/*
* ARM virtual CPU header
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see .
*/
#ifndef ARM_CPU_H
#define ARM_CPU_H
#include "kvm-consts.h"
#include "hw/registerfields.h"
#include "cpu-qom.h"
#include "exec/cpu-defs.h"
/* ARM processors have a weak memory model */
#define TCG_GUEST_DEFAULT_MO (0)
#ifdef TARGET_AARCH64
#define KVM_HAVE_MCE_INJECTION 1
#endif
#define EXCP_UDEF 1 /* undefined instruction */
#define EXCP_SWI 2 /* software interrupt */
#define EXCP_PREFETCH_ABORT 3
#define EXCP_DATA_ABORT 4
#define EXCP_IRQ 5
#define EXCP_FIQ 6
#define EXCP_BKPT 7
#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
#define EXCP_HVC 11 /* HyperVisor Call */
#define EXCP_HYP_TRAP 12
#define EXCP_SMC 13 /* Secure Monitor Call */
#define EXCP_VIRQ 14
#define EXCP_VFIQ 15
#define EXCP_SEMIHOST 16 /* semihosting call */
#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
#define ARMV7M_EXCP_RESET 1
#define ARMV7M_EXCP_NMI 2
#define ARMV7M_EXCP_HARD 3
#define ARMV7M_EXCP_MEM 4
#define ARMV7M_EXCP_BUS 5
#define ARMV7M_EXCP_USAGE 6
#define ARMV7M_EXCP_SECURE 7
#define ARMV7M_EXCP_SVC 11
#define ARMV7M_EXCP_DEBUG 12
#define ARMV7M_EXCP_PENDSV 14
#define ARMV7M_EXCP_SYSTICK 15
/* For M profile, some registers are banked secure vs non-secure;
* these are represented as a 2-element array where the first element
* is the non-secure copy and the second is the secure copy.
* When the CPU does not have implement the security extension then
* only the first element is used.
* This means that the copy for the current security state can be
* accessed via env->registerfield[env->v7m.secure] (whether the security
* extension is implemented or not).
*/
enum {
M_REG_NS = 0,
M_REG_S = 1,
M_REG_NUM_BANKS = 2,
};
/* ARM-specific interrupt pending bits. */
#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
/* The usual mapping for an AArch64 system register to its AArch32
* counterpart is for the 32 bit world to have access to the lower
* half only (with writes leaving the upper half untouched). It's
* therefore useful to be able to pass TCG the offset of the least
* significant half of a uint64_t struct member.
*/
#ifdef HOST_WORDS_BIGENDIAN
#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
#define offsetofhigh32(S, M) offsetof(S, M)
#else
#define offsetoflow32(S, M) offsetof(S, M)
#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
#endif
/* Meanings of the ARMCPU object's four inbound GPIO lines */
#define ARM_CPU_IRQ 0
#define ARM_CPU_FIQ 1
#define ARM_CPU_VIRQ 2
#define ARM_CPU_VFIQ 3
/* ARM-specific extra insn start words:
* 1: Conditional execution bits
* 2: Partial exception syndrome for data aborts
*/
#define TARGET_INSN_START_EXTRA_WORDS 2
/* The 2nd extra word holding syndrome info for data aborts does not use
* the upper 6 bits nor the lower 14 bits. We mask and shift it down to
* help the sleb128 encoder do a better job.
* When restoring the CPU state, we shift it back up.
*/
#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
#define ARM_INSN_START_WORD2_SHIFT 14
/* We currently assume float and double are IEEE single and double
precision respectively.
Doing runtime conversions is tricky because VFP registers may contain
integer values (eg. as the result of a FTOSI instruction).
s<2n> maps to the least significant half of d
s<2n+1> maps to the most significant half of d
*/
/**
* DynamicGDBXMLInfo:
* @desc: Contains the XML descriptions.
* @num: Number of the registers in this XML seen by GDB.
* @data: A union with data specific to the set of registers
* @cpregs_keys: Array that contains the corresponding Key of
* a given cpreg with the same order of the cpreg
* in the XML description.
*/
typedef struct DynamicGDBXMLInfo {
char *desc;
int num;
union {
struct {
uint32_t *keys;
} cpregs;
} data;
} DynamicGDBXMLInfo;
/* CPU state for each instance of a generic timer (in cp15 c14) */
typedef struct ARMGenericTimer {
uint64_t cval; /* Timer CompareValue register */
uint64_t ctl; /* Timer Control register */
} ARMGenericTimer;
#define GTIMER_PHYS 0
#define GTIMER_VIRT 1
#define GTIMER_HYP 2
#define GTIMER_SEC 3
#define GTIMER_HYPVIRT 4
#define NUM_GTIMERS 5
typedef struct {
uint64_t raw_tcr;
uint32_t mask;
uint32_t base_mask;
} TCR;
/* Define a maximum sized vector register.
* For 32-bit, this is a 128-bit NEON/AdvSIMD register.
* For 64-bit, this is a 2048-bit SVE register.
*
* Note that the mapping between S, D, and Q views of the register bank
* differs between AArch64 and AArch32.
* In AArch32:
* Qn = regs[n].d[1]:regs[n].d[0]
* Dn = regs[n / 2].d[n & 1]
* Sn = regs[n / 4].d[n % 4 / 2],
* bits 31..0 for even n, and bits 63..32 for odd n
* (and regs[16] to regs[31] are inaccessible)
* In AArch64:
* Zn = regs[n].d[*]
* Qn = regs[n].d[1]:regs[n].d[0]
* Dn = regs[n].d[0]
* Sn = regs[n].d[0] bits 31..0
* Hn = regs[n].d[0] bits 15..0
*
* This corresponds to the architecturally defined mapping between
* the two execution states, and means we do not need to explicitly
* map these registers when changing states.
*
* Align the data for use with TCG host vector operations.
*/
#ifdef TARGET_AARCH64
# define ARM_MAX_VQ 16
void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
#else
# define ARM_MAX_VQ 1
static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
#endif
typedef struct ARMVectorReg {
uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
} ARMVectorReg;
#ifdef TARGET_AARCH64
/* In AArch32 mode, predicate registers do not exist at all. */
typedef struct ARMPredicateReg {
uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
} ARMPredicateReg;
/* In AArch32 mode, PAC keys do not exist at all. */
typedef struct ARMPACKey {
uint64_t lo, hi;
} ARMPACKey;
#endif
typedef struct CPUARMState {
/* Regs for current mode. */
uint32_t regs[16];
/* 32/64 switch only happens when taking and returning from
* exceptions so the overlap semantics are taken care of then
* instead of having a complicated union.
*/
/* Regs for A64 mode. */
uint64_t xregs[32];
uint64_t pc;
/* PSTATE isn't an architectural register for ARMv8. However, it is
* convenient for us to assemble the underlying state into a 32 bit format
* identical to the architectural format used for the SPSR. (This is also
* what the Linux kernel's 'pstate' field in signal handlers and KVM's
* 'pstate' register are.) Of the PSTATE bits:
* NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
* semantics as for AArch32, as described in the comments on each field)
* nRW (also known as M[4]) is kept, inverted, in env->aarch64
* DAIF (exception masks) are kept in env->daif
* BTYPE is kept in env->btype
* all other bits are stored in their correct places in env->pstate
*/
uint32_t pstate;
uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
/* Cached TBFLAGS state. See below for which bits are included. */
uint32_t hflags;
/* Frequently accessed CPSR bits are stored separately for efficiency.
This contains all the other bits. Use cpsr_{read,write} to access
the whole CPSR. */
uint32_t uncached_cpsr;
uint32_t spsr;
/* Banked registers. */
uint64_t banked_spsr[8];
uint32_t banked_r13[8];
uint32_t banked_r14[8];
/* These hold r8-r12. */
uint32_t usr_regs[5];
uint32_t fiq_regs[5];
/* cpsr flag cache for faster execution */
uint32_t CF; /* 0 or 1 */
uint32_t VF; /* V is the bit 31. All other bits are undefined */
uint32_t NF; /* N is bit 31. All other bits are undefined. */
uint32_t ZF; /* Z set if zero. */
uint32_t QF; /* 0 or 1 */
uint32_t GE; /* cpsr[19:16] */
uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
uint32_t btype; /* BTI branch type. spsr[11:10]. */
uint64_t daif; /* exception masks, in the bits they are in PSTATE */
uint64_t elr_el[4]; /* AArch64 exception link regs */
uint64_t sp_el[4]; /* AArch64 banked stack pointers */
/* System control coprocessor (cp15) */
struct {
uint32_t c0_cpuid;
union { /* Cache size selection */
struct {
uint64_t _unused_csselr0;
uint64_t csselr_ns;
uint64_t _unused_csselr1;
uint64_t csselr_s;
};
uint64_t csselr_el[4];
};
union { /* System control register. */
struct {
uint64_t _unused_sctlr;
uint64_t sctlr_ns;
uint64_t hsctlr;
uint64_t sctlr_s;
};
uint64_t sctlr_el[4];
};
uint64_t cpacr_el1; /* Architectural feature access control register */
uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
uint64_t sder; /* Secure debug enable register. */
uint32_t nsacr; /* Non-secure access control register. */
union { /* MMU translation table base 0. */
struct {
uint64_t _unused_ttbr0_0;
uint64_t ttbr0_ns;
uint64_t _unused_ttbr0_1;
uint64_t ttbr0_s;
};
uint64_t ttbr0_el[4];
};
union { /* MMU translation table base 1. */
struct {
uint64_t _unused_ttbr1_0;
uint64_t ttbr1_ns;
uint64_t _unused_ttbr1_1;
uint64_t ttbr1_s;
};
uint64_t ttbr1_el[4];
};
uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
/* MMU translation table base control. */
TCR tcr_el[4];
TCR vtcr_el2; /* Virtualization Translation Control. */
uint32_t c2_data; /* MPU data cacheable bits. */
uint32_t c2_insn; /* MPU instruction cacheable bits. */
union { /* MMU domain access control register
* MPU write buffer control.
*/
struct {
uint64_t dacr_ns;
uint64_t dacr_s;
};
struct {
uint64_t dacr32_el2;
};
};
uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
uint64_t hcr_el2; /* Hypervisor configuration register */
uint64_t scr_el3; /* Secure configuration register. */
union { /* Fault status registers. */
struct {
uint64_t ifsr_ns;
uint64_t ifsr_s;
};
struct {
uint64_t ifsr32_el2;
};
};
union {
struct {
uint64_t _unused_dfsr;
uint64_t dfsr_ns;
uint64_t hsr;
uint64_t dfsr_s;
};
uint64_t esr_el[4];
};
uint32_t c6_region[8]; /* MPU base/size registers. */
union { /* Fault address registers. */
struct {
uint64_t _unused_far0;
#ifdef HOST_WORDS_BIGENDIAN
uint32_t ifar_ns;
uint32_t dfar_ns;
uint32_t ifar_s;
uint32_t dfar_s;
#else
uint32_t dfar_ns;
uint32_t ifar_ns;
uint32_t dfar_s;
uint32_t ifar_s;
#endif
uint64_t _unused_far3;
};
uint64_t far_el[4];
};
uint64_t hpfar_el2;
uint64_t hstr_el2;
union { /* Translation result. */
struct {
uint64_t _unused_par_0;
uint64_t par_ns;
uint64_t _unused_par_1;
uint64_t par_s;
};
uint64_t par_el[4];
};
uint32_t c9_insn; /* Cache lockdown registers. */
uint32_t c9_data;
uint64_t c9_pmcr; /* performance monitor control register */
uint64_t c9_pmcnten; /* perf monitor counter enables */
uint64_t c9_pmovsr; /* perf monitor overflow status */
uint64_t c9_pmuserenr; /* perf monitor user enable */
uint64_t c9_pmselr; /* perf monitor counter selection register */
uint64_t c9_pminten; /* perf monitor interrupt enables */
union { /* Memory attribute redirection */
struct {
#ifdef HOST_WORDS_BIGENDIAN
uint64_t _unused_mair_0;
uint32_t mair1_ns;
uint32_t mair0_ns;
uint64_t _unused_mair_1;
uint32_t mair1_s;
uint32_t mair0_s;
#else
uint64_t _unused_mair_0;
uint32_t mair0_ns;
uint32_t mair1_ns;
uint64_t _unused_mair_1;
uint32_t mair0_s;
uint32_t mair1_s;
#endif
};
uint64_t mair_el[4];
};
union { /* vector base address register */
struct {
uint64_t _unused_vbar;
uint64_t vbar_ns;
uint64_t hvbar;
uint64_t vbar_s;
};
uint64_t vbar_el[4];
};
uint32_t mvbar; /* (monitor) vector base address register */
struct { /* FCSE PID. */
uint32_t fcseidr_ns;
uint32_t fcseidr_s;
};
union { /* Context ID. */
struct {
uint64_t _unused_contextidr_0;
uint64_t contextidr_ns;
uint64_t _unused_contextidr_1;
uint64_t contextidr_s;
};
uint64_t contextidr_el[4];
};
union { /* User RW Thread register. */
struct {
uint64_t tpidrurw_ns;
uint64_t tpidrprw_ns;
uint64_t htpidr;
uint64_t _tpidr_el3;
};
uint64_t tpidr_el[4];
};
/* The secure banks of these registers don't map anywhere */
uint64_t tpidrurw_s;
uint64_t tpidrprw_s;
uint64_t tpidruro_s;
union { /* User RO Thread register. */
uint64_t tpidruro_ns;
uint64_t tpidrro_el[1];
};
uint64_t c14_cntfrq; /* Counter Frequency register */
uint64_t c14_cntkctl; /* Timer Control register */
uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
uint64_t cntvoff_el2; /* Counter Virtual Offset register */
ARMGenericTimer c14_timer[NUM_GTIMERS];
uint32_t c15_cpar; /* XScale Coprocessor Access Register */
uint32_t c15_ticonfig; /* TI925T configuration byte. */
uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
uint32_t c15_threadid; /* TI debugger thread-ID. */
uint32_t c15_config_base_address; /* SCU base address. */
uint32_t c15_diagnostic; /* diagnostic register */
uint32_t c15_power_diagnostic;
uint32_t c15_power_control; /* power control */
uint64_t dbgbvr[16]; /* breakpoint value registers */
uint64_t dbgbcr[16]; /* breakpoint control registers */
uint64_t dbgwvr[16]; /* watchpoint value registers */
uint64_t dbgwcr[16]; /* watchpoint control registers */
uint64_t mdscr_el1;
uint64_t oslsr_el1; /* OS Lock Status */
uint64_t mdcr_el2;
uint64_t mdcr_el3;
/* Stores the architectural value of the counter *the last time it was
* updated* by pmccntr_op_start. Accesses should always be surrounded
* by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
* architecturally-correct value is being read/set.
