/* * IMX GPT Timer * * Copyright (c) 2008 OK Labs * Copyright (c) 2011 NICTA Pty Ltd * Originally written by Hans Jiang * Updated by Peter Chubb * Updated by Jean-Christophe Dubois * * This code is licensed under GPL version 2 or later. See * the COPYING file in the top-level directory. * */ #include "qemu/osdep.h" #include "hw/timer/imx_gpt.h" #include "qemu/main-loop.h" #include "qemu/module.h" #include "qemu/log.h" #ifndef DEBUG_IMX_GPT #define DEBUG_IMX_GPT 0 #endif #define DPRINTF(fmt, args...) \ do { \ if (DEBUG_IMX_GPT) { \ fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_GPT, \ __func__, ##args); \ } \ } while (0) static const char *imx_gpt_reg_name(uint32_t reg) { switch (reg) { case 0: return "CR"; case 1: return "PR"; case 2: return "SR"; case 3: return "IR"; case 4: return "OCR1"; case 5: return "OCR2"; case 6: return "OCR3"; case 7: return "ICR1"; case 8: return "ICR2"; case 9: return "CNT"; default: return "[?]"; } } static const VMStateDescription vmstate_imx_timer_gpt = { .name = TYPE_IMX_GPT, .version_id = 3, .minimum_version_id = 3, .fields = (VMStateField[]) { VMSTATE_UINT32(cr, IMXGPTState), VMSTATE_UINT32(pr, IMXGPTState), VMSTATE_UINT32(sr, IMXGPTState), VMSTATE_UINT32(ir, IMXGPTState), VMSTATE_UINT32(ocr1, IMXGPTState), VMSTATE_UINT32(ocr2, IMXGPTState), VMSTATE_UINT32(ocr3, IMXGPTState), VMSTATE_UINT32(icr1, IMXGPTState), VMSTATE_UINT32(icr2, IMXGPTState), VMSTATE_UINT32(cnt, IMXGPTState), VMSTATE_UINT32(next_timeout, IMXGPTState), VMSTATE_UINT32(next_int, IMXGPTState), VMSTATE_UINT32(freq, IMXGPTState), VMSTATE_PTIMER(timer, IMXGPTState), VMSTATE_END_OF_LIST() } }; static const IMXClk imx25_gpt_clocks[] = { CLK_NONE, /* 000 No clock source */ CLK_IPG, /* 001 ipg_clk, 532MHz*/ CLK_IPG_HIGH, /* 010 ipg_clk_highfreq */ CLK_NONE, /* 011 not defined */ CLK_32k, /* 100 ipg_clk_32k */ CLK_32k, /* 101 ipg_clk_32k */ CLK_32k, /* 110 ipg_clk_32k */ CLK_32k, /* 111 ipg_clk_32k */ }; static const IMXClk imx31_gpt_clocks[] = { CLK_NONE, /* 000 No clock source */ CLK_IPG, /* 001 ipg_clk, 532MHz*/ CLK_IPG_HIGH, /* 010 ipg_clk_highfreq */ CLK_NONE, /* 011 not defined */ CLK_32k, /* 100 ipg_clk_32k */ CLK_NONE, /* 101 not defined */ CLK_NONE, /* 110 not defined */ CLK_NONE, /* 111 not defined */ }; static const IMXClk imx6_gpt_clocks[] = { CLK_NONE, /* 000 No clock source */ CLK_IPG, /* 001 ipg_clk, 532MHz*/ CLK_IPG_HIGH, /* 010 ipg_clk_highfreq */ CLK_EXT, /* 011 External clock */ CLK_32k, /* 100 ipg_clk_32k */ CLK_HIGH_DIV, /* 101 reference clock / 8 */ CLK_NONE, /* 110 not defined */ CLK_HIGH, /* 111 reference clock */ }; static const IMXClk imx7_gpt_clocks[] = { CLK_NONE, /* 000 No clock source */ CLK_IPG, /* 001 ipg_clk, 532MHz*/ CLK_IPG_HIGH, /* 010 ipg_clk_highfreq */ CLK_EXT, /* 011 External clock */ CLK_32k, /* 100 ipg_clk_32k */ CLK_HIGH, /* 101 reference clock */ CLK_NONE, /* 110 not defined */ CLK_NONE, /* 111 not defined */ }; static void imx_gpt_set_freq(IMXGPTState *s) { uint32_t clksrc = extract32(s->cr, GPT_CR_CLKSRC_SHIFT, 3); s->freq = imx_ccm_get_clock_frequency(s->ccm, s->clocks[clksrc]) / (1 + s->pr); DPRINTF("Setting clksrc %d to frequency %d\n", clksrc, s->freq); if (s->freq) { ptimer_set_freq(s->timer, s->freq); } } static void imx_gpt_update_int(IMXGPTState *s) { if ((s->sr & s->ir) && (s->cr & GPT_CR_EN)) { qemu_irq_raise(s->irq); } else { qemu_irq_lower(s->irq); } } static uint32_t imx_gpt_update_count(IMXGPTState *s) { s->cnt = s->next_timeout - (uint32_t)ptimer_get_count(s->timer); return s->cnt; } static inline uint32_t imx_gpt_find_limit(uint32_t count, uint32_t reg, uint32_t timeout) { if ((count < reg) && (timeout > reg)) { timeout = reg; } return timeout; } static void imx_gpt_compute_next_timeout(IMXGPTState *s, bool event) { uint32_t timeout = GPT_TIMER_MAX; uint32_t count; long long limit; if (!(s->cr & GPT_CR_EN)) { /* if not enabled just return */ return; } /* update the count */ count = imx_gpt_update_count(s); if (event) { /* * This is an event (the ptimer reached 0 and stopped), and the * timer counter is now equal to s->next_timeout. */ if (!(s->cr & GPT_CR_FRR) && (count == s->ocr1)) { /* We are in restart mode and we crossed the compare channel 1 * value. We need to reset the counter to 0. */ count = s->cnt = s->next_timeout = 0; } else if (count == GPT_TIMER_MAX) { /* We reached GPT_TIMER_MAX so we need to rollover */ count = s->cnt = s->next_timeout = 0; } } /* now, find the next timeout related to count */ if (s->ir & GPT_IR_OF1IE) { timeout = imx_gpt_find_limit(count, s->ocr1, timeout); } if (s->ir & GPT_IR_OF2IE) { timeout = imx_gpt_find_limit(count, s->ocr2, timeout); } if (s->ir & GPT_IR_OF3IE) { timeout = imx_gpt_find_limit(count, s->ocr3, timeout); } /* find the next set of interrupts to raise for next timer event */ s->next_int = 0; if ((s->ir & GPT_IR_OF1IE) && (timeout == s->ocr1)) { s->next_int |= GPT_SR_OF1; } if ((s->ir & GPT_IR_OF2IE) && (timeout == s->ocr2)) { s->next_int |= GPT_SR_OF2; } if ((s->ir & GPT_IR_OF3IE) && (timeout == s->ocr3)) { s->next_int |= GPT_SR_OF3; } if ((s->ir & GPT_IR_ROVIE) && (timeout == GPT_TIMER_MAX)) { s->next_int |= GPT_SR_ROV; } /* the new range to count down from */ limit = timeout - imx_gpt_update_count(s); if (limit < 0) { /* * if we reach here, then QEMU is running too slow and we pass the * timeout limit while computing it. Let's deliver the interrupt * and compute a new limit. */ s->sr |= s->next_int; imx_gpt_compute_next_timeout(s, event); imx_gpt_update_int(s); } else { /* New timeout value */ s->next_timeout = timeout; /* reset the limit to the computed range */ ptimer_set_limit(s->timer, limit, 1); } } static uint64_t imx_gpt_read(void *opaque, hwaddr offset, unsigned size) { IMXGPTState *s = IMX_GPT(opaque); uint32_t reg_value = 0; switch (offset >> 2) { case 0: /* Control Register */ reg_value = s->cr; break; case 1: /* prescaler */ reg_value = s->pr; break; case 2: /* Status Register */ reg_value = s->sr; break; case 3: /* Interrupt Register */ reg_value = s->ir; break; case 4: /* Output Compare Register 1 */ reg_value = s->ocr1; break; case 5: /* Output Compare Register 2 */ reg_value = s->ocr2; break; case 6: /* Output Compare Register 3 */ reg_value = s->ocr3; break; case 7: /* input Capture Register 1 */ qemu_log_mask(LOG_UNIMP, "[%s]%s: icr1 feature is not implemented\n", TYPE_IMX_GPT, __func__); reg_value = s->icr1; break; case 8: /* input Capture Register 2 */ qemu_log_mask(LOG_UNIMP, "[%s]%s: icr2 feature is not implemented\n", TYPE_IMX_GPT, __func__); reg_value = s->icr2; break; case 9: /* cnt */ imx_gpt_update_count(s); reg_value = s->cnt; break; default: qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%" HWADDR_PRIx "\n", TYPE_IMX_GPT, __func__, offset); break; } DPRINTF("(%s) = 0x%08x\n", imx_gpt_reg_name(offset >> 2), reg_value); return reg_value; } static void imx_gpt_reset_common(IMXGPTState *s, bool is_soft_reset) { /* stop timer */ ptimer_stop(s->timer); /* Soft reset and hard reset differ only in their handling of the CR * register -- soft reset preserves the values of some bits there. */ if (is_soft_reset) { /* Clear all CR bits except those that are preserved by soft reset. */ s->cr &= GPT_CR_EN | GPT_CR_ENMOD | GPT_CR_STOPEN | GPT_CR_DOZEN | GPT_CR_WAITEN | GPT_CR_DBGEN | (GPT_CR_CLKSRC_MASK << GPT_CR_CLKSRC_SHIFT); } else { s->cr = 0; } s->sr = 0; s->pr = 0; s->ir = 0; s->cnt = 0; s->ocr1 = GPT_TIMER_MAX; s->ocr2 = GPT_TIMER_MAX; s->ocr3 = GPT_TIMER_MAX; s->icr1 = 0; s->icr2 = 0; s->next_timeout = GPT_TIMER_MAX; s->next_int = 0; /* compute new freq */ imx_gpt_set_freq(s); /* reset the limit to GPT_TIMER_MAX */ ptimer_set_limit(s->timer, GPT_TIMER_MAX, 1); /* if the timer is still enabled, restart it */ if (s->freq && (s->cr & GPT_CR_EN)) { ptimer_run(s->timer, 1); } } static void imx_gpt_soft_reset(DeviceState *dev) { IMXGPTState *s = IMX_GPT(dev); imx_gpt_reset_common(s, true); } static void imx_gpt_reset(DeviceState *dev) { IMXGPTState *s = IMX_GPT(dev); imx_gpt_reset_common(s, false); } static void imx_gpt_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { IMXGPTState *s = IMX_GPT(opaque); uint32_t oldreg; DPRINTF("(%s, value = 0x%08x)\n", imx_gpt_reg_name(offset >> 2), (uint32_t)value); switch (offset >> 2) { case 0: oldreg = s->cr; s->cr = value & ~0x7c14; if (s->cr & GPT_CR_SWR) { /* force reset */ /* handle the reset */ imx_gpt_soft_reset(DEVICE(s)); } else { /* set our freq, as the source might have changed */ imx_gpt_set_freq(s); if ((oldreg ^ s->cr) & GPT_CR_EN) { if (s->cr & GPT_CR_EN) { if (s->cr & GPT_CR_ENMOD) { s->next_timeout = GPT_TIMER_MAX; ptimer_set_count(s->timer, GPT_TIMER_MAX); imx_gpt_compute_next_timeout(s, false); } ptimer_run(s->timer, 1); } else { /* stop timer */ ptimer_stop(s->timer); } } } break; case 1: /* Prescaler */ s->pr = value & 0xfff; imx_gpt_set_freq(s); break; case 2: /* SR */ s->sr &= ~(value & 0x3f); imx_gpt_update_int(s); break; case 3: /* IR -- interrupt register */ s->ir = value & 0x3f; imx_gpt_update_int(s); imx_gpt_compute_next_timeout(s, false); break; case 4: /* OCR1 -- output compare register */ s->ocr1 = value; /* In non-freerun mode, reset count when this register is written */ if (!