/* * QEMU PowerPC pSeries Logical Partition NUMA associativity handling * * Copyright IBM Corp. 2020 * * Authors: * Daniel Henrique Barboza * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "hw/ppc/spapr_numa.h" #include "hw/pci-host/spapr.h" #include "hw/ppc/fdt.h" /* Moved from hw/ppc/spapr_pci_nvlink2.c */ #define SPAPR_GPU_NUMA_ID (cpu_to_be32(1)) /* * Retrieves max_dist_ref_points of the current NUMA affinity. */ static int get_max_dist_ref_points(SpaprMachineState *spapr) { if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { return FORM2_DIST_REF_POINTS; } return FORM1_DIST_REF_POINTS; } /* * Retrieves numa_assoc_size of the current NUMA affinity. */ static int get_numa_assoc_size(SpaprMachineState *spapr) { if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { return FORM2_NUMA_ASSOC_SIZE; } return FORM1_NUMA_ASSOC_SIZE; } /* * Retrieves vcpu_assoc_size of the current NUMA affinity. * * vcpu_assoc_size is the size of ibm,associativity array * for CPUs, which has an extra element (vcpu_id) in the end. */ static int get_vcpu_assoc_size(SpaprMachineState *spapr) { return get_numa_assoc_size(spapr) + 1; } /* * Retrieves the ibm,associativity array of NUMA node 'node_id' * for the current NUMA affinity. */ static const uint32_t *get_associativity(SpaprMachineState *spapr, int node_id) { if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { return spapr->FORM2_assoc_array[node_id]; } return spapr->FORM1_assoc_array[node_id]; } /* * Wrapper that returns node distance from ms->numa_state->nodes * after handling edge cases where the distance might be absent. */ static int get_numa_distance(MachineState *ms, int src, int dst) { NodeInfo *numa_info = ms->numa_state->nodes; int ret = numa_info[src].distance[dst]; if (ret != 0) { return ret; } /* * In case QEMU adds a default NUMA single node when the user * did not add any, or where the user did not supply distances, * the distance will be absent (zero). Return local/remote * distance in this case. */ if (src == dst) { return NUMA_DISTANCE_MIN; } return NUMA_DISTANCE_DEFAULT; } static bool spapr_numa_is_symmetrical(MachineState *ms) { int nb_numa_nodes = ms->numa_state->num_nodes; int src, dst; for (src = 0; src < nb_numa_nodes; src++) { for (dst = src; dst < nb_numa_nodes; dst++) { if (get_numa_distance(ms, src, dst) != get_numa_distance(ms, dst, src)) { return false; } } } return true; } /* * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node. * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is * called from vPHB reset handler so we initialize the counter here. * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM * must be equally distant from any other node. * The final value of spapr->gpu_numa_id is going to be written to * max-associativity-domains in spapr_build_fdt(). */ unsigned int spapr_numa_initial_nvgpu_numa_id(MachineState *machine) { return MAX(1, machine->numa_state->num_nodes); } /* * This function will translate the user distances into * what the kernel understand as possible values: 10 * (local distance), 20, 40, 80 and 160, and return the equivalent * NUMA level for each. Current heuristic is: * - local distance (10) returns numa_level = 0x4, meaning there is * no rounding for local distance * - distances between 11 and 30 inclusive -> rounded to 20, * numa_level = 0x3 * - distances between 31 and 60 inclusive -> rounded to 40, * numa_level = 0x2 * - distances between 61 and 120 inclusive -> rounded to 80, * numa_level = 0x1 * - everything above 120 returns numa_level = 0 to indicate that * there is no match. This will be calculated as disntace = 160 * by the kernel (as of v5.9) */ static uint8_t spapr_numa_get_numa_level(uint8_t distance) { if (distance == 10) { return 0x4; } else if (distance > 11 && distance <= 30) { return 0x3; } else if (distance > 31 && distance <= 60) { return 0x2; } else if (distance > 61 && distance <= 120) { return 0x1; } return 0; } static void spapr_numa_define_FORM1_domains(SpaprMachineState *spapr) { MachineState *ms = MACHINE(spapr); int nb_numa_nodes = ms->numa_state->num_nodes; int src, dst, i, j; /* * Fill all associativity domains of non-zero NUMA nodes with * node_id. This is required because the default value (0) is * considered a match with associativity domains of node 0. */ for (i = 1; i < nb_numa_nodes; i++) { for (j = 1; j < FORM1_DIST_REF_POINTS; j++) { spapr->FORM1_assoc_array[i][j] = cpu_to_be32(i); } } for (src = 0; src < nb_numa_nodes; src++) { for (dst = src; dst < nb_numa_nodes; dst++) { /* * This is how the associativity domain between A and B * is calculated: * * - get the distance D between them * - get the correspondent NUMA level 'n_level' for D * - all associativity arrays were initialized with their own * numa_ids, and we're calculating the distance in node_id * ascending order, starting from