*/
uint64_t c15_ccnt;
/* Stores the delta between the architectural value and the underlying
* cycle count during normal operation. It is used to update c15_ccnt
* to be the correct architectural value before accesses. During
* accesses, c15_ccnt_delta contains the underlying count being used
* for the access, after which it reverts to the delta value in
* pmccntr_op_finish.
*/
uint64_t c15_ccnt_delta;
uint64_t c14_pmevcntr[31];
uint64_t c14_pmevcntr_delta[31];
uint64_t c14_pmevtyper[31];
uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
uint64_t vpidr_el2; /* Virtualization Processor ID Register */
uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
uint64_t gcr_el1;
uint64_t rgsr_el1;
} cp15;
struct {
/* M profile has up to 4 stack pointers:
* a Main Stack Pointer and a Process Stack Pointer for each
* of the Secure and Non-Secure states. (If the CPU doesn't support
* the security extension then it has only two SPs.)
* In QEMU we always store the currently active SP in regs[13],
* and the non-active SP for the current security state in
* v7m.other_sp. The stack pointers for the inactive security state
* are stored in other_ss_msp and other_ss_psp.
* switch_v7m_security_state() is responsible for rearranging them
* when we change security state.
*/
uint32_t other_sp;
uint32_t other_ss_msp;
uint32_t other_ss_psp;
uint32_t vecbase[M_REG_NUM_BANKS];
uint32_t basepri[M_REG_NUM_BANKS];
uint32_t control[M_REG_NUM_BANKS];
uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
uint32_t hfsr; /* HardFault Status */
uint32_t dfsr; /* Debug Fault Status Register */
uint32_t sfsr; /* Secure Fault Status Register */
uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
uint32_t bfar; /* BusFault Address */
uint32_t sfar; /* Secure Fault Address Register */
unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
int exception;
uint32_t primask[M_REG_NUM_BANKS];
uint32_t faultmask[M_REG_NUM_BANKS];
uint32_t aircr; /* only holds r/w state if security extn implemented */
uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
uint32_t csselr[M_REG_NUM_BANKS];
uint32_t scr[M_REG_NUM_BANKS];
uint32_t msplim[M_REG_NUM_BANKS];
uint32_t psplim[M_REG_NUM_BANKS];
uint32_t fpcar[M_REG_NUM_BANKS];
uint32_t fpccr[M_REG_NUM_BANKS];
uint32_t fpdscr[M_REG_NUM_BANKS];
uint32_t cpacr[M_REG_NUM_BANKS];
uint32_t nsacr;
} v7m;
/* Information associated with an exception about to be taken:
* code which raises an exception must set cs->exception_index and
* the relevant parts of this structure; the cpu_do_interrupt function
* will then set the guest-visible registers as part of the exception
* entry process.
*/
struct {
uint32_t syndrome; /* AArch64 format syndrome register */
uint32_t fsr; /* AArch32 format fault status register info */
uint64_t vaddress; /* virtual addr associated with exception, if any */
uint32_t target_el; /* EL the exception should be targeted for */
/* If we implement EL2 we will also need to store information
* about the intermediate physical address for stage 2 faults.
*/
} exception;
/* Information associated with an SError */
struct {
uint8_t pending;
uint8_t has_esr;
uint64_t esr;
} serror;
/* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
uint32_t irq_line_state;
/* Thumb-2 EE state. */
uint32_t teecr;
uint32_t teehbr;
/* VFP coprocessor state. */
struct {
ARMVectorReg zregs[32];
#ifdef TARGET_AARCH64
/* Store FFR as pregs[16] to make it easier to treat as any other. */
#define FFR_PRED_NUM 16
ARMPredicateReg pregs[17];
/* Scratch space for aa64 sve predicate temporary. */
ARMPredicateReg preg_tmp;
#endif
/* We store these fpcsr fields separately for convenience. */
uint32_t qc[4] QEMU_ALIGNED(16);
int vec_len;
int vec_stride;
uint32_t xregs[16];
/* Scratch space for aa32 neon expansion. */
uint32_t scratch[8];
/* There are a number of distinct float control structures:
*
* fp_status: is the "normal" fp status.
* fp_status_fp16: used for half-precision calculations
* standard_fp_status : the ARM "Standard FPSCR Value"
*
* Half-precision operations are governed by a separate
* flush-to-zero control bit in FPSCR:FZ16. We pass a separate
* status structure to control this.
*
* The "Standard FPSCR", ie default-NaN, flush-to-zero,
* round-to-nearest and is used by any operations (generally
* Neon) which the architecture defines as controlled by the
* standard FPSCR value rather than the FPSCR.
*
* To avoid having to transfer exception bits around, we simply
* say that the FPSCR cumulative exception flags are the logical
* OR of the flags in the three fp statuses. This relies on the
* only thing which needs to read the exception flags being
* an explicit FPSCR read.
*/
float_status fp_status;
float_status fp_status_f16;
float_status standard_fp_status;
/* ZCR_EL[1-3] */
uint64_t zcr_el[4];
} vfp;
uint64_t exclusive_addr;
uint64_t exclusive_val;
uint64_t exclusive_high;
/* iwMMXt coprocessor state. */
struct {
uint64_t regs[16];
uint64_t val;
uint32_t cregs[16];
} iwmmxt;
#ifdef TARGET_AARCH64
struct {
ARMPACKey apia;
ARMPACKey apib;
ARMPACKey apda;
ARMPACKey apdb;
ARMPACKey apga;
} keys;
#endif
#if defined(CONFIG_USER_ONLY)
/* For usermode syscall translation. */
int eabi;
#endif
struct CPUBreakpoint *cpu_breakpoint[16];
struct CPUWatchpoint *cpu_watchpoint[16];
/* Fields up to this point are cleared by a CPU reset */
struct {} end_reset_fields;
/* Fields after this point are preserved across CPU reset. */
/* Internal CPU feature flags. */
uint64_t features;
/* PMSAv7 MPU */
struct {
uint32_t *drbar;
uint32_t *drsr;
uint32_t *dracr;
uint32_t rnr[M_REG_NUM_BANKS];
} pmsav7;
/* PMSAv8 MPU */
struct {
/* The PMSAv8 implementation also shares some PMSAv7 config
* and state:
* pmsav7.rnr (region number register)
* pmsav7_dregion (number of configured regions)
*/
uint32_t *rbar[M_REG_NUM_BANKS];
uint32_t *rlar[M_REG_NUM_BANKS];
uint32_t mair0[M_REG_NUM_BANKS];
uint32_t mair1[M_REG_NUM_BANKS];
} pmsav8;
/* v8M SAU */
struct {
uint32_t *rbar;
uint32_t *rlar;
uint32_t rnr;
uint32_t ctrl;
} sau;
void *nvic;
const struct arm_boot_info *boot_info;
/* Store GICv3CPUState to access from this struct */
void *gicv3state;
} CPUARMState;
static inline void set_feature(CPUARMState *env, int feature)
{
env->features |= 1ULL << feature;
}
static inline void unset_feature(CPUARMState *env, int feature)
{
env->features &= ~(1ULL << feature);
}
/**
* ARMELChangeHookFn:
* type of a function which can be registered via arm_register_el_change_hook()
* to get callbacks when the CPU changes its exception level or mode.
*/
typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
typedef struct ARMELChangeHook ARMELChangeHook;
struct ARMELChangeHook {
ARMELChangeHookFn *hook;
void *opaque;
QLIST_ENTRY(ARMELChangeHook) node;
};
/* These values map onto the return values for
* QEMU_PSCI_0_2_FN_AFFINITY_INFO */
typedef enum ARMPSCIState {
PSCI_ON = 0,
PSCI_OFF = 1,
PSCI_ON_PENDING = 2
} ARMPSCIState;
typedef struct ARMISARegisters ARMISARegisters;
/**
* ARMCPU:
* @env: #CPUARMState
*
* An ARM CPU core.
*/
struct ARMCPU {
/*< private >*/
CPUState parent_obj;
/*< public >*/
CPUNegativeOffsetState neg;
CPUARMState env;
/* Coprocessor information */
GHashTable *cp_regs;
/* For marshalling (mostly coprocessor) register state between the
* kernel and QEMU (for KVM) and between two QEMUs (for migration),
* we use these arrays.
*/
/* List of register indexes managed via these arrays; (full KVM style
* 64 bit indexes, not CPRegInfo 32 bit indexes)
*/
uint64_t *cpreg_indexes;
/* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
uint64_t *cpreg_values;
/* Length of the indexes, values, reset_values arrays */
int32_t cpreg_array_len;
/* These are used only for migration: incoming data arrives in
* these fields and is sanity checked in post_load before copying
* to the working data structures above.
*/
uint64_t *cpreg_vmstate_indexes;
uint64_t *cpreg_vmstate_values;
int32_t cpreg_vmstate_array_len;
DynamicGDBXMLInfo dyn_sysreg_xml;
DynamicGDBXMLInfo dyn_svereg_xml;
/* Timers used by the generic (architected) timer */
QEMUTimer *gt_timer[NUM_GTIMERS];
/*
* Timer used by the PMU. Its state is restored after migration by
* pmu_op_finish() - it does not need other handling during migration
*/
QEMUTimer *pmu_timer;
/* GPIO outputs for generic timer */
qemu_irq gt_timer_outputs[NUM_GTIMERS];
/* GPIO output for GICv3 maintenance interrupt signal */
qemu_irq gicv3_maintenance_interrupt;
/* GPIO output for the PMU interrupt */
qemu_irq pmu_interrupt;
/* MemoryRegion to use for secure physical accesses */
MemoryRegion *secure_memory;
/* MemoryRegion to use for allocation tag accesses */
MemoryRegion *tag_memory;
MemoryRegion *secure_tag_memory;
/* For v8M, pointer to the IDAU interface provided by board/SoC */
Object *idau;
/* 'compatible' string for this CPU for Linux device trees */
const char *dtb_compatible;
/* PSCI version for this CPU
* Bits[31:16] = Major Version
* Bits[15:0] = Minor Version
*/
uint32_t psci_version;
/* Should CPU start in PSCI powered-off state? */
bool start_powered_off;
/* Current power state, access guarded by BQL */
ARMPSCIState power_state;
/* CPU has virtualization extension */
bool has_el2;
/* CPU has security extension */
bool has_el3;
/* CPU has PMU (Performance Monitor Unit) */
bool has_pmu;
/* CPU has VFP */
bool has_vfp;
/* CPU has Neon */
bool has_neon;
/* CPU has M-profile DSP extension */
bool has_dsp;
/* CPU has memory protection unit */
bool has_mpu;
/* PMSAv7 MPU number of supported regions */
uint32_t pmsav7_dregion;
/* v8M SAU number of supported regions */
uint32_t sau_sregion;
/* PSCI conduit used to invoke PSCI methods
* 0 - disabled, 1 - smc, 2 - hvc
*/
uint32_t psci_conduit;
/* For v8M, initial value of the Secure VTOR */
uint32_t init_svtor;
/* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
* QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
*/
uint32_t kvm_target;
/* KVM init features for this CPU */
uint32_t kvm_init_features[7];
/* KVM CPU state */
/* KVM virtual time adjustment */
bool kvm_adjvtime;
bool kvm_vtime_dirty;
uint64_t kvm_vtime;
/* Uniprocessor system with MP extensions */
bool mp_is_up;
/* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
* and the probe failed (so we need to report the error in realize)
*/
bool host_cpu_probe_failed;
/* Specify the number of cores in this CPU cluster. Used for the L2CTLR
* register.
*/
int32_t core_count;
/* The instance init functions for implementation-specific subclasses
* set these fields to specify the implementation-dependent values of
* various constant registers and reset values of non-constant
* registers.
* Some of these might become QOM properties eventually.
* Field names match the official register names as defined in the
* ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
* is used for reset values of non-constant registers; no reset_
* prefix means a constant register.
* Some of these registers are split out into a substructure that
* is shared with the translators to control the ISA.
*
* Note that if you add an ID register to the ARMISARegisters struct
* you need to also update the 32-bit and 64-bit versions of the
* kvm_arm_get_host_cpu_features() function to correctly populate the
* field by reading the value from the KVM vCPU.
