#include "qemu/osdep.h" #include "qapi/error.h" #include "qemu/error-report.h" #include "qemu/module.h" #include "qemu/option.h" #include "qemu/hw-version.h" #include "hw/qdev-properties.h" #include "hw/scsi/scsi.h" #include "migration/qemu-file-types.h" #include "migration/vmstate.h" #include "scsi/constants.h" #include "sysemu/block-backend.h" #include "sysemu/blockdev.h" #include "sysemu/sysemu.h" #include "sysemu/runstate.h" #include "trace.h" #include "sysemu/dma.h" #include "qemu/cutils.h" static char *scsibus_get_dev_path(DeviceState *dev); static char *scsibus_get_fw_dev_path(DeviceState *dev); static void scsi_req_dequeue(SCSIRequest *req); static uint8_t *scsi_target_alloc_buf(SCSIRequest *req, size_t len); static void scsi_target_free_buf(SCSIRequest *req); static void scsi_clear_reported_luns_changed(SCSIRequest *req); static int next_scsi_bus; static SCSIDevice *do_scsi_device_find(SCSIBus *bus, int channel, int id, int lun, bool include_unrealized) { BusChild *kid; SCSIDevice *retval = NULL; QTAILQ_FOREACH_RCU(kid, &bus->qbus.children, sibling) { DeviceState *qdev = kid->child; SCSIDevice *dev = SCSI_DEVICE(qdev); if (dev->channel == channel && dev->id == id) { if (dev->lun == lun) { retval = dev; break; } /* * If we don't find exact match (channel/bus/lun), * we will return the first device which matches channel/bus */ if (!retval) { retval = dev; } } } /* * This function might run on the IO thread and we might race against * main thread hot-plugging the device. * We assume that as soon as .realized is set to true we can let * the user access the device. */ if (retval && !include_unrealized && !qdev_is_realized(&retval->qdev)) { retval = NULL; } return retval; } SCSIDevice *scsi_device_find(SCSIBus *bus, int channel, int id, int lun) { RCU_READ_LOCK_GUARD(); return do_scsi_device_find(bus, channel, id, lun, false); } SCSIDevice *scsi_device_get(SCSIBus *bus, int channel, int id, int lun) { SCSIDevice *d; RCU_READ_LOCK_GUARD(); d = do_scsi_device_find(bus, channel, id, lun, false); if (d) { object_ref(d); } return d; } /* * Invoke @fn() for each enqueued request in device @s. Must be called from the * main loop thread while the guest is stopped. This is only suitable for * vmstate ->put(), use scsi_device_for_each_req_async() for other cases. */ static void scsi_device_for_each_req_sync(SCSIDevice *s, void (*fn)(SCSIRequest *, void *), void *opaque) { SCSIRequest *req; SCSIRequest *next_req; assert(!runstate_is_running()); assert(qemu_in_main_thread()); QTAILQ_FOREACH_SAFE(req, &s->requests, next, next_req) { fn(req, opaque); } } typedef struct { SCSIDevice *s; void (*fn)(SCSIRequest *, void *); void *fn_opaque; } SCSIDeviceForEachReqAsyncData; static void scsi_device_for_each_req_async_bh(void *opaque) { g_autofree SCSIDeviceForEachReqAsyncData *data = opaque; SCSIDevice *s = data->s; AioContext *ctx; SCSIRequest *req; SCSIRequest *next; /* * If the AioContext changed before this BH was called then reschedule into * the new AioContext before accessing ->requests. This can happen when * scsi_device_for_each_req_async() is called and then the AioContext is * changed before BHs are run. */ ctx = blk_get_aio_context(s->conf.blk); if (ctx != qemu_get_current_aio_context()) { aio_bh_schedule_oneshot(ctx, scsi_device_for_each_req_async_bh, g_steal_pointer(&data)); return; } QTAILQ_FOREACH_SAFE(req, &s->requests, next, next) { data->fn(req, data->fn_opaque); } /* Drop the reference taken by scsi_device_for_each_req_async() */ object_unref(OBJECT(s)); } /* * Schedule @fn() to be invoked for each enqueued request in device @s. @fn() * runs in the AioContext that is executing the request. */ static void scsi_device_for_each_req_async(SCSIDevice *s, void (*fn)(SCSIRequest *, void *), void *opaque) { assert(qemu_in_main_thread()); SCSIDeviceForEachReqAsyncData *data = g_new(SCSIDeviceForEachReqAsyncData, 1); data->s = s; data->fn = fn; data->fn_opaque = opaque; /* * Hold a reference to the SCSIDevice until * scsi_device_for_each_req_async_bh() finishes. */ object_ref(OBJECT(s)); aio_bh_schedule_oneshot(blk_get_aio_context(s->conf.blk), scsi_device_for_each_req_async_bh, data); } static void scsi_device_realize(SCSIDevice *s, Error **errp) { SCSIDeviceClass *sc = SCSI_DEVICE_GET_CLASS(s); if (sc->realize) { sc->realize(s, errp); } } static void scsi_device_unrealize(SCSIDevice *s) { SCSIDeviceClass *sc = SCSI_DEVICE_GET_CLASS(s); if (sc->unrealize) { sc->unrealize(s); } } int scsi_bus_parse_cdb(SCSIDevice *dev, SCSICommand *cmd, uint8_t *buf, size_t buf_len, void *hba_private) { SCSIBus *bus = DO_UPCAST(SCSIBus, qbus, dev->qdev.parent_bus); int rc; assert(cmd->len == 0); rc = scsi_req_parse_cdb(dev, cmd, buf, buf_len); if (bus->info->parse_cdb) { rc = bus->info->parse_cdb(dev, cmd, buf, buf_len, hba_private); } return rc; } static SCSIRequest *scsi_device_alloc_req(SCSIDevice *s, uint32_t tag, uint32_t lun, uint8_t *buf, void *hba_private) { SCSIDeviceClass *sc = SCSI_DEVICE_GET_CLASS(s); if (sc->alloc_req) { return sc->alloc_req(s, tag, lun, buf, hba_private); } return NULL; } void scsi_device_unit_attention_reported(SCSIDevice *s) { SCSIDeviceClass *sc = SCSI_DEVICE_GET_CLASS(s); if (sc->unit_attention_reported) { sc->unit_attention_reported(s); } } /* Create a scsi bus, and attach devices to it. */ void scsi_bus_init_named(SCSIBus *bus, size_t bus_size, DeviceState *host, const SCSIBusInfo *info, const char *bus_name) { qbus_init(bus, bus_size, TYPE_SCSI_BUS, host, bus_name); bus->busnr = next_scsi_bus++; bus->info = info; qbus_set_bus_hotplug_handler(BUS(bus)); } void scsi_req_retry(SCSIRequest *req) { req->retry = true; } /* Called in the AioContext that is executing the request */ static void scsi_dma_restart_req(SCSIRequest *req, void *opaque) { scsi_req_ref(req); if (req->retry) { req->retry = false; switch (req->cmd.mode) { case SCSI_XFER_FROM_DEV: case SCSI_XFER_TO_DEV: scsi_req_continue(req); break; case SCSI_XFER_NONE: scsi_req_dequeue(req); scsi_req_enqueue(req); break; } } scsi_req_unref(req); } static void scsi_dma_restart_cb(void *opaque, bool running, RunState state) { SCSIDevice *s = opaque; assert(qemu_in_main_thread()); if (!running) { return; } scsi_device_for_each_req_async(s, scsi_dma_restart_req, NULL); } static bool scsi_bus_is_address_free(SCSIBus *bus, int channel, int target, int lun, SCSIDevice **p_dev) { SCSIDevice *d; RCU_READ_LOCK_GUARD(); d = do_scsi_device_find(bus, channel, target, lun, true); if (d && d->lun == lun) { if (p_dev) { *p_dev = d; } return false; } if (p_dev) { *p_dev = NULL; } return true; } static bool scsi_bus_check_address(BusState *qbus, DeviceState *qdev, Error **errp) { SCSIDevice *dev = SCSI_DEVICE(qdev); SCSIBus *bus = SCSI_BUS(qbus); if (dev->channel > bus->info->max_channel) { error_setg(errp, "bad scsi channel id: %d", dev->channel); return false; } if (dev->id != -1 && dev->id > bus->info->max_target) { error_setg(errp, "bad scsi device id: %d", dev->id); return false; } if (dev->lun != -1 && dev->lun > bus->info->max_lun) { error_setg(errp, "bad scsi device lun: %d", dev->lun); return false; } if (dev->id != -1 && dev->lun != -1) { SCSIDevice *d; if (!scsi_bus_is_address_free(bus, dev->channel, dev->id, dev->lun, &d)) { error_setg(errp, "lun already used by '%s'", d->qdev.id); return false; } } return true; } static void scsi_qdev_realize(DeviceState *qdev, Error **errp) { SCSIDevice *dev = SCSI_DEVICE(qdev); SCSIBus *bus = DO_UPCAST(SCSIBus, qbus, dev->qdev.parent_bus); bool is_free; Error *local_err = NULL; if (dev->id == -1) { int id = -1; if (dev->lun == -1) { dev->lun = 0; } do { is_free = scsi_bus_is_address_free(bus, dev->channel, ++id, dev->lun, NULL); } while (!is_free && id < bus->info->max_target); if (!is_free) { error_setg(errp, "no free target"); return; } dev->id = id; } else if (dev->lun == -1) { int lun = -1; do { is_free = scsi_bus_is_address_free(bus, dev->channel, dev->id, ++lun, NULL); } while (!is_free && lun < bus->info->max_lun); if (!is_free) { error_setg(errp, "no free lun"); return; } dev->lun = lun; } QTAILQ_INIT(&dev->requests); scsi_device_realize(dev, &local_err); if (local_err) { error_propagate(errp, local_err); return; } dev->vmsentry = qdev_add_vm_change_state_handler(DEVICE(dev), scsi_dma_restart_cb, dev); } static void scsi_qdev_unrealize(DeviceState *qdev) { SCSIDevice *dev = SCSI_DEVICE(qdev); if (dev->vmsentry) { qemu_del_vm_change_state_handler(dev->vmsentry); } scsi_device_purge_requests(dev, SENSE_CODE(NO_SENSE)); scsi_device_unrealize(dev); blockdev_mark_auto_del(dev->conf.blk); } /* handle legacy '-drive if=scsi,...' cmd line args */ SCSIDevice *scsi_bus_legacy_add_drive(SCSIBus *bus, BlockBackend *blk, int unit, bool removable, int bootindex, bool share_rw, BlockdevOnError rerror, BlockdevOnError werror, const char *serial, Error **errp) { const char *driver; char *name; DeviceState *dev; DriveInfo *dinfo; if (blk_is_sg(blk)) { driver = "scsi-generic"; } else { dinfo = blk_legacy_dinfo(blk); if (dinfo && dinfo->media_cd) { driver = "scsi-cd"; } else { driver = "scsi-hd"; } } dev = qdev_new(driver); name = g_strdup_printf("legacy[%d]", unit); object_property_add_child(OBJECT(bus), name, OBJECT(dev)); g_free(name); qdev_prop_set_uint32(dev, "scsi-id", unit); if (bootindex >= 0) { object_property_set_int(OBJECT(dev), "bootindex", bootindex, &error_abort); } if (object_property_find(OBJECT(dev), "removable")) { qdev_prop_set_bit(dev, "removable", removable); } if (serial && object_property_find(OBJECT(dev), "serial")) { qdev_prop_set_string(dev, "serial", serial); } if (!qdev_prop_set_drive_err(dev, "drive", blk, errp)) { object_unparent(OBJECT(dev)); return NULL; } if (!object_property_set_bool(OBJECT(dev), "share-rw", share_rw, errp)) { object_unparent(OBJECT(dev)); return NULL; } qdev_prop_set_enum(dev, "rerror", rerror); qdev_prop_set_enum(dev, "werror", werror); if (!qdev_realize_and_unref(dev, &bus->qbus, errp)) { object_unparent(OBJECT(dev)); return NULL; } return SCSI_DEVICE(dev); } void scsi_bus_legacy_handle_cmdline(SCSIBus *bus) { Location loc; DriveInfo *dinfo; int unit; loc_push_none(&loc); for (unit = 0; unit <= bus->info->max_target; unit++) { dinfo = drive_get(IF_SCSI, bus->busnr, unit); if (dinfo == NULL) { continue; } qemu_opts_loc_restore(dinfo->opts); scsi_bus_legacy_add_drive(bus, blk_by_legacy_dinfo(dinfo), unit, false, -1, false, BLOCKDEV_ON_ERROR_AUTO, BLOCKDEV_ON_ERROR_AUTO, NULL, &error_fatal); } loc_pop(&loc); } static int32_t scsi_invalid_field(SCSIRequest *req, uint8_t *buf) { scsi_req_build_sense(req, SENSE_CODE(INVALID_FIELD)); scsi_req_complete(req, CHECK_CONDITION); return 0; } static const struct SCSIReqOps reqops_invalid_field = { .size = sizeof(SCSIRequest), .send_command = scsi_invalid_field }; /* SCSIReqOps implementation for invalid commands. */ static int32_t scsi_invalid_command(SCSIRequest *req, uint8_t *buf) { scsi_req_build_sense(req, SENSE_CODE(INVALID_OPCODE)); scsi_req_complete(req, CHECK_CONDITION); return 0; } static const struct SCSIReqOps reqops_invalid_opcode = { .size = sizeof(SCSIRequest), .send_command = scsi_invalid_command }; /* SCSIReqOps implementation for unit attention conditions. */ static void scsi_fetch_unit_attention_sense(SCSIRequest *req) { SCSISense *ua = NULL; if (req->dev->unit_attention.key == UNIT_ATTENTION) { ua = &req->dev->unit_attention; } else if (req->bus->unit_attention.key == UNIT_ATTENTION) { ua = &req->bus->unit_attention; } /* * Fetch the unit attention sense immediately so that another * scsi_req_new does not use reqops_unit_attention. */ if (ua) { scsi_req_build_sense(req, *ua); *ua = SENSE_CODE(NO_SENSE); } } static int32_t scsi_unit_attention(SCSIRequest *req, uint8_t *buf) { scsi_req_complete(req, CHECK_CONDITION); return 0; } static const struct SCSIReqOps reqops_unit_attention = { .size = sizeof(SCSIRequest), .init_req = scsi_fetch_unit_attention_sense, .send_command = scsi_unit_attention }; /* SCSIReqOps implementation for REPORT LUNS and for commands sent to an invalid LUN. */ typedef struct SCSITargetReq SCSITargetReq; struct SCSITargetReq { SCSIRequest req; int len; uint8_t *buf; int buf_len; }; static void store_lun(uint8_t *outbuf, int lun) { if (lun < 256) { /* Simple logical unit addressing method*/ outbuf[0] = 0; outbuf[1] = lun; } else { /* Flat space addressing method */ outbuf[0] = 0x40 | (lun >> 8); outbuf[1] = (lun & 255); } } static bool scsi_target_emulate_report_luns(SCSITargetReq *r) { BusChild *kid; int channel, id; uint8_t tmp[8] = {0}; int len = 0; GByteArray *buf; if (r->req.cmd.xfer < 16) { return false; } if (r->req.cmd.buf[2] > 2) { return false; } /* reserve space for 63 LUNs*/ buf = g_byte_array_sized_new(512); channel = r->req.dev->channel; id = r->req.dev->id; /* add size (will be updated later to correct value */ g_byte_array_append(buf, tmp, 8); len += 8; /* add LUN0 */ g_byte_array_append(buf, tmp, 8); len += 8; WITH_RCU_READ_LOCK_GUARD() { QTAILQ_FOREACH_RCU(kid, &r->req.bus->qbus.children, sibling) { DeviceState *qdev = kid->child; SCSIDevice *dev = SCSI_DEVICE(qdev); if (dev->channel == channel && dev->id == id && dev->lun != 0 && qdev_is_realized(&dev->qdev)) { store_lun(tmp, dev->lun); g_byte_array_append(buf, tmp, 8); len += 8; } } } r->buf_len = len; r->buf = g_byte_array_free(buf, FALSE); r->len = MIN(len, r->req.cmd.xfer & ~7); /* store the LUN list length */ stl_be_p(&r->buf[0], len - 8); /* * If a REPORT LUNS command enters the enabled command state, [...] * the device server shall clear any pending unit attention condition * with an additional sense code of REPORTED LUNS DATA HAS CHANGED. */ scsi_clear_reported_luns_changed(&r->req); return true; } static bool scsi_target_emulate_inquiry(SCSITargetReq *r) { assert(r->req.dev->lun != r->req.lun); scsi_target_alloc_buf(&r->req, SCSI_INQUIRY_LEN); if (r->req.cmd.buf[1] & 0x2) { /* Command support data - optional, not implemented */ return false; } if (r->req.cmd.buf[1] & 0x1) { /* Vital product data */ uint8_t page_code = r->req.cmd.buf[2]; r->buf[r->len++] = page_code ; /* this page */ r->buf[r->len++] = 0x00; switch (page_code) { case 0x00: /* Supported page codes, mandatory */ { int pages; pages = r->len++; r->buf[r->len++] = 0x00; /* list of supported pages (this page) */ r->buf[pages] = r->len - pages - 1; /* number of pages */ break; } default: return false; } /* done with EVPD */ assert(r->len < r->buf_len); r->len = MIN(r->req.cmd.xfer, r->len); return true; } /* Standard INQUIRY data */ if (r->req.cmd.buf[2] != 0) { return false; } /* PAGE CODE == 0 */ r->len = MIN(r->req.cmd.xfer, SCSI_INQUIRY_LEN); memset(r->buf, 0, r->len); if (r->req.lun != 0) { r->buf[0] = TYPE_NO_LUN; } else { r->buf[0] = TYPE_NOT_PRESENT | TYPE_INACTIVE; r->buf[2] = 5; /* Version */ r->buf[3] = 2 | 0x10; /* HiSup, response data format */ r->buf[4] = r->len - 5; /* Additional Length = (Len - 1) - 4 */ r->buf[7] = 0x10 | (r->req.bus->info->tcq ? 0x02 : 0); /* Sync, TCQ. */ memcpy(&r->buf[8], "QEMU ", 8); memcpy(&r->buf[16], "QEMU TARGET ", 16); pstrcpy((char *) &r->buf[32], 4, qemu_hw_version()); } return true; } static size_t scsi_sense_len(SCSIRequest *req) { if (req->dev->type == TYPE_SCANNER) return SCSI_SENSE_LEN_SCANNER; else return SCSI_SENSE_LEN; } static int32_t scsi_target_send_command(SCSIRequest *req, uint8_t *buf) { SCSITargetReq *r = DO_UPCAST(SCSITargetReq, req, req); int fixed_sense = (req->cmd.buf[1] & 1) == 0; if (req->lun != 0 && buf[0] != INQUIRY && buf[0] != REQUEST_SENSE) { scsi_req_build_sense(req, SENSE_CODE(LUN_NOT_SUPPORTED)); scsi_req_complete(req, CHECK_CONDITION); return 0; } switch (buf[0]) { case REPORT_LUNS: if (!scsi_target_emulate_report_luns(r)) { goto illegal_request; } break; case INQUIRY: if (!scsi_target_emulate_inquiry(r)) { goto illegal_request; } break; case REQUEST_SENSE: scsi_target_alloc_buf(&r->req, scsi_sense_len(req)); if (req->lun != 0) { const struct SCSISense sense = SENSE_CODE(LUN_NOT_SUPPORTED); r->len = scsi_build_sense_buf(r->buf, req->cmd.xfer, sense, fixed_sense); } else { r->len = scsi_device_get_sense(r->req.dev, r->buf, MIN(req->cmd.xfer, r->buf_len), fixed_sense); } if (r->req.dev->sense_is_ua) { scsi_device_unit_attention_reported(req->dev); r->req.dev->sense_len = 0; r->req.dev->sense_is_ua = false; } break; case TEST_UNIT_READY: break; default: scsi_req_build_sense(req, SENSE_CODE(INVALID_OPCODE)); scsi_req_complete(req, CHECK_CONDITION); return 0; illegal_request: scsi_req_build_sense(req, SENSE_CODE(INVALID_FIELD)); scsi_req_complete(req, CHECK_CONDITION); return 0; } if (!r->len) { scsi_req_complete(req, GOOD); } return r->len; } static void scsi_target_read_data(SCSIRequest *req) { SCSITargetReq *r = DO_UPCAST(SCSITargetReq, req, req); uint32_t n; n = r->len; if (n > 0) { r->len = 0; scsi_req_data(&r->req, n); } else { scsi_req_complete(&r->req, GOOD); } } static uint8_t *scsi_target_get_buf(SCSIRequest *req) { SCSITargetReq *r = DO_UPCAST(SCSITargetReq, req, req); return r->buf; } static uint8_t *scsi_target_alloc_buf(SCSIRequest *req, size_t len) { SCSITargetReq *r = DO_UPCAST(SCSITargetReq, req, req); r->buf = g_malloc(len); r->buf_len = len; return r->buf; } static void scsi_target_free_buf(SCSIRequest *req) { SCSITargetReq *r = DO_UPCAST(SCSITargetReq, req, req); g_free(r->buf); } static const struct SCSIReqOps reqops_target_command = { .size = sizeof(SCSITargetReq), .send_command = scsi_target_send_command, .read_data = scsi_target_read_data, .get_buf = scsi_target_get_buf, .free_req = scsi_target_free_buf, }; SCSIRequest *scsi_req_alloc(const SCSIReqOps *reqops, SCSIDevice *d, uint32_t tag, uint32_t lun, void *hba_private) { SCSIRequest *req; SCSIBus *bus = scsi_bus_from_device(d); BusState *qbus = BUS(bus); const int memset_off = offsetof(SCSIRequest, sense) + sizeof(req->sense); req = g_malloc(reqops->size); memset((uint8_t *)req + memset_off, 0, reqops->size - memset_off); req->refcount = 1; req->bus = bus; req->dev = d; req->tag = tag; req->lun = lun; req->hba_private = hba_private; req->status = -1; req->host_status = -1; req->ops = reqops; object_ref(OBJECT(d)); object_ref(OBJECT(qbus->parent)); notifier_list_init(&req->cancel_notifiers); if (reqops->init_req) { reqops->init_req(req); } trace_scsi_req_alloc(req->dev->id, req->lun, req->tag); return req; } SCSIRequest *scsi_req_new(SCSIDevice *d, uint32_t tag, uint32_t lun, uint8_t *buf, size_t buf_len, void *hba_private) { SCSIBus *bus = DO_UPCAST(SCSIBus, qbus, d->qdev.parent_bus); const SCSIReqOps *ops; SCSIDeviceClass *sc = SCSI_DEVICE_GET_CLASS(d); SCSIRequest *req; SCSICommand cmd = { .len = 0 }; int ret; if (buf_len == 0) { trace_scsi_req_parse_bad(d->id, lun, tag, 0); goto invalid_opcode; } if ((d->unit_attention.key == UNIT_ATTENTION || bus->unit_attention.key == UNIT_ATTENTION) && (buf[0] != INQUIRY && buf[0] != REPORT_LUNS && buf[0] != GET_CONFIGURATION && buf[0] != GET_EVENT_STATUS_NOTIFICATION && /* * If we already have a pending unit attention condition, * report this one before triggering another one. */ !(buf[0] == REQUEST_SENSE && d->sense_is_ua))) { ops = &reqops_unit_attention; } else if (lun != d->lun || buf[0] == REPORT_LUNS || (buf[0] == REQUEST_SENSE && d->sense_len)) { ops = &reqops_target_command; } else { ops = NULL; } if (ops != NULL || !sc->parse_cdb) { ret = scsi_req_parse_cdb(d, &cmd, buf, buf_len); } else { ret = sc->parse_cdb(d, &cmd, buf, buf_len, hba_private); } if (ret != 0) { trace_scsi_req_parse_bad(d->id, lun, tag, buf[0]); invalid_opcode: req = scsi_req_alloc(&reqops_invalid_opcode, d, tag, lun, hba_private); } else { assert(cmd.len != 0); trace_scsi_req_parsed(d->id, lun, tag, buf[0], cmd.mode, cmd.xfer); if (cmd.lba != -1) { trace_scsi_req_parsed_lba(d->id, lun, tag, buf[0], cmd.lba); } if (cmd.xfer > INT32_MAX) { req = scsi_req_alloc(&reqops_invalid_field, d, tag, lun, hba_private); } else if (ops) { req = scsi_req_alloc(ops, d, tag, lun, hba_private); } else { req = scsi_device_alloc_req(d, tag, lun, buf, hba_private); } } req->cmd = cmd; req->residual = req->cmd.xfer; switch (buf[0]) { case INQUIRY: trace_scsi_inquiry(d->id, lun, tag, cmd.buf[1], cmd.buf[2]); break; case TEST_UNIT_READY: trace_scsi_test_unit_ready(d->id, lun, tag); break; case REPORT_LUNS: trace_scsi_report_luns(d->id, lun, tag); break; case REQUEST_SENSE: trace_scsi_request_sense(d->id, lun, tag); break; default: break; } return req; } uint8_t *scsi_req_get_buf(SCSIRequest *req) { return req->ops->get_buf(req); } static void scsi_clear_reported_luns_changed(SCSIRequest *req) { SCSISense *ua; if (req->dev->unit_attention.key == UNIT_ATTENTION) { ua = &req->dev->unit_attention; } else if (req->bus->unit_attention.key == UNIT_ATTENTION) { ua = &req->bus->unit_attention; } else { return; } if (ua->asc == SENSE_CODE(REPORTED_LUNS_CHANGED).asc && ua->ascq == SENSE_CODE(REPORTED_LUNS_CHANGED).ascq) { *ua = SENSE_CODE(NO_SENSE); } } int scsi_req_get_sense(SCSIRequest *req, uint8_t *buf, int len) { int ret; assert(len >= 14); if (!req->sense_len) { return 0; } ret = scsi_convert_sense(req->sense, req->sense_len, buf, len, true); /* * FIXME: clearing unit attention conditions upon autosense should be done * only if the UA_INTLCK_CTRL field in the Control mode page is set to 00b * (SAM-5, 5.14). * * We assume UA_INTLCK_CTRL to be 00b for HBAs that support autosense, and * 10b for HBAs that do not support it (do not call scsi_req_get_sense). * Here we handle unit attention clearing for UA_INTLCK_CTRL == 00b. */ if (req->dev->sense_is_ua) { scsi_device_unit_attention_reported(req->dev); req->dev->sense_len = 0; req->dev->sense_is_ua = false; } return ret; } int scsi_device_get_sense(SCSIDevice *dev, uint8_t *buf, int len, bool fixed) { return scsi_convert_sense(dev->sense, dev->sense_len, buf, len, fixed); } void scsi_req_build_sense(SCSIRequest *req, SCSISense sense) { trace_scsi_req_build_sense(req->dev->id, req->lun, req->tag, sense.key, sense.asc, sense.ascq); req->sense_len = scsi_build_sense(req->sense, sense); } static void scsi_req_enqueue_internal(SCSIRequest *req) { assert(!req->enqueued); scsi_req_ref(req); if (req->bus->info->get_sg_list) { req->sg = req->bus->info->get_sg_list(req); } else { req->sg = NULL; } req->enqueued = true; QTAILQ_INSERT_TAIL(&req->dev->requests, req, next); } int32_t scsi_req_enqueue(SCSIRequest *req) { int32_t rc; assert(!req->retry); scsi_req_enqueue_internal(req); scsi_req_ref(req); rc = req->ops->send_command(req, req->cmd.buf); scsi_req_unref(req); return rc; } static void