pn, pg); tcg_gen_andc_i64(pm, pm, pg); tcg_gen_or_i64(pd, pn, pm); } static void gen_sel_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn, TCGv_vec pm, TCGv_vec pg) { tcg_gen_and_vec(vece, pn, pn, pg); tcg_gen_andc_vec(vece, pm, pm, pg); tcg_gen_or_vec(vece, pd, pn, pm); } static bool trans_SEL_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn) { static const GVecGen4 op = { .fni8 = gen_sel_pg_i64, .fniv = gen_sel_pg_vec, .fno = gen_helper_sve_sel_pppp, .prefer_i64 = TCG_TARGET_REG_BITS == 64, }; if (a->s) { return false; } else { return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg); } } static void gen_orr_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg) { tcg_gen_or_i64(pd, pn, pm); tcg_gen_and_i64(pd, pd, pg); } static void gen_orr_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn, TCGv_vec pm, TCGv_vec pg) { tcg_gen_or_vec(vece, pd, pn, pm); tcg_gen_and_vec(vece, pd, pd, pg); } static bool trans_ORR_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn) { static const GVecGen4 op = { .fni8 = gen_orr_pg_i64, .fniv = gen_orr_pg_vec, .fno = gen_helper_sve_orr_pppp, .prefer_i64 = TCG_TARGET_REG_BITS == 64, }; if (a->s) { return do_pppp_flags(s, a, &op); } else if (a->pg == a->rn && a->rn == a->rm) { return do_mov_p(s, a->rd, a->rn); } else { return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg); } } static void gen_orn_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg) { tcg_gen_orc_i64(pd, pn, pm); tcg_gen_and_i64(pd, pd, pg); } static void gen_orn_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn, TCGv_vec pm, TCGv_vec pg) { tcg_gen_orc_vec(vece, pd, pn, pm); tcg_gen_and_vec(vece, pd, pd, pg); } static bool trans_ORN_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn) { static const GVecGen4 op = { .fni8 = gen_orn_pg_i64, .fniv = gen_orn_pg_vec, .fno = gen_helper_sve_orn_pppp, .prefer_i64 = TCG_TARGET_REG_BITS == 64, }; if (a->s) { return do_pppp_flags(s, a, &op); } else { return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg); } } static void gen_nor_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg) { tcg_gen_or_i64(pd, pn, pm); tcg_gen_andc_i64(pd, pg, pd); } static void gen_nor_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn, TCGv_vec pm, TCGv_vec pg) { tcg_gen_or_vec(vece, pd, pn, pm); tcg_gen_andc_vec(vece, pd, pg, pd); } static bool trans_NOR_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn) { static const GVecGen4 op = { .fni8 = gen_nor_pg_i64, .fniv = gen_nor_pg_vec, .fno = gen_helper_sve_nor_pppp, .prefer_i64 = TCG_TARGET_REG_BITS == 64, }; if (a->s) { return do_pppp_flags(s, a, &op); } else { return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg); } } static void gen_nand_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg) { tcg_gen_and_i64(pd, pn, pm); tcg_gen_andc_i64(pd, pg, pd); } static void gen_nand_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn, TCGv_vec pm, TCGv_vec pg) { tcg_gen_and_vec(vece, pd, pn, pm); tcg_gen_andc_vec(vece, pd, pg, pd); } static bool trans_NAND_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn) { static const GVecGen4 op = { .fni8 = gen_nand_pg_i64, .fniv = gen_nand_pg_vec, .fno = gen_helper_sve_nand_pppp, .prefer_i64 = TCG_TARGET_REG_BITS == 64, }; if (a->s) { return do_pppp_flags(s, a, &op); } else { return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg); } } /* *** SVE Predicate Misc Group */ static bool trans_PTEST(DisasContext *s, arg_PTEST *a, uint32_t insn) { if (sve_access_check(s)) { int nofs = pred_full_reg_offset(s, a->rn); int gofs = pred_full_reg_offset(s, a->pg); int words = DIV_ROUND_UP(pred_full_reg_size(s), 8); if (words == 1) { TCGv_i64 pn = tcg_temp_new_i64(); TCGv_i64 pg = tcg_temp_new_i64(); tcg_gen_ld_i64(pn, cpu_env, nofs); tcg_gen_ld_i64(pg, cpu_env, gofs); do_predtest1(pn, pg); tcg_temp_free_i64(pn); tcg_temp_free_i64(pg); } else { do_predtest(s, nofs, gofs, words); } } return true; } /* See the ARM pseudocode DecodePredCount. */ static unsigned decode_pred_count(unsigned fullsz, int pattern, int esz) { unsigned elements = fullsz >> esz; unsigned bound; switch (pattern) { case 0x0: /* POW2 */ return pow2floor(elements); case 0x1: /* VL1 */ case 0x2: /* VL2 */ case 0x3: /* VL3 */ case 0x4: /* VL4 */ case 0x5: /* VL5 */ case 0x6: /* VL6 */ case 0x7: /* VL7 */ case 0x8: /* VL8 */ bound = pattern; break; case 0x9: /* VL16 */ case 0xa: /* VL32 */ case 0xb: /* VL64 */ case 0xc: /* VL128 */ case 0xd: /* VL256 */ bound = 16 << (pattern - 9); break; case 0x1d: /* MUL4 */ return elements - elements % 4; case 0x1e: /* MUL3 */ return elements - elements % 3; case 0x1f: /* ALL */ return elements; default: /* #uimm5 */ return 0; } return elements >= bound ? bound : 0; } /* This handles all of the predicate initialization instructions, * PTRUE, PFALSE, SETFFR. For PFALSE, we will have set PAT == 32 * so that decode_pred_count returns 0. For SETFFR, we will have * set RD == 16 == FFR. */ static bool do_predset(DisasContext *s, int esz, int rd, int pat, bool setflag) { if (!sve_access_check(s)) { return true; } unsigned fullsz = vec_full_reg_size(s); unsigned ofs = pred_full_reg_offset(s, rd); unsigned numelem, setsz, i; uint64_t word, lastword; TCGv_i64 t; numelem = decode_pred_count(fullsz, pat, esz); /* Determine what we must store into each bit, and how many. */ if (numelem == 0) { lastword = word = 0; setsz = fullsz; } else { setsz = numelem << esz; lastword = word = pred_esz_masks[esz]; if (setsz % 64) { lastword &= ~(-1ull << (setsz % 64)); } } t = tcg_temp_new_i64(); if (fullsz <= 64) { tcg_gen_movi_i64(t, lastword); tcg_gen_st_i64(t, cpu_env, ofs); goto done; } if (word == lastword) { unsigned maxsz = size_for_gvec(fullsz / 8); unsigned oprsz = size_for_gvec(setsz / 8); if (oprsz * 8 == setsz) { tcg_gen_gvec_dup64i(ofs, oprsz, maxsz, word); goto done; } if (oprsz * 8 == setsz + 8) { tcg_gen_gvec_dup64i(ofs, oprsz, maxsz, word); tcg_gen_movi_i64(t, 0); tcg_gen_st_i64(t, cpu_env, ofs + oprsz - 8); goto done; } } setsz /= 8; fullsz /= 8; tcg_gen_movi_i64(t, word); for (i = 0; i < setsz; i += 8) { tcg_gen_st_i64(t, cpu_env, ofs + i); } if (lastword != word) { tcg_gen_movi_i64(t, lastword); tcg_gen_st_i64(t, cpu_env, ofs + i); i += 8; } if (i < fullsz) { tcg_gen_movi_i64(t, 0); for (; i < fullsz; i += 8) { tcg_gen_st_i64(t, cpu_env, ofs + i); } } done: tcg_temp_free_i64(t); /* PTRUES */ if (setflag) { tcg_gen_movi_i32(cpu_NF, -(word != 0)); tcg_gen_movi_i32(cpu_CF, word == 0); tcg_gen_movi_i32(cpu_VF, 0); tcg_gen_mov_i32(cpu_ZF, cpu_NF); } return true; } static bool trans_PTRUE(DisasContext *s, arg_PTRUE *a, uint32_t insn) { return do_predset(s, a->esz, a->rd, a->pat, a->s); } static bool trans_SETFFR(DisasContext *s, arg_SETFFR *a, uint32_t insn) { /* Note pat == 31 is #all, to set all elements. */ return do_predset(s, 0, FFR_PRED_NUM, 31, false); } static bool trans_PFALSE(DisasContext *s, arg_PFALSE *a, uint32_t insn) { /* Note pat == 32 is #unimp, to set no elements. */ return do_predset(s, 0, a->rd, 32, false); } static bool trans_RDFFR_p(DisasContext *s, arg_RDFFR_p *a, uint32_t insn) { /* The path through do_pppp_flags is complicated enough to want to avoid * duplication. Frob the arguments into the form of a predicated AND. */ arg_rprr_s alt_a = { .rd = a->rd, .pg = a->pg, .s = a->s, .rn = FFR_PRED_NUM, .rm = FFR_PRED_NUM, }; return trans_AND_pppp(s, &alt_a, insn); } static bool trans_RDFFR(DisasContext *s, arg_RDFFR *a, uint32_t insn) { return do_mov_p(s, a->rd, FFR_PRED_NUM); } static bool trans_WRFFR(DisasContext *s, arg_WRFFR *a, uint32_t insn) { return