*/
struct ARMISARegisters {
uint32_t id_isar0;
uint32_t id_isar1;
uint32_t id_isar2;
uint32_t id_isar3;
uint32_t id_isar4;
uint32_t id_isar5;
uint32_t id_isar6;
uint32_t id_mmfr0;
uint32_t id_mmfr1;
uint32_t id_mmfr2;
uint32_t id_mmfr3;
uint32_t id_mmfr4;
uint32_t mvfr0;
uint32_t mvfr1;
uint32_t mvfr2;
uint32_t id_dfr0;
uint32_t dbgdidr;
uint64_t id_aa64isar0;
uint64_t id_aa64isar1;
uint64_t id_aa64pfr0;
uint64_t id_aa64pfr1;
uint64_t id_aa64mmfr0;
uint64_t id_aa64mmfr1;
uint64_t id_aa64mmfr2;
uint64_t id_aa64dfr0;
uint64_t id_aa64dfr1;
} isar;
uint64_t midr;
uint32_t revidr;
uint32_t reset_fpsid;
uint32_t ctr;
uint32_t reset_sctlr;
uint32_t id_pfr0;
uint32_t id_pfr1;
uint64_t pmceid0;
uint64_t pmceid1;
uint32_t id_afr0;
uint64_t id_aa64afr0;
uint64_t id_aa64afr1;
uint32_t clidr;
uint64_t mp_affinity; /* MP ID without feature bits */
/* The elements of this array are the CCSIDR values for each cache,
* in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
*/
uint64_t ccsidr[16];
uint64_t reset_cbar;
uint32_t reset_auxcr;
bool reset_hivecs;
/* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
uint32_t dcz_blocksize;
uint64_t rvbar;
/* Configurable aspects of GIC cpu interface (which is part of the CPU) */
int gic_num_lrs; /* number of list registers */
int gic_vpribits; /* number of virtual priority bits */
int gic_vprebits; /* number of virtual preemption bits */
/* Whether the cfgend input is high (i.e. this CPU should reset into
* big-endian mode). This setting isn't used directly: instead it modifies
* the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
* architecture version.
*/
bool cfgend;
QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
int32_t node_id; /* NUMA node this CPU belongs to */
/* Used to synchronize KVM and QEMU in-kernel device levels */
uint8_t device_irq_level;
/* Used to set the maximum vector length the cpu will support. */
uint32_t sve_max_vq;
/*
* In sve_vq_map each set bit is a supported vector length of
* (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
* length in quadwords.
*
* While processing properties during initialization, corresponding
* sve_vq_init bits are set for bits in sve_vq_map that have been
* set by properties.
*/
DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
/* Generic timer counter frequency, in Hz */
uint64_t gt_cntfrq_hz;
};
unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
void arm_cpu_post_init(Object *obj);
uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
#ifndef CONFIG_USER_ONLY
extern const VMStateDescription vmstate_arm_cpu;
#endif
void arm_cpu_do_interrupt(CPUState *cpu);
void arm_v7m_cpu_do_interrupt(CPUState *cpu);
bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
MemTxAttrs *attrs);
int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
/*
* Helpers to dynamically generates XML descriptions of the sysregs
* and SVE registers. Returns the number of registers in each set.
*/
int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
/* Returns the dynamically generated XML for the gdb stub.
* Returns a pointer to the XML contents for the specified XML file or NULL
* if the XML name doesn't match the predefined one.
*/
const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
int cpuid, void *opaque);
int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
int cpuid, void *opaque);
#ifdef TARGET_AARCH64
int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
void aarch64_sve_change_el(CPUARMState *env, int old_el,
int new_el, bool el0_a64);
void aarch64_add_sve_properties(Object *obj);
/*
* SVE registers are encoded in KVM's memory in an endianness-invariant format.
* The byte at offset i from the start of the in-memory representation contains
* the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
* lowest offsets are stored in the lowest memory addresses, then that nearly
* matches QEMU's representation, which is to use an array of host-endian
* uint64_t's, where the lower offsets are at the lower indices. To complete
* the translation we just need to byte swap the uint64_t's on big-endian hosts.
*/
static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
{
#ifdef HOST_WORDS_BIGENDIAN
int i;
for (i = 0; i < nr; ++i) {
dst[i] = bswap64(src[i]);
}
return dst;
#else
return src;
#endif
}
#else
static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
static inline void aarch64_sve_change_el(CPUARMState *env, int o,
int n, bool a)
{ }
static inline void aarch64_add_sve_properties(Object *obj) { }
#endif
#if !defined(CONFIG_TCG)
static inline target_ulong do_arm_semihosting(CPUARMState *env)
{
g_assert_not_reached();
}
#else
target_ulong do_arm_semihosting(CPUARMState *env);
#endif
void aarch64_sync_32_to_64(CPUARMState *env);
void aarch64_sync_64_to_32(CPUARMState *env);
int fp_exception_el(CPUARMState *env, int cur_el);
int sve_exception_el(CPUARMState *env, int cur_el);
uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
static inline bool is_a64(CPUARMState *env)
{
return env->aarch64;
}
/* you can call this signal handler from your SIGBUS and SIGSEGV
signal handlers to inform the virtual CPU of exceptions. non zero
is returned if the signal was handled by the virtual CPU. */
int cpu_arm_signal_handler(int host_signum, void *pinfo,
void *puc);
/**
* pmu_op_start/finish
* @env: CPUARMState
*
* Convert all PMU counters between their delta form (the typical mode when
* they are enabled) and the guest-visible values. These two calls must
* surround any action which might affect the counters.
*/
void pmu_op_start(CPUARMState *env);
void pmu_op_finish(CPUARMState *env);
/*
* Called when a PMU counter is due to overflow
*/
void arm_pmu_timer_cb(void *opaque);
/**
* Functions to register as EL change hooks for PMU mode filtering
*/
void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
void pmu_post_el_change(ARMCPU *cpu, void *ignored);
/*
* pmu_init
* @cpu: ARMCPU
*
* Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
* for the current configuration
*/
void pmu_init(ARMCPU *cpu);
/* SCTLR bit meanings. Several bits have been reused in newer
* versions of the architecture; in that case we define constants
* for both old and new bit meanings. Code which tests against those
* bits should probably check or otherwise arrange that the CPU
* is the architectural version it expects.
*/
#define SCTLR_M (1U << 0)
#define SCTLR_A (1U << 1)
#define SCTLR_C (1U << 2)
#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
#define SCTLR_SA (1U << 3) /* AArch64 only */
#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
#define SCTLR_ITD (1U << 7) /* v8 onward */
#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
#define SCTLR_SED (1U << 8) /* v8 onward */
#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
#define SCTLR_F (1U << 10) /* up to v6 */
#define SCTLR_SW (1U << 10) /* v7 */
#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
#define SCTLR_I (1U << 12)
#define SCTLR_V (1U << 13) /* AArch32 only */
#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
#define SCTLR_RR (1U << 14) /* up to v7 */
#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
#define SCTLR_nTWI (1U << 16) /* v8 onward */
#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
#define SCTLR_BR (1U << 17) /* PMSA only */
#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
#define SCTLR_nTWE (1U << 18) /* v8 onward */
#define SCTLR_WXN (1U << 19)
#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
#define SCTLR_VE (1U << 24) /* up to v7 */
#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
#define SCTLR_EE (1U << 25)
#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
#define SCTLR_TRE (1U << 28) /* AArch32 only */
#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
#define SCTLR_AFE (1U << 29) /* AArch32 only */
#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
#define SCTLR_TE (1U << 30) /* AArch32 only */
#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
#define SCTLR_DSSBS (1ULL << 44) /* v8.5 */
#define CPTR_TCPAC (1U << 31)
#define CPTR_TTA (1U << 20)
#define CPTR_TFP (1U << 10)
#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
#define MDCR_EPMAD (1U << 21)
#define MDCR_EDAD (1U << 20)
#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
#define MDCR_SDD (1U << 16)
#define MDCR_SPD (3U << 14)
#define MDCR_TDRA (1U << 11)
#define MDCR_TDOSA (1U << 10)
#define MDCR_TDA (1U << 9)
#define MDCR_TDE (1U << 8)
#define MDCR_HPME (1U << 7)
#define MDCR_TPM (1U << 6)
#define MDCR_TPMCR (1U << 5)
#define MDCR_HPMN (0x1fU)
/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
#define CPSR_M (0x1fU)
#define CPSR_T (1U << 5)
#define CPSR_F (1U << 6)
#define CPSR_I (1U << 7)
#define CPSR_A (1U << 8)
#define CPSR_E (1U << 9)
#define CPSR_IT_2_7 (0xfc00U)
#define CPSR_GE (0xfU << 16)
#define CPSR_IL (1U << 20)
#define CPSR_PAN (1U << 22)
#define CPSR_J (1U << 24)
#define CPSR_IT_0_1 (3U << 25)
#define CPSR_Q (1U << 27)
#define CPSR_V (1U << 28)
#define CPSR_C (1U << 29)
#define CPSR_Z (1U << 30)
#define CPSR_N (1U << 31)
#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
| CPSR_NZCV)
/* Bits writable in user mode. */
#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
/* Execution state bits. MRS read as zero, MSR writes ignored. */
#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
#define XPSR_EXCP 0x1ffU
#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
#define XPSR_IT_2_7 CPSR_IT_2_7
#define XPSR_GE CPSR_GE
#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
#define XPSR_IT_0_1 CPSR_IT_0_1
#define XPSR_Q CPSR_Q
#define XPSR_V CPSR_V
#define XPSR_C CPSR_C
#define XPSR_Z CPSR_Z
#define XPSR_N CPSR_N
#define XPSR_NZCV CPSR_NZCV
#define XPSR_IT CPSR_IT
#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
#define TTBCR_PD0 (1U << 4)
#define TTBCR_PD1 (1U << 5)
#define TTBCR_EPD0 (1U << 7)
#define TTBCR_IRGN0 (3U << 8)
#define TTBCR_ORGN0 (3U << 10)
#define TTBCR_SH0 (3U << 12)
#define TTBCR_T1SZ (3U << 16)
#define TTBCR_A1 (1U << 22)
#define TTBCR_EPD1 (1U << 23)
#define TTBCR_IRGN1 (3U << 24)
#define TTBCR_ORGN1 (3U << 26)
#define TTBCR_SH1 (1U << 28)
#define TTBCR_EAE (1U << 31)
/* Bit definitions for ARMv8 SPSR (PSTATE) format.
* Only these are valid when in AArch64 mode; in
* AArch32 mode SPSRs are basically CPSR-format.
*/
#define PSTATE_SP (1U)
#define PSTATE_M (0xFU)
#define PSTATE_nRW (1U << 4)
#define PSTATE_F (1U << 6)
#define PSTATE_I (1U << 7)
#define PSTATE_A (1U << 8)
#define PSTATE_D (1U << 9)
#define PSTATE_BTYPE (3U << 10)
#define PSTATE_IL (1U << 20)
#define PSTATE_SS (1U << 21)
#define PSTATE_PAN (1U << 22)
#define PSTATE_UAO (1U << 23)
#define PSTATE_TCO (1U << 25)
#define PSTATE_V (1U << 28)
#define PSTATE_C (1U << 29)
#define PSTATE_Z (1U << 30)
#define PSTATE_N (1U << 31)
#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
/* Mode values for AArch64 */
#define PSTATE_MODE_EL3h 13
#define PSTATE_MODE_EL3t 12
#define PSTATE_MODE_EL2h 9
#define PSTATE_MODE_EL2t 8
#define PSTATE_MODE_EL1h 5
#define PSTATE_MODE_EL1t 4
#define PSTATE_MODE_EL0t 0
/* Write a new value to v7m.exception, thus transitioning into or out
* of Handler mode; this may result in a change of active stack pointer.
*/
void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
/* Map EL and handler into a PSTATE_MODE. */
static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
{
return (el << 2) | handler;
}
/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
* interprocessing, so we don't attempt to sync with the cpsr state used by
* the 32 bit decoder.