(s->cr & GPT_CR_FRR)) { s->next_timeout = GPT_TIMER_MAX; ptimer_set_limit(s->timer, GPT_TIMER_MAX, 1); } /* compute the new timeout */ imx_gpt_compute_next_timeout(s, false); break; case 5: /* OCR2 -- output compare register */ s->ocr2 = value; /* compute the new timeout */ imx_gpt_compute_next_timeout(s, false); break; case 6: /* OCR3 -- output compare register */ s->ocr3 = value; /* compute the new timeout */ imx_gpt_compute_next_timeout(s, false); break; default: qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%" HWADDR_PRIx "\n", TYPE_IMX_GPT, __func__, offset); break; } } static void imx_gpt_timeout(void *opaque) { IMXGPTState *s = IMX_GPT(opaque); DPRINTF("\n"); s->sr |= s->next_int; s->next_int = 0; imx_gpt_compute_next_timeout(s, true); imx_gpt_update_int(s); if (s->freq && (s->cr & GPT_CR_EN)) { ptimer_run(s->timer, 1); } } static const MemoryRegionOps imx_gpt_ops = { .read = imx_gpt_read, .write = imx_gpt_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static void imx_gpt_realize(DeviceState *dev, Error **errp) { IMXGPTState *s = IMX_GPT(dev); SysBusDevice *sbd = SYS_BUS_DEVICE(dev); QEMUBH *bh; sysbus_init_irq(sbd, &s->irq); memory_region_init_io(&s->iomem, OBJECT(s), &imx_gpt_ops, s, TYPE_IMX_GPT, 0x00001000); sysbus_init_mmio(sbd, &s->iomem); bh = qemu_bh_new(imx_gpt_timeout, s); s->timer = ptimer_init(bh, PTIMER_POLICY_DEFAULT); } static void imx_gpt_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = imx_gpt_realize; dc->reset = imx_gpt_reset; dc->vmsd = &vmstate_imx_timer_gpt; dc->desc = "i.MX general timer"; } static void imx25_gpt_init(Object *obj) { IMXGPTState *s = IMX_GPT(obj); s->clocks = imx25_gpt_clocks; } static void imx31_gpt_init(Object *obj) { IMXGPTState *s = IMX_GPT(obj); s->clocks = imx31_gpt_clocks; } static void imx6_gpt_init(Object *obj) { IMXGPTState *s = IMX_GPT(obj); s->clocks = imx6_gpt_clocks; } static void imx7_gpt_init(Object *obj) { IMXGPTState *s = IMX_GPT(obj); s->clocks = imx7_gpt_clocks; } static const TypeInfo imx25_gpt_info = { .name = TYPE_IMX25_GPT, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(IMXGPTState), .instance_init = imx25_gpt_init, .class_init = imx_gpt_class_init, }; static const TypeInfo imx31_gpt_info = { .name = TYPE_IMX31_GPT, .parent = TYPE_IMX25_GPT, .instance_init = imx31_gpt_init, }; static const TypeInfo imx6_gpt_info = { .name = TYPE_IMX6_GPT, .parent = TYPE_IMX25_GPT, .instance_init = imx6_gpt_init, }; static const TypeInfo imx7_gpt_info = { .name = TYPE_IMX7_GPT, .parent = TYPE_IMX25_GPT, .instance_init = imx7_gpt_init, }; static void imx_gpt_register_types(void) { type_register_static(&imx25_gpt_info); type_register_static(&imx31_gpt_info); type_register_static(&imx6_gpt_info); type_register_static(&imx7_gpt_info); } type_init(imx_gpt_register_types)