do_mov_p(s, FFR_PRED_NUM, a->rn); } static bool do_pfirst_pnext(DisasContext *s, arg_rr_esz *a, void (*gen_fn)(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32)) { if (!sve_access_check(s)) { return true; } TCGv_ptr t_pd = tcg_temp_new_ptr(); TCGv_ptr t_pg = tcg_temp_new_ptr(); TCGv_i32 t; unsigned desc; desc = DIV_ROUND_UP(pred_full_reg_size(s), 8); desc = deposit32(desc, SIMD_DATA_SHIFT, 2, a->esz); tcg_gen_addi_ptr(t_pd, cpu_env, pred_full_reg_offset(s, a->rd)); tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, a->rn)); t = tcg_const_i32(desc); gen_fn(t, t_pd, t_pg, t); tcg_temp_free_ptr(t_pd); tcg_temp_free_ptr(t_pg); do_pred_flags(t); tcg_temp_free_i32(t); return true; } static bool trans_PFIRST(DisasContext *s, arg_rr_esz *a, uint32_t insn) { return do_pfirst_pnext(s, a, gen_helper_sve_pfirst); } static bool trans_PNEXT(DisasContext *s, arg_rr_esz *a, uint32_t insn) { return do_pfirst_pnext(s, a, gen_helper_sve_pnext); } /* *** SVE Memory - 32-bit Gather and Unsized Contiguous Group */ /* Subroutine loading a vector register at VOFS of LEN bytes. * The load should begin at the address Rn + IMM. */ static void do_ldr(DisasContext *s, uint32_t vofs, uint32_t len, int rn, int imm) { uint32_t len_align = QEMU_ALIGN_DOWN(len, 8); uint32_t len_remain = len % 8; uint32_t nparts = len / 8 + ctpop8(len_remain); int midx = get_mem_index(s); TCGv_i64 addr, t0, t1; addr = tcg_temp_new_i64(); t0 = tcg_temp_new_i64(); /* Note that unpredicated load/store of vector/predicate registers * are defined as a stream of bytes, which equates to little-endian * operations on larger quantities. There is no nice way to force * a little-endian load for aarch64_be-linux-user out of line. * * Attempt to keep code expansion to a minimum by limiting the * amount of unrolling done. */ if (nparts <= 4) { int i; for (i = 0; i < len_align; i += 8) { tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm + i); tcg_gen_qemu_ld_i64(t0, addr, midx, MO_LEQ); tcg_gen_st_i64(t0, cpu_env, vofs + i); } } else { TCGLabel *loop = gen_new_label(); TCGv_ptr tp, i = tcg_const_local_ptr(0); gen_set_label(loop); /* Minimize the number of local temps that must be re-read from * the stack each iteration. Instead, re-compute values other * than the loop counter. */ tp = tcg_temp_new_ptr(); tcg_gen_addi_ptr(tp, i, imm); tcg_gen_extu_ptr_i64(addr, tp); tcg_gen_add_i64(addr, addr, cpu_reg_sp(s, rn)); tcg_gen_qemu_ld_i64(t0, addr, midx, MO_LEQ); tcg_gen_add_ptr(tp, cpu_env, i); tcg_gen_addi_ptr(i, i, 8); tcg_gen_st_i64(t0, tp, vofs); tcg_temp_free_ptr(tp); tcg_gen_brcondi_ptr(TCG_COND_LTU, i, len_align, loop); tcg_temp_free_ptr(i); } /* Predicate register loads can be any multiple of 2. * Note that we still store the entire 64-bit unit into cpu_env. */ if (len_remain) { tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm + len_align); switch (len_remain) { case 2: case 4: case 8: tcg_gen_qemu_ld_i64(t0, addr, midx, MO_LE | ctz32(len_remain)); break; case 6: t1 = tcg_temp_new_i64(); tcg_gen_qemu_ld_i64(t0, addr, midx, MO_LEUL); tcg_gen_addi_i64(addr, addr, 4); tcg_gen_qemu_ld_i64(t1, addr, midx, MO_LEUW); tcg_gen_deposit_i64(t0, t0, t1, 32, 32); tcg_temp_free_i64(t1); break; default: g_assert_not_reached(); } tcg_gen_st_i64(t0, cpu_env, vofs + len_align); } tcg_temp_free_i64(addr); tcg_temp_free_i64(t0); } static bool trans_LDR_zri(DisasContext *s, arg_rri *a, uint32_t insn) { if (sve_access_check(s)) { int size = vec_full_reg_size(s); int off = vec_full_reg_offset(s, a->rd); do_ldr(s, off, size, a->rn, a->imm * size); } return true; } static bool trans_LDR_pri(DisasContext *s, arg_rri *a, uint32_t insn) { if (sve_access_check(s)) { int size = pred_full_reg_size(s); int off = pred_full_reg_offset(s, a->rd); do_ldr(s, off, size, a->rn, a->imm * size); } return true; }