*/
static inline uint32_t pstate_read(CPUARMState *env)
{
int ZF;
ZF = (env->ZF == 0);
return (env->NF & 0x80000000) | (ZF << 30)
| (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
| env->pstate | env->daif | (env->btype << 10);
}
static inline void pstate_write(CPUARMState *env, uint32_t val)
{
env->ZF = (~val) & PSTATE_Z;
env->NF = val;
env->CF = (val >> 29) & 1;
env->VF = (val << 3) & 0x80000000;
env->daif = val & PSTATE_DAIF;
env->btype = (val >> 10) & 3;
env->pstate = val & ~CACHED_PSTATE_BITS;
}
/* Return the current CPSR value. */
uint32_t cpsr_read(CPUARMState *env);
typedef enum CPSRWriteType {
CPSRWriteByInstr = 0, /* from guest MSR or CPS */
CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
CPSRWriteByGDBStub = 3, /* from the GDB stub */
} CPSRWriteType;
/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
CPSRWriteType write_type);
/* Return the current xPSR value. */
static inline uint32_t xpsr_read(CPUARMState *env)
{
int ZF;
ZF = (env->ZF == 0);
return (env->NF & 0x80000000) | (ZF << 30)
| (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
| (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
| ((env->condexec_bits & 0xfc) << 8)
| (env->GE << 16)
| env->v7m.exception;
}
/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
{
if (mask & XPSR_NZCV) {
env->ZF = (~val) & XPSR_Z;
env->NF = val;
env->CF = (val >> 29) & 1;
env->VF = (val << 3) & 0x80000000;
}
if (mask & XPSR_Q) {
env->QF = ((val & XPSR_Q) != 0);
}
if (mask & XPSR_GE) {
env->GE = (val & XPSR_GE) >> 16;
}
#ifndef CONFIG_USER_ONLY
if (mask & XPSR_T) {
env->thumb = ((val & XPSR_T) != 0);
}
if (mask & XPSR_IT_0_1) {
env->condexec_bits &= ~3;
env->condexec_bits |= (val >> 25) & 3;
}
if (mask & XPSR_IT_2_7) {
env->condexec_bits &= 3;
env->condexec_bits |= (val >> 8) & 0xfc;
}
if (mask & XPSR_EXCP) {
/* Note that this only happens on exception exit */
write_v7m_exception(env, val & XPSR_EXCP);
}
#endif
}
#define HCR_VM (1ULL << 0)
#define HCR_SWIO (1ULL << 1)
#define HCR_PTW (1ULL << 2)
#define HCR_FMO (1ULL << 3)
#define HCR_IMO (1ULL << 4)
#define HCR_AMO (1ULL << 5)
#define HCR_VF (1ULL << 6)
#define HCR_VI (1ULL << 7)
#define HCR_VSE (1ULL << 8)
#define HCR_FB (1ULL << 9)
#define HCR_BSU_MASK (3ULL << 10)
#define HCR_DC (1ULL << 12)
#define HCR_TWI (1ULL << 13)
#define HCR_TWE (1ULL << 14)
#define HCR_TID0 (1ULL << 15)
#define HCR_TID1 (1ULL << 16)
#define HCR_TID2 (1ULL << 17)
#define HCR_TID3 (1ULL << 18)
#define HCR_TSC (1ULL << 19)
#define HCR_TIDCP (1ULL << 20)
#define HCR_TACR (1ULL << 21)
#define HCR_TSW (1ULL << 22)
#define HCR_TPCP (1ULL << 23)
#define HCR_TPU (1ULL << 24)
#define HCR_TTLB (1ULL << 25)
#define HCR_TVM (1ULL << 26)
#define HCR_TGE (1ULL << 27)
#define HCR_TDZ (1ULL << 28)
#define HCR_HCD (1ULL << 29)
#define HCR_TRVM (1ULL << 30)
#define HCR_RW (1ULL << 31)
#define HCR_CD (1ULL << 32)
#define HCR_ID (1ULL << 33)
#define HCR_E2H (1ULL << 34)
#define HCR_TLOR (1ULL << 35)
#define HCR_TERR (1ULL << 36)
#define HCR_TEA (1ULL << 37)
#define HCR_MIOCNCE (1ULL << 38)
/* RES0 bit 39 */
#define HCR_APK (1ULL << 40)
#define HCR_API (1ULL << 41)
#define HCR_NV (1ULL << 42)
#define HCR_NV1 (1ULL << 43)
#define HCR_AT (1ULL << 44)
#define HCR_NV2 (1ULL << 45)
#define HCR_FWB (1ULL << 46)
#define HCR_FIEN (1ULL << 47)
/* RES0 bit 48 */
#define HCR_TID4 (1ULL << 49)
#define HCR_TICAB (1ULL << 50)
#define HCR_AMVOFFEN (1ULL << 51)
#define HCR_TOCU (1ULL << 52)
#define HCR_ENSCXT (1ULL << 53)
#define HCR_TTLBIS (1ULL << 54)
#define HCR_TTLBOS (1ULL << 55)
#define HCR_ATA (1ULL << 56)
#define HCR_DCT (1ULL << 57)
#define HCR_TID5 (1ULL << 58)
#define HCR_TWEDEN (1ULL << 59)
#define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
#define SCR_NS (1U << 0)
#define SCR_IRQ (1U << 1)
#define SCR_FIQ (1U << 2)
#define SCR_EA (1U << 3)
#define SCR_FW (1U << 4)
#define SCR_AW (1U << 5)
#define SCR_NET (1U << 6)
#define SCR_SMD (1U << 7)
#define SCR_HCE (1U << 8)
#define SCR_SIF (1U << 9)
#define SCR_RW (1U << 10)
#define SCR_ST (1U << 11)
#define SCR_TWI (1U << 12)
#define SCR_TWE (1U << 13)
#define SCR_TLOR (1U << 14)
#define SCR_TERR (1U << 15)
#define SCR_APK (1U << 16)
#define SCR_API (1U << 17)
#define SCR_EEL2 (1U << 18)
#define SCR_EASE (1U << 19)
#define SCR_NMEA (1U << 20)
#define SCR_FIEN (1U << 21)
#define SCR_ENSCXT (1U << 25)
#define SCR_ATA (1U << 26)
/* Return the current FPSCR value. */
uint32_t vfp_get_fpscr(CPUARMState *env);
void vfp_set_fpscr(CPUARMState *env, uint32_t val);
/* FPCR, Floating Point Control Register
* FPSR, Floating Poiht Status Register
*
* For A64 the FPSCR is split into two logically distinct registers,
* FPCR and FPSR. However since they still use non-overlapping bits
* we store the underlying state in fpscr and just mask on read/write.
*/
#define FPSR_MASK 0xf800009f
#define FPCR_MASK 0x07ff9f00
#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
#define FPCR_DN (1 << 25) /* Default NaN enable bit */
#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
static inline uint32_t vfp_get_fpsr(CPUARMState *env)
{
return vfp_get_fpscr(env) & FPSR_MASK;
}
static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
{
uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
vfp_set_fpscr(env, new_fpscr);
}
static inline uint32_t vfp_get_fpcr(CPUARMState *env)
{
return vfp_get_fpscr(env) & FPCR_MASK;
}
static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
{
uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
vfp_set_fpscr(env, new_fpscr);
}
enum arm_cpu_mode {
ARM_CPU_MODE_USR = 0x10,
ARM_CPU_MODE_FIQ = 0x11,
ARM_CPU_MODE_IRQ = 0x12,
ARM_CPU_MODE_SVC = 0x13,
ARM_CPU_MODE_MON = 0x16,
ARM_CPU_MODE_ABT = 0x17,
ARM_CPU_MODE_HYP = 0x1a,
ARM_CPU_MODE_UND = 0x1b,
ARM_CPU_MODE_SYS = 0x1f
};
/* VFP system registers. */
#define ARM_VFP_FPSID 0
#define ARM_VFP_FPSCR 1
#define ARM_VFP_MVFR2 5
#define ARM_VFP_MVFR1 6
#define ARM_VFP_MVFR0 7
#define ARM_VFP_FPEXC 8
#define ARM_VFP_FPINST 9
#define ARM_VFP_FPINST2 10
/* iwMMXt coprocessor control registers. */
#define ARM_IWMMXT_wCID 0
#define ARM_IWMMXT_wCon 1
#define ARM_IWMMXT_wCSSF 2
#define ARM_IWMMXT_wCASF 3
#define ARM_IWMMXT_wCGR0 8
#define ARM_IWMMXT_wCGR1 9
#define ARM_IWMMXT_wCGR2 10
#define ARM_IWMMXT_wCGR3 11
/* V7M CCR bits */
FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
FIELD(V7M_CCR, USERSETMPEND, 1, 1)
FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
FIELD(V7M_CCR, STKALIGN, 9, 1)
FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
FIELD(V7M_CCR, DC, 16, 1)
FIELD(V7M_CCR, IC, 17, 1)
FIELD(V7M_CCR, BP, 18, 1)
/* V7M SCR bits */
FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
FIELD(V7M_SCR, SEVONPEND, 4, 1)
/* V7M AIRCR bits */
FIELD(V7M_AIRCR, VECTRESET, 0, 1)
FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
FIELD(V7M_AIRCR, PRIS, 14, 1)
FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
FIELD(V7M_AIRCR, VECTKEY, 16, 16)
/* V7M CFSR bits for MMFSR */
FIELD(V7M_CFSR, IACCVIOL, 0, 1)
FIELD(V7M_CFSR, DACCVIOL, 1, 1)
FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
FIELD(V7M_CFSR, MSTKERR, 4, 1)
FIELD(V7M_CFSR, MLSPERR, 5, 1)
FIELD(V7M_CFSR, MMARVALID, 7, 1)
/* V7M CFSR bits for BFSR */
FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
/* V7M CFSR bits for UFSR */
FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
/* V7M CFSR bit masks covering all of the subregister bits */
FIELD(V7M_CFSR, MMFSR, 0, 8)
FIELD(V7M_CFSR, BFSR, 8, 8)
FIELD(V7M_CFSR, UFSR, 16, 16)
/* V7M HFSR bits */
FIELD(V7M_HFSR, VECTTBL, 1, 1)
FIELD(V7M_HFSR, FORCED, 30, 1)
FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
/* V7M DFSR bits */
FIELD(V7M_DFSR, HALTED, 0, 1)
FIELD(V7M_DFSR, BKPT, 1, 1)
FIELD(V7M_DFSR, DWTTRAP, 2, 1)
FIELD(V7M_DFSR, VCATCH, 3, 1)
FIELD(V7M_DFSR, EXTERNAL, 4, 1)
/* V7M SFSR bits */
FIELD(V7M_SFSR, INVEP, 0, 1)
FIELD(V7M_SFSR, INVIS, 1, 1)
FIELD(V7M_SFSR, INVER, 2, 1)
FIELD(V7M_SFSR, AUVIOL, 3, 1)
FIELD(V7M_SFSR, INVTRAN, 4, 1)
FIELD(V7M_SFSR, LSPERR, 5, 1)
FIELD(V7M_SFSR, SFARVALID, 6, 1)
FIELD(V7M_SFSR, LSERR, 7, 1)
/* v7M MPU_CTRL bits */
FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
/* v7M CLIDR bits */
FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
FIELD(V7M_CLIDR, LOUIS, 21, 3)
FIELD(V7M_CLIDR, LOC, 24, 3)
FIELD(V7M_CLIDR, LOUU, 27, 3)
FIELD(V7M_CLIDR, ICB, 30, 2)
FIELD(V7M_CSSELR, IND, 0, 1)
FIELD(V7M_CSSELR, LEVEL, 1, 3)
/* We use the combination of InD and Level to index into cpu->ccsidr[];
* define a mask for this and check that it doesn't permit running off
* the end of the array.
*/
FIELD(V7M_CSSELR, INDEX, 0, 4)
/* v7M FPCCR bits */
FIELD(V7M_FPCCR, LSPACT, 0, 1)
FIELD(V7M_FPCCR, USER, 1, 1)
FIELD(V7M_FPCCR, S, 2, 1)
FIELD(V7M_FPCCR, THREAD, 3, 1)
FIELD(V7M_FPCCR, HFRDY, 4, 1)
FIELD(V7M_FPCCR, MMRDY, 5, 1)
FIELD(V7M_FPCCR, BFRDY, 6, 1)
FIELD(V7M_FPCCR, SFRDY, 7, 1)
FIELD(V7M_FPCCR, MONRDY, 8, 1)
FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
FIELD(V7M_FPCCR, UFRDY, 10, 1)
FIELD(V7M_FPCCR, RES0, 11, 15)
FIELD(V7M_FPCCR, TS, 26, 1)
FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
FIELD(V7M_FPCCR, CLRONRET, 28, 1)
FIELD(V7M_FPCCR, LSPENS, 29, 1)
FIELD(V7M_FPCCR, LSPEN, 30, 1)
FIELD(V7M_FPCCR, ASPEN, 31, 1)
/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
#define R_V7M_FPCCR_BANKED_MASK \
(R_V7M_FPCCR_LSPACT_MASK | \
R_V7M_FPCCR_USER_MASK | \
R_V7M_FPCCR_THREAD_MASK | \
R_V7M_FPCCR_MMRDY_MASK | \
R_V7M_FPCCR_SPLIMVIOL_MASK | \
R_V7M_FPCCR_UFRDY_MASK | \
R_V7M_FPCCR_ASPEN_MASK)
/*
* System register ID fields.