scsi_req_dequeue(SCSIRequest *req) { trace_scsi_req_dequeue(req->dev->id, req->lun, req->tag); req->retry = false; if (req->enqueued) { QTAILQ_REMOVE(&req->dev->requests, req, next); req->enqueued = false; scsi_req_unref(req); } } static int scsi_get_performance_length(int num_desc, int type, int data_type) { /* MMC-6, paragraph 6.7. */ switch (type) { case 0: if ((data_type & 3) == 0) { /* Each descriptor is as in Table 295 - Nominal performance. */ return 16 * num_desc + 8; } else { /* Each descriptor is as in Table 296 - Exceptions. */ return 6 * num_desc + 8; } case 1: case 4: case 5: return 8 * num_desc + 8; case 2: return 2048 * num_desc + 8; case 3: return 16 * num_desc + 8; default: return 8; } } static int ata_passthrough_xfer_unit(SCSIDevice *dev, uint8_t *buf) { int byte_block = (buf[2] >> 2) & 0x1; int type = (buf[2] >> 4) & 0x1; int xfer_unit; if (byte_block) { if (type) { xfer_unit = dev->blocksize; } else { xfer_unit = 512; } } else { xfer_unit = 1; } return xfer_unit; } static int ata_passthrough_12_xfer(SCSIDevice *dev, uint8_t *buf) { int length = buf[2] & 0x3; int xfer; int unit = ata_passthrough_xfer_unit(dev, buf); switch (length) { case 0: case 3: /* USB-specific. */ default: xfer = 0; break; case 1: xfer = buf[3]; break; case 2: xfer = buf[4]; break; } return xfer * unit; } static int ata_passthrough_16_xfer(SCSIDevice *dev, uint8_t *buf) { int extend = buf[1] & 0x1; int length = buf[2] & 0x3; int xfer; int unit = ata_passthrough_xfer_unit(dev, buf); switch (length) { case 0: case 3: /* USB-specific. */ default: xfer = 0; break; case 1: xfer = buf[4]; xfer |= (extend ? buf[3] << 8 : 0); break; case 2: xfer = buf[6]; xfer |= (extend ? buf[5] << 8 : 0); break; } return xfer * unit; } static int scsi_req_xfer(SCSICommand *cmd, SCSIDevice *dev, uint8_t *buf) { cmd->xfer = scsi_cdb_xfer(buf); switch (buf[0]) { case TEST_UNIT_READY: case REWIND: case START_STOP: case SET_CAPACITY: case WRITE_FILEMARKS: case WRITE_FILEMARKS_16: case SPACE: case RESERVE: case RELEASE: case ERASE: case ALLOW_MEDIUM_REMOVAL: case SEEK_10: case SYNCHRONIZE_CACHE: case SYNCHRONIZE_CACHE_16: case LOCATE_16: case LOCK_UNLOCK_CACHE: case SET_CD_SPEED: case SET_LIMITS: case WRITE_LONG_10: case UPDATE_BLOCK: case RESERVE_TRACK: case SET_READ_AHEAD: case PRE_FETCH: case PRE_FETCH_16: case ALLOW_OVERWRITE: cmd->xfer = 0; break; case VERIFY_10: case VERIFY_12: case VERIFY_16: if ((buf[1] & 2) == 0) { cmd->xfer = 0; } else if ((buf[1] & 4) != 0) { cmd->xfer = 1; } cmd->xfer *= dev->blocksize; break; case MODE_SENSE: break; case WRITE_SAME_10: case WRITE_SAME_16: cmd->xfer = buf[1] & 1 ? 0 : dev->blocksize; break; case READ_CAPACITY_10: cmd->xfer = 8; break; case READ_BLOCK_LIMITS: cmd->xfer = 6; break; case SEND_VOLUME_TAG: /* GPCMD_SET_STREAMING from multimedia commands. */ if (dev->type == TYPE_ROM) { cmd->xfer = buf[10] | (buf[9] << 8); } else { cmd->xfer = buf[9] | (buf[8] << 8); } break; case WRITE_6: /* length 0 means 256 blocks */ if (cmd->xfer == 0) { cmd->xfer = 256; } /* fall through */ case WRITE_10: case WRITE_VERIFY_10: case WRITE_12: case WRITE_VERIFY_12: case WRITE_16: case WRITE_VERIFY_16: cmd->xfer *= dev->blocksize; break; case READ_6: case READ_REVERSE: /* length 0 means 256 blocks */ if (cmd->xfer == 0) { cmd->xfer = 256; } /* fall through */ case READ_10: case READ_12: case READ_16: cmd->xfer *= dev->blocksize; break; case FORMAT_UNIT: /* MMC mandates the parameter list to be 12-bytes long. Parameters * for block devices are restricted to the header right now. */ if (dev->type == TYPE_ROM && (buf[1] & 16)) { cmd->xfer = 12; } else { cmd->xfer = (buf[1] & 16) == 0 ? 0 : (buf[1] & 32 ? 8 : 4); } break; case INQUIRY: case RECEIVE_DIAGNOSTIC: case SEND_DIAGNOSTIC: cmd->xfer = buf[4] | (buf[3] << 8); break; case READ_CD: case READ_BUFFER: case WRITE_BUFFER: case SEND_CUE_SHEET: cmd->xfer = buf[8] | (buf[7] << 8) | (buf[6] << 16); break; case PERSISTENT_RESERVE_OUT: cmd->xfer = ldl_be_p(&buf[5]) & 0xffffffffULL; break; case ERASE_12: if (dev->type == TYPE_ROM) { /* MMC command GET PERFORMANCE. */ cmd->xfer = scsi_get_performance_length(buf[9] | (buf[8] << 8), buf[10], buf[1] & 0x1f); } break; case MECHANISM_STATUS: case READ_DVD_STRUCTURE: case SEND_DVD_STRUCTURE: case MAINTENANCE_OUT: case MAINTENANCE_IN: if (dev->type == TYPE_ROM) { /* GPCMD_REPORT_KEY and GPCMD_SEND_KEY from multi media commands */ cmd->xfer = buf[9] | (buf[8] << 8); } break; case ATA_PASSTHROUGH_12: if (dev->type == TYPE_ROM) { /* BLANK command of MMC */ cmd->xfer = 0; } else { cmd->xfer = ata_passthrough_12_xfer(dev, buf); } break; case ATA_PASSTHROUGH_16: cmd->xfer = ata_passthrough_16_xfer(dev, buf); break; } return 0; } static int scsi_req_stream_xfer(SCSICommand *cmd, SCSIDevice *dev, uint8_t *buf) { switch (buf[0]) { /* stream commands */ case ERASE_12: case ERASE_16: cmd->xfer = 0; break; case READ_6: case READ_REVERSE: case RECOVER_BUFFERED_DATA: case WRITE_6: cmd->xfer = buf[4] | (buf[3] << 8) | (buf[2] << 16); if (buf[1] & 0x01) { /* fixed */ cmd->xfer *= dev->blocksize; } break; case READ_16: case READ_REVERSE_16: case VERIFY_16: case WRITE_16: cmd->xfer = buf[14] | (buf[13] << 8) | (buf[12] << 16); if (buf[1] & 0x01) { /* fixed */ cmd->xfer *= dev->blocksize; } break; case REWIND: case LOAD_UNLOAD: cmd->xfer = 0; break; case SPACE_16: cmd->xfer = buf[13] | (buf[12] << 8); break; case READ_POSITION: switch (buf[1] & 0x1f) /* operation code */ { case SHORT_FORM_BLOCK_ID: case SHORT_FORM_VENDOR_SPECIFIC: cmd->xfer = 20; break; case LONG_FORM: cmd->xfer = 32; break; case EXTENDED_FORM: cmd->xfer = buf[8] | (buf[7] << 