*/
FIELD(MIDR_EL1, REVISION, 0, 4)
FIELD(MIDR_EL1, PARTNUM, 4, 12)
FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
FIELD(MIDR_EL1, VARIANT, 20, 4)
FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
FIELD(ID_ISAR0, SWAP, 0, 4)
FIELD(ID_ISAR0, BITCOUNT, 4, 4)
FIELD(ID_ISAR0, BITFIELD, 8, 4)
FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
FIELD(ID_ISAR0, COPROC, 16, 4)
FIELD(ID_ISAR0, DEBUG, 20, 4)
FIELD(ID_ISAR0, DIVIDE, 24, 4)
FIELD(ID_ISAR1, ENDIAN, 0, 4)
FIELD(ID_ISAR1, EXCEPT, 4, 4)
FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
FIELD(ID_ISAR1, EXTEND, 12, 4)
FIELD(ID_ISAR1, IFTHEN, 16, 4)
FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
FIELD(ID_ISAR1, INTERWORK, 24, 4)
FIELD(ID_ISAR1, JAZELLE, 28, 4)
FIELD(ID_ISAR2, LOADSTORE, 0, 4)
FIELD(ID_ISAR2, MEMHINT, 4, 4)
FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
FIELD(ID_ISAR2, MULT, 12, 4)
FIELD(ID_ISAR2, MULTS, 16, 4)
FIELD(ID_ISAR2, MULTU, 20, 4)
FIELD(ID_ISAR2, PSR_AR, 24, 4)
FIELD(ID_ISAR2, REVERSAL, 28, 4)
FIELD(ID_ISAR3, SATURATE, 0, 4)
FIELD(ID_ISAR3, SIMD, 4, 4)
FIELD(ID_ISAR3, SVC, 8, 4)
FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
FIELD(ID_ISAR3, TABBRANCH, 16, 4)
FIELD(ID_ISAR3, T32COPY, 20, 4)
FIELD(ID_ISAR3, TRUENOP, 24, 4)
FIELD(ID_ISAR3, T32EE, 28, 4)
FIELD(ID_ISAR4, UNPRIV, 0, 4)
FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
FIELD(ID_ISAR4, WRITEBACK, 8, 4)
FIELD(ID_ISAR4, SMC, 12, 4)
FIELD(ID_ISAR4, BARRIER, 16, 4)
FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
FIELD(ID_ISAR4, PSR_M, 24, 4)
FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
FIELD(ID_ISAR5, SEVL, 0, 4)
FIELD(ID_ISAR5, AES, 4, 4)
FIELD(ID_ISAR5, SHA1, 8, 4)
FIELD(ID_ISAR5, SHA2, 12, 4)
FIELD(ID_ISAR5, CRC32, 16, 4)
FIELD(ID_ISAR5, RDM, 24, 4)
FIELD(ID_ISAR5, VCMA, 28, 4)
FIELD(ID_ISAR6, JSCVT, 0, 4)
FIELD(ID_ISAR6, DP, 4, 4)
FIELD(ID_ISAR6, FHM, 8, 4)
FIELD(ID_ISAR6, SB, 12, 4)
FIELD(ID_ISAR6, SPECRES, 16, 4)
FIELD(ID_MMFR3, CMAINTVA, 0, 4)
FIELD(ID_MMFR3, CMAINTSW, 4, 4)
FIELD(ID_MMFR3, BPMAINT, 8, 4)
FIELD(ID_MMFR3, MAINTBCST, 12, 4)
FIELD(ID_MMFR3, PAN, 16, 4)
FIELD(ID_MMFR3, COHWALK, 20, 4)
FIELD(ID_MMFR3, CMEMSZ, 24, 4)
FIELD(ID_MMFR3, SUPERSEC, 28, 4)
FIELD(ID_MMFR4, SPECSEI, 0, 4)
FIELD(ID_MMFR4, AC2, 4, 4)
FIELD(ID_MMFR4, XNX, 8, 4)
FIELD(ID_MMFR4, CNP, 12, 4)
FIELD(ID_MMFR4, HPDS, 16, 4)
FIELD(ID_MMFR4, LSM, 20, 4)
FIELD(ID_MMFR4, CCIDX, 24, 4)
FIELD(ID_MMFR4, EVT, 28, 4)
FIELD(ID_AA64ISAR0, AES, 4, 4)
FIELD(ID_AA64ISAR0, SHA1, 8, 4)
FIELD(ID_AA64ISAR0, SHA2, 12, 4)
FIELD(ID_AA64ISAR0, CRC32, 16, 4)
FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
FIELD(ID_AA64ISAR0, RDM, 28, 4)
FIELD(ID_AA64ISAR0, SHA3, 32, 4)
FIELD(ID_AA64ISAR0, SM3, 36, 4)
FIELD(ID_AA64ISAR0, SM4, 40, 4)
FIELD(ID_AA64ISAR0, DP, 44, 4)
FIELD(ID_AA64ISAR0, FHM, 48, 4)
FIELD(ID_AA64ISAR0, TS, 52, 4)
FIELD(ID_AA64ISAR0, TLB, 56, 4)
FIELD(ID_AA64ISAR0, RNDR, 60, 4)
FIELD(ID_AA64ISAR1, DPB, 0, 4)
FIELD(ID_AA64ISAR1, APA, 4, 4)
FIELD(ID_AA64ISAR1, API, 8, 4)
FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
FIELD(ID_AA64ISAR1, FCMA, 16, 4)
FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
FIELD(ID_AA64ISAR1, GPA, 24, 4)
FIELD(ID_AA64ISAR1, GPI, 28, 4)
FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
FIELD(ID_AA64ISAR1, SB, 36, 4)
FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
FIELD(ID_AA64PFR0, EL0, 0, 4)
FIELD(ID_AA64PFR0, EL1, 4, 4)
FIELD(ID_AA64PFR0, EL2, 8, 4)
FIELD(ID_AA64PFR0, EL3, 12, 4)
FIELD(ID_AA64PFR0, FP, 16, 4)
FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
FIELD(ID_AA64PFR0, GIC, 24, 4)
FIELD(ID_AA64PFR0, RAS, 28, 4)
FIELD(ID_AA64PFR0, SVE, 32, 4)
FIELD(ID_AA64PFR1, BT, 0, 4)
FIELD(ID_AA64PFR1, SBSS, 4, 4)
FIELD(ID_AA64PFR1, MTE, 8, 4)
FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
FIELD(ID_AA64MMFR0, EXS, 44, 4)
FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
FIELD(ID_AA64MMFR1, VH, 8, 4)
FIELD(ID_AA64MMFR1, HPDS, 12, 4)
FIELD(ID_AA64MMFR1, LO, 16, 4)
FIELD(ID_AA64MMFR1, PAN, 20, 4)
FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
FIELD(ID_AA64MMFR1, XNX, 28, 4)
FIELD(ID_AA64MMFR2, CNP, 0, 4)
FIELD(ID_AA64MMFR2, UAO, 4, 4)
FIELD(ID_AA64MMFR2, LSM, 8, 4)
FIELD(ID_AA64MMFR2, IESB, 12, 4)
FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
FIELD(ID_AA64MMFR2, NV, 24, 4)
FIELD(ID_AA64MMFR2, ST, 28, 4)
FIELD(ID_AA64MMFR2, AT, 32, 4)
FIELD(ID_AA64MMFR2, IDS, 36, 4)
FIELD(ID_AA64MMFR2, FWB, 40, 4)
FIELD(ID_AA64MMFR2, TTL, 48, 4)
FIELD(ID_AA64MMFR2, BBM, 52, 4)
FIELD(ID_AA64MMFR2, EVT, 56, 4)
FIELD(ID_AA64MMFR2, E0PD, 60, 4)
FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
FIELD(ID_AA64DFR0, PMUVER, 8, 4)
FIELD(ID_AA64DFR0, BRPS, 12, 4)
FIELD(ID_AA64DFR0, WRPS, 20, 4)
FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
FIELD(ID_AA64DFR0, PMSVER, 32, 4)
FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
FIELD(ID_DFR0, COPDBG, 0, 4)
FIELD(ID_DFR0, COPSDBG, 4, 4)
FIELD(ID_DFR0, MMAPDBG, 8, 4)
FIELD(ID_DFR0, COPTRC, 12, 4)
FIELD(ID_DFR0, MMAPTRC, 16, 4)
FIELD(ID_DFR0, MPROFDBG, 20, 4)
FIELD(ID_DFR0, PERFMON, 24, 4)
FIELD(ID_DFR0, TRACEFILT, 28, 4)
FIELD(DBGDIDR, SE_IMP, 12, 1)
FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
FIELD(DBGDIDR, VERSION, 16, 4)
FIELD(DBGDIDR, CTX_CMPS, 20, 4)
FIELD(DBGDIDR, BRPS, 24, 4)
FIELD(DBGDIDR, WRPS, 28, 4)
FIELD(MVFR0, SIMDREG, 0, 4)
FIELD(MVFR0, FPSP, 4, 4)
FIELD(MVFR0, FPDP, 8, 4)
FIELD(MVFR0, FPTRAP, 12, 4)
FIELD(MVFR0, FPDIVIDE, 16, 4)
FIELD(MVFR0, FPSQRT, 20, 4)
FIELD(MVFR0, FPSHVEC, 24, 4)
FIELD(MVFR0, FPROUND, 28, 4)
FIELD(MVFR1, FPFTZ, 0, 4)
FIELD(MVFR1, FPDNAN, 4, 4)
FIELD(MVFR1, SIMDLS, 8, 4)
FIELD(MVFR1, SIMDINT, 12, 4)
FIELD(MVFR1, SIMDSP, 16, 4)
FIELD(MVFR1, SIMDHP, 20, 4)
FIELD(MVFR1, FPHP, 24, 4)
FIELD(MVFR1, SIMDFMAC, 28, 4)
FIELD(MVFR2, SIMDMISC, 0, 4)
FIELD(MVFR2, FPMISC, 4, 4)
QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
/* If adding a feature bit which corresponds to a Linux ELF
* HWCAP bit, remember to update the feature-bit-to-hwcap
* mapping in linux-user/elfload.c:get_elf_hwcap().
*/
enum arm_features {
ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
ARM_FEATURE_V6,
ARM_FEATURE_V6K,
ARM_FEATURE_V7,
ARM_FEATURE_THUMB2,
ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
ARM_FEATURE_NEON,
ARM_FEATURE_M, /* Microcontroller profile. */
ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
ARM_FEATURE_THUMB2EE,
ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
ARM_FEATURE_V4T,
ARM_FEATURE_V5,
ARM_FEATURE_STRONGARM,
ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
ARM_FEATURE_GENERIC_TIMER,
ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
ARM_FEATURE_V8,
ARM_FEATURE_AARCH64, /* supports 64 bit mode */
ARM_FEATURE_CBAR, /* has cp15 CBAR */
ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
ARM_FEATURE_EL2, /* has EL2 Virtualization support */
ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
ARM_FEATURE_PMU, /* has PMU support */
ARM_FEATURE_VBAR, /* has cp15 VBAR */
ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
ARM_FEATURE_M_MAIN, /* M profile Main Extension */
};
static inline int arm_feature(CPUARMState *env, int feature)
{
return (env->features & (1ULL << feature)) != 0;
}
void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
#if !defined(CONFIG_USER_ONLY)
/* Return true if exception levels below EL3 are in secure state,
* or would be following an exception return to that level.
* Unlike arm_is_secure() (which is always a question about the
* _current_ state of the CPU) this doesn't care about the current
* EL or mode.
*/
static inline bool arm_is_secure_below_el3(CPUARMState *env)
{
if (arm_feature(env, ARM_FEATURE_EL3)) {
return !(env->cp15.scr_el3 & SCR_NS);
} else {
/* If EL3 is not supported then the secure state is implementation
* defined, in which case QEMU defaults to non-secure.
*/
return false;
}
}
/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
static inline bool arm_is_el3_or_mon(CPUARMState *env)
{
if (arm_feature(env, ARM_FEATURE_EL3)) {
if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
/* CPU currently in AArch64 state and EL3 */
return true;
} else if (!is_a64(env) &&
(env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
/* CPU currently in AArch32 state and monitor mode */
return true;
}
}
return false;
}
/* Return true if the processor is in secure state */
static inline bool arm_is_secure(CPUARMState *env)
{
if (arm_is_el3_or_mon(env)) {
return true;
}
return arm_is_secure_below_el3(env);
}
#else
static inline bool arm_is_secure_below_el3(CPUARMState *env)
{
return false;
}
static inline bool arm_is_secure(CPUARMState *env)
{
return false;
}
#endif
/**
* arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
* E.g. when in secure state, fields in HCR_EL2 are suppressed,
* "for all purposes other than a direct read or write access of HCR_EL2."
* Not included here is HCR_RW.
*/
uint64_t arm_hcr_el2_eff(CPUARMState *env);
/* Return true if the specified exception level is running in AArch64 state. */
static inline bool arm_el_is_aa64(CPUARMState *env, int el)
{
/* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
* and if we're not in EL0 then the state of EL0 isn't well defined.)
*/
assert(el >= 1 && el <= 3);
bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
/* The highest exception level is always at the maximum supported
* register width, and then lower levels have a register width controlled
* by bits in the SCR or HCR registers.
*/
if (el == 3) {
return aa64;
}
if (arm_feature(env, ARM_FEATURE_EL3)) {
aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
}
if (el == 2) {
return aa64;
}
if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
}
return aa64;
}
/* Function for determing whether guest cp register reads and writes should
* access the secure or non-secure bank of a cp register. When EL3 is
* operating in AArch32 state, the NS-bit determines whether the secure
* instance of a cp register should be used. When EL3 is AArch64 (or if
* it doesn't exist at all) then there is no register banking, and all
* accesses are to the non-secure version.
*/
static inline bool access_secure_reg(CPUARMState *env)
{
bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
!arm_el_is_aa64(env, 3) &&
!(env->cp15.scr_el3 & SCR_NS));
return ret;
}
/* Macros for accessing a specified CP register bank */
#define A32_BANKED_REG_GET(_env, _regname, _secure) \
((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
do { \
if (_secure) { \
(_env)->cp15._regname##_s = (_val); \
} else { \
(_env)->cp15._regname##_ns = (_val); \
} \
} while (0)
/* Macros for automatically accessing a specific CP register bank depending on
* the current secure state of the system. These macros are not intended for
* supporting instruction translation reads/writes as these are dependent
* solely on the SCR.NS bit and not the mode.
*/
#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
A32_BANKED_REG_GET((_env), _regname, \
(arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
A32_BANKED_REG_SET((_env), _regname, \
(arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
(_val))
void arm_cpu_list(void);
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
uint32_t cur_el, bool secure);
/* Interface between CPU and Interrupt controller. */
#ifndef CONFIG_USER_ONLY
bool armv7m_nvic_can_take_pending_exception(void *opaque);
#else
static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
{
return true;
}
#endif
/**
* armv7m_nvic_set_pending: mark the specified exception as pending
* @opaque: the NVIC
* @irq: the exception number to mark pending
* @secure: false for non-banked exceptions or for the nonsecure
* version of a banked exception, true for the secure version of a banked
* exception.
*
* Marks the specified exception as pending. Note that we will assert()
* if @secure is true and @irq does not specify one of the fixed set
* of architecturally banked exceptions.
*/
void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
/**
* armv7m_nvic_set_pending_derived: mark this derived exception as pending
* @opaque: the NVIC
* @irq: the exception number to mark pending
* @secure: false for non-banked exceptions or for the nonsecure
* version of a banked exception, true for the secure version of a banked
* exception.
*
* Similar to armv7m_nvic_set_pending(), but specifically for derived
* exceptions (exceptions generated in the course of trying to take
* a different exception).
*/
void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
/**
* armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
* @opaque: the NVIC
* @irq: the exception number to mark pending
* @secure: false for non-banked exceptions or for the nonsecure
* version of a banked exception, true for the secure version of a banked
* exception.
*
* Similar to armv7m_nvic_set_pending(), but specifically for exceptions
* generated in the course of lazy stacking of FP registers.
*/
void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
/**
* armv7m_nvic_get_pending_irq_info: return highest priority pending
* exception, and whether it targets Secure state
* @opaque: the NVIC
* @pirq: set to pending exception number
* @ptargets_secure: set to whether pending exception targets Secure
*
* This function writes the number of the highest priority pending
* exception (the one which would be made active by
* armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
* to true if the current highest priority pending exception should
* be taken to Secure state, false for NS.
*/
void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
bool *ptargets_secure);
/**
* armv7m_nvic_acknowledge_irq: make highest priority pending exception active
* @opaque: the NVIC
*
* Move the current highest priority pending exception from the pending
* state to the active state, and update v7m.exception to indicate that
* it is the exception currently being handled.
*/
void armv7m_nvic_acknowledge_irq(void *opaque);
/**
* armv7m_nvic_complete_irq: complete specified interrupt or exception
* @opaque: the NVIC
* @irq: the exception number to complete
* @secure: true if this exception was secure
*
* Returns: -1 if the irq was not active
* 1 if completing this irq brought us back to base (no active irqs)
* 0 if there is still an irq active after this one was completed
* (Ignoring -1, this is the same as the RETTOBASE value before completion.)
*/
int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
/**
* armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
* @opaque: the NVIC
* @irq: the exception number to mark pending
* @secure: false for non-banked exceptions or for the nonsecure
* version of a banked exception, true for the secure version of a banked
* exception.
*
* Return whether an exception is "ready", i.e. whether the exception is
* enabled and is configured at a priority which would allow it to
* interrupt the current execution priority. This controls whether the
* RDY bit for it in the FPCCR is set.
*/
bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
/**
* armv7m_nvic_raw_execution_priority: return the raw execution priority
* @opaque: the NVIC
*
* Returns: the raw execution priority as defined by the v8M architecture.
* This is the execution priority minus the effects of AIRCR.PRIS,
* and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
* (v8M ARM ARM I_PKLD.)
*/
int armv7m_nvic_raw_execution_priority(void *opaque);
/**
* armv7m_nvic_neg_prio_requested: return true if the requested execution
* priority is negative for the specified security state.
* @opaque: the NVIC
* @secure: the security state to test
* This corresponds to the pseudocode IsReqExecPriNeg().
*/
#ifndef CONFIG_USER_ONLY
bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
#else
static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
{
return false;
}
#endif
/* Interface for defining coprocessor registers.
* Registers are defined in tables of arm_cp_reginfo structs
* which are passed to define_arm_cp_regs().
*/
/* When looking up a coprocessor register we look for it
* via an integer which encodes all of:
* coprocessor number
* Crn, Crm, opc1, opc2 fields
* 32 or 64 bit register (ie is it accessed via MRC/MCR
* or via MRRC/MCRR?)
* non-secure/secure bank (AArch32 only)
* We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
* (In this case crn and opc2 should be zero.)
* For AArch64, there is no 32/64 bit size distinction;
* instead all registers have a 2 bit op0, 3 bit op1 and op2,
* and 4 bit CRn and CRm. The encoding patterns are chosen
* to be easy to convert to and from the KVM encodings, and also
* so that the hashtable can contain both AArch32 and AArch64
* registers (to allow for interprocessing where we might run
* 32 bit code on a 64 bit core).
*/
/* This bit is private to our hashtable cpreg; in KVM register
* IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
* in the upper bits of the 64 bit ID.
*/
#define CP_REG_AA64_SHIFT 28
#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
/* To enable banking of coprocessor registers depending on ns-bit we
* add a bit to distinguish between secure and non-secure cpregs in the
* hashtable.
*/
#define CP_REG_NS_SHIFT 29
#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
(CP_REG_AA64_MASK | \
((cp) << CP_REG_ARM_COPROC_SHIFT) | \
((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
/* Convert a full 64 bit KVM register ID to the truncated 32 bit
* version used as a key for the coprocessor register hashtable
*/
static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
{
uint32_t cpregid = kvmid;
if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
cpregid |= CP_REG_AA64_MASK;
} else {
if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
cpregid |= (1 << 15);
}
/* KVM is always non-secure so add the NS flag on AArch32 register
* entries.
*/
cpregid |= 1 << CP_REG_NS_SHIFT;
}
return cpregid;
}
/* Convert a truncated 32 bit hashtable key into the full
* 64 bit KVM register ID.
*/
static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
{
uint64_t kvmid;
if (cpregid & CP_REG_AA64_MASK) {
kvmid = cpregid & ~CP_REG_AA64_MASK;
kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
} else {
kvmid = cpregid & ~(1 << 15);
if (cpregid & (1 << 15)) {
kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
} else {
kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
}
}
return kvmid;
}
/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
* special-behaviour cp reg and bits [11..8] indicate what behaviour
* it has. Otherwise it is a simple cp reg, where CONST indicates that
* TCG can assume the value to be constant (ie load at translate time)
* and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
* indicates that the TB should not be ended after a write to this register
* (the default is that the TB ends after cp writes). OVERRIDE permits
* a register definition to override a previous definition for the
* same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
* old must have the OVERRIDE bit set.
* ALIAS indicates that this register is an alias view of some underlying
* state which is also visible via another register, and that the other
* register is handling migration and reset; registers marked ALIAS will not be
* migrated but may have their state set by syncing of register state from KVM.
* NO_RAW indicates that this register has no underlying state and does not
* support raw access for state saving/loading; it will not be used for either
* migration or KVM state synchronization. (Typically this is for "registers"
* which are actually used as instructions for cache maintenance and so on.)
* IO indicates that this register does I/O and therefore its accesses
* need to be marked with gen_io_start() and also end the TB. In particular,
* registers which implement clocks or timers require this.
* RAISES_EXC is for when the read or write hook might raise an exception;
* the generated code will synchronize the CPU state before calling the hook
* so that it is safe for the hook to call raise_exception().
* NEWEL is for writes to registers that might change the exception
* level - typically on older ARM chips. For those cases we need to
* re-read the new el when recomputing the translation flags.
*/
#define ARM_CP_SPECIAL 0x0001
#define ARM_CP_CONST 0x0002
#define ARM_CP_64BIT 0x0004
#define ARM_CP_SUPPRESS_TB_END 0x0008
#define ARM_CP_OVERRIDE 0x0010
#define ARM_CP_ALIAS 0x0020
#define ARM_CP_IO 0x0040
#define ARM_CP_NO_RAW 0x0080
#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
#define ARM_CP_DC_GVA (ARM_CP_SPECIAL | 0x0600)
#define ARM_CP_DC_GZVA (ARM_CP_SPECIAL | 0x0700)
#define ARM_LAST_SPECIAL ARM_CP_DC_GZVA
#define ARM_CP_FPU 0x1000
#define ARM_CP_SVE 0x2000
#define ARM_CP_NO_GDB 0x4000
#define ARM_CP_RAISES_EXC 0x8000
#define ARM_CP_NEWEL 0x10000
/* Used only as a terminator for ARMCPRegInfo lists */
#define ARM_CP_SENTINEL 0xfffff
/* Mask of only the flag bits in a type field */
#define ARM_CP_FLAG_MASK 0x1f0ff
/* Valid values for ARMCPRegInfo state field, indicating which of
* the AArch32 and AArch64 execution states this register is visible in.
* If the reginfo doesn't explicitly specify then it is AArch32 only.
* If the reginfo is declared to be visible in both states then a second
* reginfo is synthesised for the AArch32 view of the AArch64 register,
* such that the AArch32 view is the lower 32 bits of the AArch64 one.
* Note that we rely on the values of these enums as we iterate through
* the various states in some places.
*/
enum {
ARM_CP_STATE_AA32 = 0,
ARM_CP_STATE_AA64 = 1,
ARM_CP_STATE_BOTH = 2,
};
/* ARM CP register secure state flags. These flags identify security state
* attributes for a given CP register entry.
* The existence of both or neither secure and non-secure flags indicates that
* the register has both a secure and non-secure hash entry. A single one of
* these flags causes the register to only be hashed for the specified
* security state.
* Although definitions may have any combination of the S/NS bits, each
* registered entry will only have one to identify whether the entry is secure
* or non-secure.
*/
enum {
ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
};
/* Return true if cptype is a valid type field. This is used to try to
* catch errors where the sentinel has been accidentally left off the end
* of a list of registers.
*/
static inline bool cptype_valid(int cptype)
{
return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
|| ((cptype & ARM_CP_SPECIAL) &&
((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
}
/* Access rights:
* We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
* defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
* PL2 (hyp). The other level which has Read and Write bits is Secure PL1
* (ie any of the privileged modes in Secure state, or Monitor mode).
* If a register is accessible in one privilege level it's always accessible
* in higher privilege levels too. Since "Secure PL1" also follows this rule
* (ie anything visible in PL2 is visible in S-PL1, some things are only
* visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
* terminology a little and call this PL3.
* In AArch64 things are somewhat simpler as the PLx bits line up exactly
* with the ELx exception levels.
*
* If access permissions for a register are more complex than can be
* described with these bits, then use a laxer set of restrictions, and
* do the more restrictive/complex check inside a helper function.
*/
#define PL3_R 0x80
#define PL3_W 0x40
#define PL2_R (0x20 | PL3_R)
#define PL2_W (0x10 | PL3_W)
#define PL1_R (0x08 | PL2_R)
#define PL1_W (0x04 | PL2_W)
#define PL0_R (0x02 | PL1_R)
#define PL0_W (0x01 | PL1_W)
/*
* For user-mode some registers are accessible to EL0 via a kernel
* trap-and-emulate ABI. In this case we define the read permissions
* as actually being PL0_R. However some bits of any given register
* may still be masked.
*/
#ifdef CONFIG_USER_ONLY
#define PL0U_R PL0_R
#else
#define PL0U_R PL1_R
#endif
#define PL3_RW (PL3_R | PL3_W)
#define PL2_RW (PL2_R | PL2_W)
#define PL1_RW (PL1_R | PL1_W)
#define PL0_RW (PL0_R | PL0_W)
/* Return the highest implemented Exception Level */
static inline int arm_highest_el(CPUARMState *env)
{
if (arm_feature(env, ARM_FEATURE_EL3)) {
return 3;
}
if (arm_feature(env, ARM_FEATURE_EL2)) {
return 2;
}
return 1;
}
/* Return true if a v7M CPU is in Handler mode */
static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
{
return env->v7m.exception != 0;
}
/* Return the current Exception Level (as per ARMv8; note that this differs
* from the ARMv7 Privilege Level).
*/
static inline int arm_current_el(CPUARMState *env)
{
if (arm_feature(env, ARM_FEATURE_M)) {
return arm_v7m_is_handler_mode(env) ||
!(env->v7m.control[env->v7m.secure] & 1);
}
if (is_a64(env)) {
return extract32(env->pstate, 2, 2);
}
switch (env->uncached_cpsr & 0x1f) {
case ARM_CPU_MODE_USR:
return 0;
case ARM_CPU_MODE_HYP:
return 2;
case ARM_CPU_MODE_MON:
return 3;
default:
if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
/* If EL3 is 32-bit then all secure privileged modes run in
* EL3
*/
return 3;
}
return 1;
}
}
typedef struct ARMCPRegInfo ARMCPRegInfo;
typedef enum CPAccessResult {
/* Access is permitted */
CP_ACCESS_OK = 0,
/* Access fails due to a configurable trap or enable which would
* result in a categorized exception syndrome giving information about
* the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
* 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
* PL1 if in EL0, otherwise to the current EL).
*/
CP_ACCESS_TRAP = 1,
/* Access fails and results in an exception syndrome 0x0 ("uncategorized").
* Note that this is not a catch-all case -- the set of cases which may
* result in this failure is specifically defined by the architecture.
*/
CP_ACCESS_TRAP_UNCATEGORIZED = 2,
/* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
CP_ACCESS_TRAP_EL2 = 3,
CP_ACCESS_TRAP_EL3 = 4,
/* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
/* Access fails and results in an exception syndrome for an FP access,
* trapped directly to EL2 or EL3
*/
CP_ACCESS_TRAP_FP_EL2 = 7,
CP_ACCESS_TRAP_FP_EL3 = 8,
} CPAccessResult;
/* Access functions for coprocessor registers. These cannot fail and
* may not raise exceptions.
*/
typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
uint64_t value);
/* Access permission check functions for coprocessor registers. */
typedef CPAccessResult CPAccessFn(CPUARMState *env,
const ARMCPRegInfo *opaque,
bool isread);
/* Hook function for register reset */
typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
#define CP_ANY 0xff
/* Definition of an ARM coprocessor register */
struct ARMCPRegInfo {
/* Name of register (useful mainly for debugging, need not be unique) */
const char *name;
/* Location of register: coprocessor number and (crn,crm,opc1,opc2)
* tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
* 'wildcard' field -- any value of that field in the MRC/MCR insn
* will be decoded to this register. The register read and write
* callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
* used by the program, so it is possible to register a wildcard and
* then behave differently on read/write if necessary.
* For 64 bit registers, only crm and opc1 are relevant; crn and opc2
* must both be zero.
* For AArch64-visible registers, opc0 is also used.
* Since there are no "coprocessors" in AArch64, cp is purely used as a
* way to distinguish (for KVM's benefit) guest-visible system registers
* from demuxed ones provided to preserve the "no side effects on
* KVM register read/write from QEMU" semantics. cp==0x13 is guest
* visible (to match KVM's encoding); cp==0 will be converted to
* cp==0x13 when the ARMCPRegInfo is registered, for convenience.
*/
uint8_t cp;
uint8_t crn;
uint8_t crm;
uint8_t opc0;
uint8_t opc1;
uint8_t opc2;
/* Execution state in which this register is visible: ARM_CP_STATE_* */
int state;
/* Register type: ARM_CP_* bits/values */
int type;
/* Access rights: PL*_[RW] */
int access;
/* Security state: ARM_CP_SECSTATE_* bits/values */
int secure;
/* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
* this register was defined: can be used to hand data through to the
* register read/write functions, since they are passed the ARMCPRegInfo*.
*/
void *opaque;
/* Value of this register, if it is ARM_CP_CONST. Otherwise, if
* fieldoffset is non-zero, the reset value of the register.
*/
uint64_t resetvalue;
/* Offset of the field in CPUARMState for this register.
*
* This is not needed if either:
* 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
* 2. both readfn and writefn are specified
*/
ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
/* Offsets of the secure and non-secure fields in CPUARMState for the
* register if it is banked. These fields are only used during the static
* registration of a register. During hashing the bank associated
* with a given security state is copied to fieldoffset which is used from
* there on out.
*
* It is expected that register definitions use either fieldoffset or
* bank_fieldoffsets in the definition but not both. It is also expected
* that both bank offsets are set when defining a banked register. This
* use indicates that a register is banked.