8); break; default: return -1; } break; case FORMAT_UNIT: cmd->xfer = buf[4] | (buf[3] << 8); break; /* generic commands */ default: return scsi_req_xfer(cmd, dev, buf); } return 0; } static int scsi_req_medium_changer_xfer(SCSICommand *cmd, SCSIDevice *dev, uint8_t *buf) { switch (buf[0]) { /* medium changer commands */ case EXCHANGE_MEDIUM: case INITIALIZE_ELEMENT_STATUS: case INITIALIZE_ELEMENT_STATUS_WITH_RANGE: case MOVE_MEDIUM: case POSITION_TO_ELEMENT: cmd->xfer = 0; break; case READ_ELEMENT_STATUS: cmd->xfer = buf[9] | (buf[8] << 8) | (buf[7] << 16); break; /* generic commands */ default: return scsi_req_xfer(cmd, dev, buf); } return 0; } static int scsi_req_scanner_length(SCSICommand *cmd, SCSIDevice *dev, uint8_t *buf) { switch (buf[0]) { /* Scanner commands */ case OBJECT_POSITION: cmd->xfer = 0; break; case SCAN: cmd->xfer = buf[4]; break; case READ_10: case SEND: case GET_WINDOW: case SET_WINDOW: cmd->xfer = buf[8] | (buf[7] << 8) | (buf[6] << 16); break; default: /* GET_DATA_BUFFER_STATUS xfer handled by scsi_req_xfer */ return scsi_req_xfer(cmd, dev, buf); } return 0; } static void scsi_cmd_xfer_mode(SCSICommand *cmd) { if (!cmd->xfer) { cmd->mode = SCSI_XFER_NONE; return; } switch (cmd->buf[0]) { case WRITE_6: case WRITE_10: case WRITE_VERIFY_10: case WRITE_12: case WRITE_VERIFY_12: case WRITE_16: case WRITE_VERIFY_16: case VERIFY_10: case VERIFY_12: case VERIFY_16: case COPY: case COPY_VERIFY: case COMPARE: case CHANGE_DEFINITION: case LOG_SELECT: case MODE_SELECT: case MODE_SELECT_10: case SEND_DIAGNOSTIC: case WRITE_BUFFER: case FORMAT_UNIT: case REASSIGN_BLOCKS: case SEARCH_EQUAL: case SEARCH_HIGH: case SEARCH_LOW: case UPDATE_BLOCK: case WRITE_LONG_10: case WRITE_SAME_10: case WRITE_SAME_16: case UNMAP: case SEARCH_HIGH_12: case SEARCH_EQUAL_12: case SEARCH_LOW_12: case MEDIUM_SCAN: case SEND_VOLUME_TAG: case SEND_CUE_SHEET: case SEND_DVD_STRUCTURE: case PERSISTENT_RESERVE_OUT: case MAINTENANCE_OUT: case SET_WINDOW: case SCAN: /* SCAN conflicts with START_STOP. START_STOP has cmd->xfer set to 0 for * non-scanner devices, so we only get here for SCAN and not for START_STOP. */ cmd->mode = SCSI_XFER_TO_DEV; break; case ATA_PASSTHROUGH_12: case ATA_PASSTHROUGH_16: /* T_DIR */ cmd->mode = (cmd->buf[2] & 0x8) ? SCSI_XFER_FROM_DEV : SCSI_XFER_TO_DEV; break; default: cmd->mode = SCSI_XFER_FROM_DEV; break; } } int scsi_req_parse_cdb(SCSIDevice *dev, SCSICommand *cmd, uint8_t *buf, size_t buf_len) { int rc; int len; cmd->lba = -1; len = scsi_cdb_length(buf); if (len < 0 || len > buf_len) { return -1; } cmd->len = len; switch (dev->type) { case TYPE_TAPE: rc = scsi_req_stream_xfer(cmd, dev, buf); break; case TYPE_MEDIUM_CHANGER: rc = scsi_req_medium_changer_xfer(cmd, dev, buf); break; case TYPE_SCANNER: rc = scsi_req_scanner_length(cmd, dev, buf); break; default: rc = scsi_req_xfer(cmd, dev, buf); break; } if (rc != 0) return rc; memcpy(cmd->buf, buf, cmd->len); scsi_cmd_xfer_mode(cmd); cmd->lba = scsi_cmd_lba(cmd); return 0; } void scsi_device_report_change(SCSIDevice *dev, SCSISense sense) { SCSIBus *bus = DO_UPCAST(SCSIBus, qbus, dev->qdev.parent_bus); scsi_device_set_ua(dev, sense); if (bus->info->change) { bus->info->change(bus, dev, sense); } } SCSIRequest *scsi_req_ref(SCSIRequest *req) { assert(req->refcount > 0); req->refcount++; return req; } void scsi_req_unref(SCSIRequest *req) { assert(req->refcount > 0); if (--req->refcount == 0) { BusState *qbus = req->dev->qdev.parent_bus; SCSIBus *bus = DO_UPCAST(SCSIBus, qbus, qbus); if (bus->info->free_request && req->hba_private) { bus->info->free_request(bus, req->hba_private); } if (req->ops->free_req) { req->ops->free_req(req); } object_unref(OBJECT(req->dev)); object_unref(OBJECT(qbus->parent)); g_free(req); } } /* Tell the device that we finished processing this chunk of I/O. It will start the next chunk or complete the command. */ void scsi_req_continue(SCSIRequest *req) { if (req->io_canceled) { trace_scsi_req_continue_canceled(req->dev->id, req->lun, req->tag); return; } trace_scsi_req_continue(req->dev->id, req->lun, req->tag); if (req->cmd.mode == SCSI_XFER_TO_DEV) { req->ops->write_data(req); } else { req->ops->read_data(req); } } /* Called by the devices when data is ready for the HBA. The HBA should start a DMA operation to read or fill the device's data buffer. Once it completes, calling scsi_req_continue will restart I/O. */ void scsi_req_data(SCSIRequest *req, int len) { uint8_t *buf; if (req->io_canceled) { trace_scsi_req_data_canceled(req->dev->id, req->lun, req->tag, len); return; } trace_scsi_req_data(req->dev->id, req->lun, req->tag, len); assert(req->cmd.mode != SCSI_XFER_NONE); if (!req->sg) { req->residual -= len; req->bus->info->transfer_data(req, len); return; } /* If the device calls scsi_req_data and the HBA specified a * scatter/gather list, the transfer has to happen in a single * step. */ assert(!req->dma_started); req->dma_started = true; buf = scsi_req_get_buf(req); if (req->cmd.mode == SCSI_XFER_FROM_DEV) { dma_buf_read(buf, len, &req->residual, req->sg, MEMTXATTRS_UNSPECIFIED); } else { dma_buf_write(buf, len, &req->residual, req->sg, MEMTXATTRS_UNSPECIFIED); } scsi_req_continue(req); } void scsi_req_print(SCSIRequest *req) { FILE *fp = stderr; int i; fprintf(fp, "[%s id=%d] %s", req->dev->qdev.parent_bus->name, req->dev->id, scsi_command_name(req->cmd.buf[0])); for (i = 1; i < req->cmd.len; i++) { fprintf(fp, " 0x%02x", req->cmd.buf[i]); } switch (req->cmd.mode) { case SCSI_XFER_NONE: fprintf(fp, " - none\n"); break; case SCSI_XFER_FROM_DEV: fprintf(fp, " - from-dev len=%zd\n", req->cmd.xfer); break; case SCSI_XFER_TO_DEV: fprintf(fp, " - to-dev len=%zd\n", req->cmd.xfer); break; default: fprintf(fp, " - Oops\n"); break; } } void scsi_req_complete_failed(SCSIRequest *req, int host_status) { SCSISense sense; int status; assert(req->status == -1 && req->host_status == -1); assert(req->ops != &reqops_unit_attention); if (!req->bus->info->fail) { status = scsi_sense_from_host_status(req->host_status, &sense); if (status == CHECK_CONDITION) { scsi_req_build_sense(req, sense); } scsi_req_complete(req, status); return; } req->host_status = host_status; scsi_req_ref(req); scsi_req_dequeue(req); req->bus->info->fail(req); /* Cancelled requests might end up being completed instead of cancelled */ notifier_list_notify(&req->cancel_notifiers, req); scsi_req_unref(req); } void scsi_req_complete(SCSIRequest *req, int status) { assert(req->status == -1 && req->host_status == -1); req->status = status; req->host_status = SCSI_HOST_OK; assert(req->sense_len <= sizeof(req->sense)); if (status == GOOD) { req->sense_len = 0; } if (req->sense_len) { memcpy(req->dev->sense, req->sense, req->sense_len); req->dev->sense_len = req->sense_len; req->dev->sense_is_ua = (req->ops == &reqops_unit_attention); } else { req->dev->sense_len = 0; req->dev->sense_is_ua = false; } scsi_req_ref(req); scsi_req_dequeue(req); req->bus->info->complete(req, req->residual); /* Cancelled requests might end up being completed instead of cancelled */ notifier_list_notify(&req->cancel_notifiers, req); scsi_req_unref(req); } /* Called by the devices when the request is canceled. */ void scsi_req_cancel_complete(SCSIRequest *req) { assert(req->io_canceled); if (req->bus->info->cancel) { req->bus->info->cancel(req); } notifier_list_notify(&req->cancel_notifiers, req); scsi_req_unref(req); } /* Cancel @req asynchronously. @notifier is added to @req's cancellation * notifier list, the bus will be notified the requests cancellation is * completed. * */ void scsi_req_cancel_async(SCSIRequest *req, Notifier *notifier) { trace_scsi_req_cancel(req->dev->id, req->lun, req->tag); if (notifier) { notifier_list_add(&req->cancel_notifiers, notifier); } if (req->io_canceled) { /* A blk_aio_cancel_async is pending; when it finishes, * scsi_req_cancel_complete will be called and will * call the notifier we just added. Just wait for that. */ assert(req->aiocb); return; } /* Dropped in scsi_req_cancel_complete. */ scsi_req_ref(req); scsi_req_dequeue(req); req->io_canceled = true; if (req->aiocb) { blk_aio_cancel_async(req->aiocb); } else { scsi_req_cancel_complete(req); } } void scsi_req_cancel(SCSIRequest *req) { trace_scsi_req_cancel(req->dev->id, req->lun, req->tag); if (!req->enqueued) { return; } assert(!req->io_canceled); /* Dropped in scsi_req_cancel_complete. */ scsi_req_ref(req); scsi_req_dequeue(req); req->io_canceled = true; if (req->aiocb) { blk_aio_cancel(req->aiocb); } else { scsi_req_cancel_complete(req); } } static int scsi_ua_precedence(SCSISense sense) { if (sense.key != UNIT_ATTENTION) { return INT_MAX; } if (sense.asc == 0x29 && sense.ascq == 0x04) { /* DEVICE INTERNAL RESET goes with POWER ON OCCURRED */ return 1; } else if (sense.asc == 0x3F && sense.ascq == 0x01) { /* MICROCODE HAS BEEN CHANGED goes with SCSI BUS RESET OCCURRED */ return 2; } else if (sense.asc == 0x29 && (sense.ascq == 0x05 || sense.ascq == 0x06)) { /* These two go with "all others". */ ; } else if (sense.asc == 0x29 && sense.ascq <= 0x07) { /* POWER ON, RESET OR BUS DEVICE RESET OCCURRED = 0 * POWER ON OCCURRED = 1 * SCSI BUS RESET OCCURRED = 2 * BUS DEVICE RESET FUNCTION OCCURRED = 3 * I_T NEXUS LOSS OCCURRED = 7 */ return sense.ascq; } else if (sense.asc == 0x2F && sense.ascq == 0x01) { /* COMMANDS CLEARED BY POWER LOSS NOTIFICATION */ return 8; } return (sense.asc << 8) | sense.ascq; } void scsi_bus_set_ua(SCSIBus *bus, SCSISense sense) { int prec1, prec2; if (sense.key != UNIT_ATTENTION) { return; } /* * Override a pre-existing unit attention condition, except for a more * important reset condition. */ prec1 = scsi_ua_precedence(bus->unit_attention); prec2 = scsi_ua_precedence(sense); if (prec2 < prec1) { bus->unit_attention = sense; } } void scsi_device_set_ua(SCSIDevice *sdev, SCSISense sense) { int prec1, prec2; if (sense.key != UNIT_ATTENTION) { return; } trace_scsi_device_set_ua(sdev->id, sdev->lun, sense.key, sense.asc, sense.ascq); /* * Override a pre-existing unit attention condition, except for a more * important reset condition. */ prec1 = scsi_ua_precedence(sdev->unit_attention); prec2 = scsi_ua_precedence(sense); if (prec2 < prec1) { sdev->unit_attention = sense; } } static void scsi_device_purge_one_req(SCSIRequest *req, void *opaque) { scsi_req_cancel_async(req, NULL); } void scsi_device_purge_requests(SCSIDevice *sdev, SCSISense sense) { scsi_device_for_each_req_async(sdev, scsi_device_purge_one_req, NULL); blk_drain(sdev->conf.blk); scsi_device_set_ua(sdev, sense); } void scsi_device_drained_begin(SCSIDevice *sdev) { SCSIBus *bus = DO_UPCAST(SCSIBus, qbus, sdev->qdev.parent_bus); if (!bus) { return; } assert(qemu_get_current_aio_context() == qemu_get_aio_context()); assert(bus->drain_count < INT_MAX); /* * Multiple BlockBackends can be on a SCSIBus and each may begin/end * draining at any time. Keep a counter so HBAs only see begin/end once. */ if (bus->drain_count++ == 0) { trace_scsi_bus_drained_begin(bus, sdev); if (bus->info->drained_begin) { bus->info->drained_begin(bus); } } } void scsi_device_drained_end(SCSIDevice *sdev) { SCSIBus *bus = DO_UPCAST(SCSIBus, qbus, sdev->qdev.parent_bus); if (!bus) { return; } assert(qemu_get_current_aio_context() == qemu_get_aio_context()); assert(bus->drain_count > 0); if (bus->drain_count-- == 1) { trace_scsi_bus_drained_end(bus, sdev); if (bus->info->drained_end) { bus->info->drained_end(bus); } } } static char *scsibus_get_dev_path(DeviceState *dev) { SCSIDevice *d = SCSI_DEVICE(dev); DeviceState *hba = dev->parent_bus->parent; char *id; char *path; id = qdev_get_dev_path(hba); if (id) { path = g_strdup_printf("%s/%d:%d:%d", id, d->channel, d->id, d->lun); } else { path = g_strdup_printf("%d:%d:%d", d->channel, d->id, d->lun); } g_free(id); return path; } static char *scsibus_get_fw_dev_path(DeviceState *dev) { SCSIDevice *d = SCSI_DEVICE(dev); return g_strdup_printf("channel@%x/%s@%x,%x", d->channel, qdev_fw_name(dev), d->id, d->lun); } /* SCSI request list. For simplicity, pv points to the whole device */ static void put_scsi_req(SCSIRequest *req, void *opaque) { QEMUFile *f = opaque; assert(!req->io_canceled); assert(req->status == -1 && req->host_status == -1); assert(req->enqueued); qemu_put_sbyte(f, req->retry ? 1 : 2); qemu_put_buffer(f, req->cmd.buf, sizeof(req->cmd.buf)); qemu_put_be32s(f, &req->tag); qemu_put_be32s(f, &req->lun); if (req->bus->info->save_request) { req->bus->info->save_request(f, req); } if (req->ops->save_request) { req->ops->save_request(f, req); } } static int put_scsi_requests(QEMUFile *f, void *pv, size_t size, const VMStateField *field, JSONWriter *vmdesc) { SCSIDevice *s = pv; scsi_device_for_each_req_sync(s, put_scsi_req, f); qemu_put_sbyte(f, 0); return 0; } static int get_scsi_requests(QEMUFile *f, void *pv, size_t size, const VMStateField *field) { SCSIDevice *s = pv; SCSIBus *bus = DO_UPCAST(SCSIBus, qbus, s->qdev.parent_bus); int8_t sbyte; while ((sbyte = qemu_get_sbyte(f)) > 0) { uint8_t buf[SCSI_CMD_BUF_SIZE]; uint32_t tag; uint32_t lun; SCSIRequest *req; qemu_get_buffer(f, buf, sizeof(buf)); qemu_get_be32s(f, &tag); qemu_get_be32s(f, &lun); /* * A too-short CDB would have been rejected by scsi_req_new, so just use * SCSI_CMD_BUF_SIZE as the CDB length. */ req = scsi_req_new(s, tag, lun, buf, sizeof(buf), NULL); req->retry = (sbyte == 1); if (bus->info->load_request) { req->hba_private = bus->info->load_request(f, req); } if (req->ops->load_request) { req->ops->load_request(f, req); } /* Just restart it later. */ scsi_req_enqueue_internal(req); /* At this point, the request will be kept alive by the reference * added by scsi_req_enqueue_internal, so we can release our reference. * The HBA of course will add its own reference in the load_request * callback if it needs to hold on the SCSIRequest. */ scsi_req_unref(req); } return 0; } static const VMStateInfo vmstate_info_scsi_requests = { .name = "scsi-requests", .get = get_scsi_requests, .put = put_scsi_requests, }; static bool scsi_sense_state_needed(void *opaque) { SCSIDevice *s = opaque; return s->sense_len > SCSI_SENSE_BUF_SIZE_OLD; } static const VMStateDescription vmstate_scsi_sense_state = { .name = "SCSIDevice/sense", .version_id = 1, .minimum_version_id = 1, .needed = scsi_sense_state_needed, .fields = (const VMStateField[]) { VMSTATE_UINT8_SUB_ARRAY(sense, SCSIDevice, SCSI_SENSE_BUF_SIZE_OLD, SCSI_SENSE_BUF_SIZE - SCSI_SENSE_BUF_SIZE_OLD), VMSTATE_END_OF_LIST() } }; const VMStateDescription vmstate_scsi_device = { .name = "SCSIDevice", .version_id = 1, .minimum_version_id = 1, .fields = (const VMStateField[]) { VMSTATE_UINT8(unit_attention.key, SCSIDevice), VMSTATE_UINT8(unit_attention.asc, SCSIDevice), VMSTATE_UINT8(unit_attention.ascq, SCSIDevice), VMSTATE_BOOL(sense_is_ua, SCSIDevice), VMSTATE_UINT8_SUB_ARRAY(sense, SCSIDevice, 0, SCSI_SENSE_BUF_SIZE_OLD), VMSTATE_UINT32(sense_len, SCSIDevice), { .name = "requests", .version_id = 0, .field_exists = NULL, .size = 0, /* ouch */ .info = &vmstate_info_scsi_requests, .flags = VMS_SINGLE, .offset = 0, }, VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription * const []) { &vmstate_scsi_sense_state, NULL } }; static Property scsi_props[] = { DEFINE_PROP_UINT32("channel", SCSIDevice, channel, 0), DEFINE_PROP_UINT32("scsi-id", SCSIDevice, id, -1), DEFINE_PROP_UINT32("lun", SCSIDevice, lun, -1), DEFINE_PROP_END_OF_LIST(), }; static void scsi_device_class_init(ObjectClass *klass, void *data) { DeviceClass *k = DEVICE_CLASS(klass); set_bit(DEVICE_CATEGORY_STORAGE, k->categories); k->bus_type = TYPE_SCSI_BUS; k->realize = scsi_qdev_realize; k->unrealize = scsi_qdev_unrealize; device_class_set_props(k, scsi_props); } static void scsi_dev_instance_init(Object *obj) { DeviceState *dev = DEVICE(obj); SCSIDevice *s = SCSI_DEVICE(dev); device_add_bootindex_property(obj, &s->conf.bootindex, "bootindex", NULL, &s->qdev); } static const TypeInfo scsi_device_type_info = { .name = TYPE_SCSI_DEVICE, .parent = TYPE_DEVICE, .instance_size = sizeof(SCSIDevice), .abstract = true, .class_size = sizeof(SCSIDeviceClass), .class_init = scsi_device_class_init, .instance_init = scsi_dev_instance_init, }; static void scsi_bus_class_init(ObjectClass *klass, void *data) { BusClass *k = BUS_CLASS(klass); HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(klass); k->get_dev_path = scsibus_get_dev_path; k->get_fw_dev_path = scsibus_get_fw_dev_path; k->check_address = scsi_bus_check_address; hc->unplug = qdev_simple_device_unplug_cb; } static const TypeInfo scsi_bus_info = { .name = TYPE_SCSI_BUS, .parent = TYPE_BUS, .instance_size = sizeof(SCSIBus), .class_init = scsi_bus_class_init, .interfaces = (InterfaceInfo[]) { { TYPE_HOTPLUG_HANDLER }, { } } }; static void scsi_register_types(void) { type_register_static(&scsi_bus_info); type_register_static(&scsi_device_type_info); } type_init(scsi_register_types)