*/
ptrdiff_t bank_fieldoffsets[2];
/* Function for making any access checks for this register in addition to
* those specified by the 'access' permissions bits. If NULL, no extra
* checks required. The access check is performed at runtime, not at
* translate time.
*/
CPAccessFn *accessfn;
/* Function for handling reads of this register. If NULL, then reads
* will be done by loading from the offset into CPUARMState specified
* by fieldoffset.
*/
CPReadFn *readfn;
/* Function for handling writes of this register. If NULL, then writes
* will be done by writing to the offset into CPUARMState specified
* by fieldoffset.
*/
CPWriteFn *writefn;
/* Function for doing a "raw" read; used when we need to copy
* coprocessor state to the kernel for KVM or out for
* migration. This only needs to be provided if there is also a
* readfn and it has side effects (for instance clear-on-read bits).
*/
CPReadFn *raw_readfn;
/* Function for doing a "raw" write; used when we need to copy KVM
* kernel coprocessor state into userspace, or for inbound
* migration. This only needs to be provided if there is also a
* writefn and it masks out "unwritable" bits or has write-one-to-clear
* or similar behaviour.
*/
CPWriteFn *raw_writefn;
/* Function for resetting the register. If NULL, then reset will be done
* by writing resetvalue to the field specified in fieldoffset. If
* fieldoffset is 0 then no reset will be done.
*/
CPResetFn *resetfn;
/*
* "Original" writefn and readfn.
* For ARMv8.1-VHE register aliases, we overwrite the read/write
* accessor functions of various EL1/EL0 to perform the runtime
* check for which sysreg should actually be modified, and then
* forwards the operation. Before overwriting the accessors,
* the original function is copied here, so that accesses that
* really do go to the EL1/EL0 version proceed normally.
* (The corresponding EL2 register is linked via opaque.)
*/
CPReadFn *orig_readfn;
CPWriteFn *orig_writefn;
};
/* Macros which are lvalues for the field in CPUARMState for the
* ARMCPRegInfo *ri.
*/
#define CPREG_FIELD32(env, ri) \
(*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
#define CPREG_FIELD64(env, ri) \
(*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
const ARMCPRegInfo *regs, void *opaque);
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
const ARMCPRegInfo *regs, void *opaque);
static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
{
define_arm_cp_regs_with_opaque(cpu, regs, 0);
}
static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
{
define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
}
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
/*
* Definition of an ARM co-processor register as viewed from
* userspace. This is used for presenting sanitised versions of
* registers to userspace when emulating the Linux AArch64 CPU
* ID/feature ABI (advertised as HWCAP_CPUID).
*/
typedef struct ARMCPRegUserSpaceInfo {
/* Name of register */
const char *name;
/* Is the name actually a glob pattern */
bool is_glob;
/* Only some bits are exported to user space */
uint64_t exported_bits;
/* Fixed bits are applied after the mask */
uint64_t fixed_bits;
} ARMCPRegUserSpaceInfo;
#define REGUSERINFO_SENTINEL { .name = NULL }
void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
/* CPWriteFn that can be used to implement writes-ignored behaviour */
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value);
/* CPReadFn that can be used for read-as-zero behaviour */
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
/* CPResetFn that does nothing, for use if no reset is required even
* if fieldoffset is non zero.
*/
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
/* Return true if this reginfo struct's field in the cpu state struct
* is 64 bits wide.
*/
static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
{
return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
}
static inline bool cp_access_ok(int current_el,
const ARMCPRegInfo *ri, int isread)
{
return (ri->access >> ((current_el * 2) + isread)) & 1;
}
/* Raw read of a coprocessor register (as needed for migration, etc) */
uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
/**
* write_list_to_cpustate
* @cpu: ARMCPU
*
* For each register listed in the ARMCPU cpreg_indexes list, write
* its value from the cpreg_values list into the ARMCPUState structure.
* This updates TCG's working data structures from KVM data or
* from incoming migration state.
*
* Returns: true if all register values were updated correctly,
* false if some register was unknown or could not be written.
* Note that we do not stop early on failure -- we will attempt
* writing all registers in the list.
*/
bool write_list_to_cpustate(ARMCPU *cpu);
/**
* write_cpustate_to_list:
* @cpu: ARMCPU
* @kvm_sync: true if this is for syncing back to KVM
*
* For each register listed in the ARMCPU cpreg_indexes list, write
* its value from the ARMCPUState structure into the cpreg_values list.
* This is used to copy info from TCG's working data structures into
* KVM or for outbound migration.
*
* @kvm_sync is true if we are doing this in order to sync the
* register state back to KVM. In this case we will only update
* values in the list if the previous list->cpustate sync actually
* successfully wrote the CPU state. Otherwise we will keep the value
* that is in the list.
*
* Returns: true if all register values were read correctly,
* false if some register was unknown or could not be read.
* Note that we do not stop early on failure -- we will attempt
* reading all registers in the list.
*/
bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
#define ARM_CPUID_TI915T 0x54029152
#define ARM_CPUID_TI925T 0x54029252
#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
#define cpu_signal_handler cpu_arm_signal_handler
#define cpu_list arm_cpu_list
/* ARM has the following "translation regimes" (as the ARM ARM calls them):
*
* If EL3 is 64-bit:
* + NonSecure EL1 & 0 stage 1
* + NonSecure EL1 & 0 stage 2
* + NonSecure EL2
* + NonSecure EL2 & 0 (ARMv8.1-VHE)
* + Secure EL1 & 0
* + Secure EL3
* If EL3 is 32-bit:
* + NonSecure PL1 & 0 stage 1
* + NonSecure PL1 & 0 stage 2
* + NonSecure PL2
* + Secure PL0
* + Secure PL1
* (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
*
* For QEMU, an mmu_idx is not quite the same as a translation regime because:
* 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
* because they may differ in access permissions even if the VA->PA map is
* the same
* 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
* translation, which means that we have one mmu_idx that deals with two
* concatenated translation regimes [this sort of combined s1+2 TLB is
* architecturally permitted]
* 3. we don't need to allocate an mmu_idx to translations that we won't be
* handling via the TLB. The only way to do a stage 1 translation without
* the immediate stage 2 translation is via the ATS or AT system insns,
* which can be slow-pathed and always do a page table walk.
* The only use of stage 2 translations is either as part of an s1+2
* lookup or when loading the descriptors during a stage 1 page table walk,
* and in both those cases we don't use the TLB.
* 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
* translation regimes, because they map reasonably well to each other
* and they can't both be active at the same time.
* 5. we want to be able to use the TLB for accesses done as part of a
* stage1 page table walk, rather than having to walk the stage2 page
* table over and over.
* 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
* Never (PAN) bit within PSTATE.
*
* This gives us the following list of cases:
*
* NS EL0 EL1&0 stage 1+2 (aka NS PL0)
* NS EL1 EL1&0 stage 1+2 (aka NS PL1)
* NS EL1 EL1&0 stage 1+2 +PAN
* NS EL0 EL2&0
* NS EL2 EL2&0
* NS EL2 EL2&0 +PAN
* NS EL2 (aka NS PL2)
* S EL0 EL1&0 (aka S PL0)
* S EL1 EL1&0 (not used if EL3 is 32 bit)
* S EL1 EL1&0 +PAN
* S EL3 (aka S PL1)
*
* for a total of 11 different mmu_idx.
*
* R profile CPUs have an MPU, but can use the same set of MMU indexes
* as A profile. They only need to distinguish NS EL0 and NS EL1 (and
* NS EL2 if we ever model a Cortex-R52).
*
* M profile CPUs are rather different as they do not have a true MMU.
* They have the following different MMU indexes:
* User
* Privileged
* User, execution priority negative (ie the MPU HFNMIENA bit may apply)
* Privileged, execution priority negative (ditto)
* If the CPU supports the v8M Security Extension then there are also:
* Secure User
* Secure Privileged
* Secure User, execution priority negative
* Secure Privileged, execution priority negative
*
* The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
* are not quite the same -- different CPU types (most notably M profile
* vs A/R profile) would like to use MMU indexes with different semantics,
* but since we don't ever need to use all of those in a single CPU we
* can avoid having to set NB_MMU_MODES to "total number of A profile MMU
* modes + total number of M profile MMU modes". The lower bits of
* ARMMMUIdx are the core TLB mmu index, and the higher bits are always
* the same for any particular CPU.
* Variables of type ARMMUIdx are always full values, and the core
* index values are in variables of type 'int'.
*
* Our enumeration includes at the end some entries which are not "true"
* mmu_idx values in that they don't have corresponding TLBs and are only
* valid for doing slow path page table walks.
*
* The constant names here are patterned after the general style of the names
* of the AT/ATS operations.
* The values used are carefully arranged to make mmu_idx => EL lookup easy.
* For M profile we arrange them to have a bit for priv, a bit for negpri
* and a bit for secure.
*/
#define ARM_MMU_IDX_A 0x10 /* A profile */
#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
#define ARM_MMU_IDX_M 0x40 /* M profile */
/* Meanings of the bits for M profile mmu idx values */
#define ARM_MMU_IDX_M_PRIV 0x1
#define ARM_MMU_IDX_M_NEGPRI 0x2
#define ARM_MMU_IDX_M_S 0x4 /* Secure */
#define ARM_MMU_IDX_TYPE_MASK \
(ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
#define ARM_MMU_IDX_COREIDX_MASK 0xf
typedef enum ARMMMUIdx {
/*
* A-profile.
*/
ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A,
ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A,
ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A,
ARMMMUIdx_E10_1_PAN = 3 | ARM_MMU_IDX_A,
ARMMMUIdx_E2 = 4 | ARM_MMU_IDX_A,
ARMMMUIdx_E20_2 = 5 | ARM_MMU_IDX_A,
ARMMMUIdx_E20_2_PAN = 6 | ARM_MMU_IDX_A,
ARMMMUIdx_SE10_0 = 7 | ARM_MMU_IDX_A,
ARMMMUIdx_SE10_1 = 8 | ARM_MMU_IDX_A,
ARMMMUIdx_SE10_1_PAN = 9 | ARM_MMU_IDX_A,
ARMMMUIdx_SE3 = 10 | ARM_MMU_IDX_A,
/*
* These are not allocated TLBs and are used only for AT system
* instructions or for the first stage of an S12 page table walk.
*/
ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
/*
* Not allocated a TLB: used only for second stage of an S12 page
* table walk, or for descriptor loads during first stage of an S1
* page table walk. Note that if we ever want to have a TLB for this
* then various TLB flush insns which currently are no-ops or flush
* only stage 1 MMU indexes will need to change to flush stage 2.
*/
ARMMMUIdx_Stage2 = 3 | ARM_MMU_IDX_NOTLB,
/*
* M-profile.
*/
ARMMMUIdx_MUser = ARM_MMU_IDX_M,
ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
} ARMMMUIdx;
/*
* Bit macros for the core-mmu-index values for each index,
* for use when calling tlb_flush_by_mmuidx() and friends.
*/
#define TO_CORE_BIT(NAME) \
ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
typedef enum ARMMMUIdxBit {
TO_CORE_BIT(E10_0),
TO_CORE_BIT(E20_0),
TO_CORE_BIT(E10_1),
TO_CORE_BIT(E10_1_PAN),
TO_CORE_BIT(E2),
TO_CORE_BIT(E20_2),
TO_CORE_BIT(E20_2_PAN),
TO_CORE_BIT(SE10_0),
TO_CORE_BIT(SE10_1),
TO_CORE_BIT(SE10_1_PAN),
TO_CORE_BIT(SE3),
TO_CORE_BIT(MUser),
TO_CORE_BIT(MPriv),
TO_CORE_BIT(MUserNegPri),
TO_CORE_BIT(MPrivNegPri),
TO_CORE_BIT(MSUser),
TO_CORE_BIT(MSPriv),
TO_CORE_BIT(MSUserNegPri),
TO_CORE_BIT(MSPrivNegPri),
} ARMMMUIdxBit;
#undef TO_CORE_BIT
#define MMU_USER_IDX 0
/* Indexes used when registering address spaces with cpu_address_space_init */
typedef enum ARMASIdx {
ARMASIdx_NS = 0,
ARMASIdx_S = 1,
ARMASIdx_TagNS = 2,
ARMASIdx_TagS = 3,
} ARMASIdx;
/* Return the Exception Level targeted by debug exceptions. */
static inline int arm_debug_target_el(CPUARMState *env)
{
bool secure = arm_is_secure(env);
bool route_to_el2 = false;
if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
env->cp15.mdcr_el2 & MDCR_TDE;
}
if (route_to_el2) {
return 2;
} else if (arm_feature(env, ARM_FEATURE_EL3) &&
!arm_el_is_aa64(env, 3) && secure) {
return 3;
} else {
return 1;
}
}
static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
{
/* If all the CLIDR.Ctypem bits are 0 there are no caches, and
* CSSELR is RAZ/WI.
*/
return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
}
/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
{
int cur_el = arm_current_el(env);
int debug_el;
if (cur_el == 3) {
return false;
}
/* MDCR_EL3.SDD disables debug events from Secure state */
if (arm_is_secure_below_el3(env)
&& extract32(env->cp15.mdcr_el3, 16, 1)) {
return false;
}
/*
* Same EL to same EL debug exceptions need MDSCR_KDE enabled
* while not masking the (D)ebug bit in DAIF.
*/
debug_el = arm_debug_target_el(env);
if (cur_el == debug_el) {
return extract32(env->cp15.mdscr_el1, 13, 1)
&& !(env->daif & PSTATE_D);
}
/* Otherwise the debug target needs to be a higher EL */
return debug_el > cur_el;
}
static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
{
int el = arm_current_el(env);
if (el == 0 && arm_el_is_aa64(env, 1)) {
return aa64_generate_debug_exceptions(env);
}
if (arm_is_secure(env)) {
int spd;
if (el == 0 && (env->cp15.sder & 1)) {
/* SDER.SUIDEN means debug exceptions from Secure EL0
* are always enabled. Otherwise they are controlled by
* SDCR.SPD like those from other Secure ELs.
*/
return true;
}
spd = extract32(env->cp15.mdcr_el3, 14, 2);
switch (spd) {
case 1:
/* SPD == 0b01 is reserved, but behaves as 0b00. */
case 0:
/* For 0b00 we return true if external secure invasive debug
* is enabled. On real hardware this is controlled by external
* signals to the core. QEMU always permits debug, and behaves
* as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
*/
return true;
case 2:
return false;
case 3:
return true;
}
}
return el != 2;
}
/* Return true if debugging exceptions are currently enabled.
* This corresponds to what in ARM ARM pseudocode would be
* if UsingAArch32() then
* return AArch32.GenerateDebugExceptions()
* else
* return AArch64.GenerateDebugExceptions()
* We choose to push the if() down into this function for clarity,
* since the pseudocode has it at all callsites except for the one in
* CheckSoftwareStep(), where it is elided because both branches would
* always return the same value.
*/
static inline bool arm_generate_debug_exceptions(CPUARMState *env)
{
if (env->aarch64) {
return aa64_generate_debug_exceptions(env);
} else {
return aa32_generate_debug_exceptions(env);
}
}
/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
* implicitly means this always returns false in pre-v8 CPUs.)
*/
static inline bool arm_singlestep_active(CPUARMState *env)
{
return extract32(env->cp15.mdscr_el1, 0, 1)
&& arm_el_is_aa64(env, arm_debug_target_el(env))
&& arm_generate_debug_exceptions(env);
}
static inline bool arm_sctlr_b(CPUARMState *env)
{
return
/* We need not implement SCTLR.ITD in user-mode emulation, so
* let linux-user ignore the fact that it conflicts with SCTLR_B.
* This lets people run BE32 binaries with "-cpu any".
*/
#ifndef CONFIG_USER_ONLY
!arm_feature(env, ARM_FEATURE_V7) &&
#endif
(env->cp15.sctlr_el[1] & SCTLR_B) != 0;
}
uint64_t arm_sctlr(CPUARMState *env, int el);
static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
bool sctlr_b)
{
#ifdef CONFIG_USER_ONLY
/*
* In system mode, BE32 is modelled in line with the
* architecture (as word-invariant big-endianness), where loads
* and stores are done little endian but from addresses which
* are adjusted by XORing with the appropriate constant. So the
* endianness to use for the raw data access is not affected by
* SCTLR.B.
* In user mode, however, we model BE32 as byte-invariant
* big-endianness (because user-only code cannot tell the
* difference), and so we need to use a data access endianness
* that depends on SCTLR.B.
*/
if (sctlr_b) {
return true;
}
#endif
/* In 32bit endianness is determined by looking at CPSR's E bit */
return env->uncached_cpsr & CPSR_E;
}
static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
{
return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
}
/* Return true if the processor is in big-endian mode. */
static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
{
if (!is_a64(env)) {
return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
} else {
int cur_el = arm_current_el(env);
uint64_t sctlr = arm_sctlr(env, cur_el);
return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
}
}
typedef CPUARMState CPUArchState;
typedef ARMCPU ArchCPU;
#include "exec/cpu-all.h"
/*
* Bit usage in the TB flags field: bit 31 indicates whether we are
* in 32 or 64 bit mode. The meaning of the other bits depends on that.
* We put flags which are shared between 32 and 64 bit mode at the top
* of the word, and flags which apply to only one mode at the bottom.
*
* 31 20 18 14 9 0
* +--------------+-----+-----+----------+--------------+
* | | | TBFLAG_A32 | |
* | | +-----+----------+ TBFLAG_AM32 |
* | TBFLAG_ANY | |TBFLAG_M32| |
* | +-----------+----------+--------------|
* | | TBFLAG_A64 |
* +--------------+-------------------------------------+
* 31 20 0
*
* Unless otherwise noted, these bits are cached in env->hflags.
*/
FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1)
FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1) /* Not cached. */
FIELD(TBFLAG_ANY, BE_DATA, 28, 1)
FIELD(TBFLAG_ANY, MMUIDX, 24, 4)
/* Target EL if we take a floating-point-disabled exception */
FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2)
/* For A-profile only, target EL for debug exceptions. */
FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2)
/*
* Bit usage when in AArch32 state, both A- and M-profile.
*/
FIELD(TBFLAG_AM32, CONDEXEC, 0, 8) /* Not cached. */
FIELD(TBFLAG_AM32, THUMB, 8, 1) /* Not cached. */
/*
* Bit usage when in AArch32 state, for A-profile only.
*/
FIELD(TBFLAG_A32, VECLEN, 9, 3) /* Not cached. */
FIELD(TBFLAG_A32, VECSTRIDE, 12, 2) /* Not cached. */
/*
* We store the bottom two bits of the CPAR as TB flags and handle
* checks on the other bits at runtime. This shares the same bits as
* VECSTRIDE, which is OK as no XScale CPU has VFP.
* Not cached, because VECLEN+VECSTRIDE are not cached.
*/
FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2)
FIELD(TBFLAG_A32, VFPEN, 14, 1) /* Partially cached, minus FPEXC. */
FIELD(TBFLAG_A32, SCTLR_B, 15, 1)
FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1)
/*
* Indicates whether cp register reads and writes by guest code should access
* the secure or nonsecure bank of banked registers; note that this is not
* the same thing as the current security state of the processor!
*/
FIELD(TBFLAG_A32, NS, 17, 1)
/*
* Bit usage when in AArch32 state, for M-profile only.
*/
/* Handler (ie not Thread) mode */
FIELD(TBFLAG_M32, HANDLER, 9, 1)
/* Whether we should generate stack-limit checks */
FIELD(TBFLAG_M32, STACKCHECK, 10, 1)
/* Set if FPCCR.LSPACT is set */
FIELD(TBFLAG_M32, LSPACT, 11, 1) /* Not cached. */
/* Set if we must create a new FP context */
FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1) /* Not cached. */
/* Set if FPCCR.S does not match current security state */
FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1) /* Not cached. */
/*
* Bit usage when in AArch64 state
*/
FIELD(TBFLAG_A64, TBII, 0, 2)
FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
FIELD(TBFLAG_A64, BT, 9, 1)
FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
FIELD(TBFLAG_A64, TBID, 12, 2)
FIELD(TBFLAG_A64, UNPRIV, 14, 1)
FIELD(TBFLAG_A64, ATA, 15, 1)
FIELD(TBFLAG_A64, TCMA, 16, 2)
FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
/**
* cpu_mmu_index:
* @env: The cpu environment
* @ifetch: True for code access, false for data access.
*
* Return the core mmu index for the current translation regime.
* This function is used by generic TCG code paths.
*/
static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
{
return FIELD_EX32(env->hflags, TBFLAG_ANY, MMUIDX);
}
static inline bool bswap_code(bool sctlr_b)
{
#ifdef CONFIG_USER_ONLY
/* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
* The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
* would also end up as a mixed-endian mode with BE code, LE data.
*/
return
#ifdef TARGET_WORDS_BIGENDIAN
1 ^
#endif
sctlr_b;
#else
/* All code access in ARM is little endian, and there are no loaders
* doing swaps that need to be reversed
*/
return 0;
#endif
}
#ifdef CONFIG_USER_ONLY
static inline bool arm_cpu_bswap_data(CPUARMState *env)
{
return
#ifdef TARGET_WORDS_BIGENDIAN
1 ^
#endif
arm_cpu_data_is_big_endian(env);
}
#endif
void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
target_ulong *cs_base, uint32_t *flags);
enum {
QEMU_PSCI_CONDUIT_DISABLED = 0,
QEMU_PSCI_CONDUIT_SMC = 1,
QEMU_PSCI_CONDUIT_HVC = 2,
};
#ifndef CONFIG_USER_ONLY
/* Return the address space index to use for a memory access */
static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
{
return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
}
/* Return the AddressSpace to use for a memory access
* (which depends on whether the access is S or NS, and whether
* the board gave us a separate AddressSpace for S accesses).
*/
static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
{
return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
}
#endif
/**
* arm_register_pre_el_change_hook:
* Register a hook function which will be called immediately before this
* CPU changes exception level or mode. The hook function will be
* passed a pointer to the ARMCPU and the opaque data pointer passed
* to this function when the hook was registered.
*
* Note that if a pre-change hook is called, any registered post-change hooks
* are guaranteed to subsequently be called.
*/
void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
void *opaque);
/**
* arm_register_el_change_hook:
* Register a hook function which will be called immediately after this
* CPU changes exception level or mode. The hook function will be
* passed a pointer to the ARMCPU and the opaque data pointer passed
* to this function when the hook was registered.
*
* Note that any registered hooks registered here are guaranteed to be called
* if pre-change hooks have been.
*/
void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
*opaque);
/**
* arm_rebuild_hflags:
* Rebuild the cached TBFLAGS for arbitrary changed processor state.
*/
void arm_rebuild_hflags(CPUARMState *env);
/**
* aa32_vfp_dreg:
* Return a pointer to the Dn register within env in 32-bit mode.
*/
static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
{
return &env->vfp.zregs[regno >> 1].d[regno & 1];
}
/**
* aa32_vfp_qreg:
* Return a pointer to the Qn register within env in 32-bit mode.
*/
static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
{
return &env->vfp.zregs[regno].d[0];
}
/**
* aa64_vfp_qreg:
* Return a pointer to the Qn register within env in 64-bit mode.
*/
static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
{
return &env->vfp.zregs[regno].d[0];
}
/* Shared between translate-sve.c and sve_helper.c. */
extern const uint64_t pred_esz_masks[4];
/* Helper for the macros below, validating the argument type. */
static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
{
return x;
}
/*
* Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
* Using these should be a bit more self-documenting than using the
* generic target bits directly.
*/
#define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
#define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
/*
* Naming convention for isar_feature functions:
* Functions which test 32-bit ID registers should have _aa32_ in
* their name. Functions which test 64-bit ID registers should have
* _aa64_ in their name. These must only be used in code where we
* know for certain that the CPU has AArch32 or AArch64 respectively
* or where the correct answer for a CPU which doesn't implement that
* CPU state is "false" (eg when generating A32 or A64 code, if adding
* system registers that are specific to that CPU state, for "should
* we let this system register bit be set" tests where the 32-bit
* flavour of the register doesn't have the bit, and so on).
* Functions which simply ask "does this feature exist at all" have
* _any_ in their name, and always return the logical OR of the _aa64_
* and the _aa32_ function.
*/
/*
* 32-bit feature tests via id registers.
*/
static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
{
return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
}
static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
{
return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
}
static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
{
return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
}
static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
{
return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
}
static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
{
return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
}
static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
{
return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
}
static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
{
return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
}
static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
{
return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
}
static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
{
return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
}
static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
{
return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
}
static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
{
return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
}
static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
{
return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
}
static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
{
return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
}
static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
{
return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
}
static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
{
return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
}
static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
{
/*
* This is a placeholder for use by VCMA until the rest of
* the ARMv8.2-FP16 extension is implemented for aa32 mode.
* At which point we can properly set and check MVFR1.FPHP.
*/
return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
}
static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
{
/*
* Return true if either VFP or SIMD is implemented.
* In this case, a minimum of VFP w/ D0-D15.
*/
return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
}
static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
{
/* Return true if D16-D31 are implemented */
return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
}
static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
{
return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
}
static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
{
/* Return true if CPU supports single precision floating point, VFPv2 */
return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
}
static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
{
/* Return true if CPU supports single precision floating point, VFPv3 */
return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
}
static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
{
/* Return true if CPU supports double precision floating point, VFPv2 */
return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
}
static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
{
/* Return true if CPU supports double precision floating point, VFPv3 */
return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
}
static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
{
return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
}
/*
* We always set the FP and SIMD FP16 fields to indicate identical
* levels of support (assuming SIMD is implemented at all), so
* we only need one set of accessors.
*/
static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
{
return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
}
static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
{
return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
}
/*
* Note that this ID register field covers both VFP and Neon FMAC,
* so should usually be tested in combination with some other
* check that confirms the presence of whichever of VFP or Neon is
* relevant, to avoid accidentally enabling a Neon feature on
* a VFP-no-Neon core or vice-versa.
*/
static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
{
return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
}
static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
{
return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
}
static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
{
return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
}
static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
{
return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
}
static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
{
return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
}
static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
{
return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
}
static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
{
return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
}
static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
{
/* 0xf means "non-standard IMPDEF PMU" */
return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
}
static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
{
/* 0xf means "non-standard IMPDEF PMU" */
return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
}
static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
{
return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
}
static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
{
return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
}
static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
{
return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
}
static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
{
return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
}
/*
* 64-bit feature tests via id registers.
*/
static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
}
static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
}
static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
}
static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
}
static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
}
static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
}
static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
}
static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
}
static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
}
static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
}
static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
}
static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
}
static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
}
static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
}
static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
}
static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
}
static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
}
static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
}
static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
{
/*
* Note that while QEMU will only implement the architected algorithm
* QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
* defined algorithms, and thus API+GPI, and this predicate controls
* migration of the 128-bit keys.
*/
return (id->id_aa64isar1 &
(FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
}
static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
}
static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
}
static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
}
static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
}
static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
}
static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
{
/* We always set the AdvSIMD and FP fields identically. */
return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
}
static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
{
/* We always set the AdvSIMD and FP fields identically wrt FP16. */
return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
}
static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
}
static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
}
static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
}
static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
}
static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
}
static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
}
static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
}
static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
}
static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
}
static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
}
static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
}
static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
}
static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
}
static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
}
static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
}
static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
}
/*
* Feature tests for "does this exist in either 32-bit or 64-bit?"
*/
static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
{
return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
}
static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
{
return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
}
static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
{
return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
}
static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
{
return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
}
static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
{
return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
}
static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
{
return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
}
/*
* Forward to the above feature tests given an ARMCPU pointer.
*/
#define cpu_isar_feature(name, cpu) \
({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
#endif