node id 0 (the first node * retrieved by numa_state). This will have a cascade effect in * the algorithm because the associativity domains that node 0 * defines will be carried over to other nodes, and node 1 * associativities will be carried over after taking node 0 * associativities into account, and so on. This happens because * we'll assign assoc_src as the associativity domain of dst * as well, for all NUMA levels beyond and including n_level. * * The PPC kernel expects the associativity domains of node 0 to * be always 0, and this algorithm will grant that by default. */ uint8_t distance = get_numa_distance(ms, src, dst); uint8_t n_level = spapr_numa_get_numa_level(distance); uint32_t assoc_src; /* * n_level = 0 means that the distance is greater than our last * rounded value (120). In this case there is no NUMA level match * between src and dst and we can skip the remaining of the loop. * * The Linux kernel will assume that the distance between src and * dst, in this case of no match, is 10 (local distance) doubled * for each NUMA it didn't match. We have FORM1_DIST_REF_POINTS * levels (4), so this gives us 10*2*2*2*2 = 160. * * This logic can be seen in the Linux kernel source code, as of * v5.9, in arch/powerpc/mm/numa.c, function __node_distance(). */ if (n_level == 0) { continue; } /* * We must assign all assoc_src to dst, starting from n_level * and going up to 0x1. */ for (i = n_level; i > 0; i--) { assoc_src = spapr->FORM1_assoc_array[src][i]; spapr->FORM1_assoc_array[dst][i] = assoc_src; } } } } static void spapr_numa_FORM1_affinity_check(MachineState *machine) { int i; /* * Check we don't have a memory-less/cpu-less NUMA node * Firmware relies on the existing memory/cpu topology to provide the * NUMA topology to the kernel. * And the linux kernel needs to know the NUMA topology at start * to be able to hotplug CPUs later. */ if (machine->numa_state->num_nodes) { for (i = 0; i < machine->numa_state->num_nodes; ++i) { /* check for memory-less node */ if (machine->numa_state->nodes[i].node_mem == 0) { CPUState *cs; int found = 0; /* check for cpu-less node */ CPU_FOREACH(cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); if (cpu->node_id == i) { found = 1; break; } } /* memory-less and cpu-less node */ if (!found) { error_report( "Memory-less/cpu-less nodes are not supported with FORM1 NUMA (node %d)", i); exit(EXIT_FAILURE); } } } } if (!spapr_numa_is_symmetrical(machine)) { error_report( "Asymmetrical NUMA topologies aren't supported in the pSeries machine using FORM1 NUMA"); exit(EXIT_FAILURE); } } /* * Set NUMA machine state data based on FORM1 affinity semantics. */ static void spapr_numa_FORM1_affinity_init(SpaprMachineState *spapr, MachineState *machine) { SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); int nb_numa_nodes = machine->numa_state->num_nodes; int i, j, max_nodes_with_gpus; /* * For all associativity arrays: first position is the size, * position FORM1_DIST_REF_POINTS is always the numa_id, * represented by the index 'i'. * * This will break on sparse NUMA setups, when/if QEMU starts * to support it, because there will be no more guarantee that * 'i' will be a valid node_id set by the user. */ for (i = 0; i < nb_numa_nodes; i++) { spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS); spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i); } /* * Initialize NVLink GPU associativity arrays. We know that * the first GPU will take the first available NUMA id, and * we'll have a maximum of NVGPU_MAX_NUM GPUs in the machine. * At this point we're not sure if there are GPUs or not, but * let's initialize the associativity arrays and allow NVLink * GPUs to be handled like regular NUMA nodes later on. */ max_nodes_with_gpus = nb_numa_nodes + NVGPU_MAX_NUM; for (i = nb_numa_nodes; i < max_nodes_with_gpus; i++) { spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS); for (j = 1; j < FORM1_DIST_REF_POINTS; j++) { uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ? SPAPR_GPU_NUMA_ID : cpu_to_be32(i); spapr->FORM1_assoc_array[i][j] = gpu_assoc; } spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i); } /* * Guests pseries-5.1 and older uses zeroed associativity domains, * i.e. no domain definition based on NUMA distance input. * * Same thing with guests that have only one NUMA node. */ if (smc->pre_5_2_numa_associativity || machine->numa_state->num_nodes <= 1) { return; } spapr_numa_define_FORM1_domains(spapr); } /* * Init NUMA FORM2 machine state data */ static void spapr_numa_FORM2_affinity_init(SpaprMachineState *spapr) { int i; /* * For all resources but CPUs, FORM2 associativity arrays will * be a size 2 array with the following format: * * ibm,associativity = {1, numa_id} * * CPUs will write an additional 'vcpu_id' on top of the arrays * being initialized here. 'numa_id' is represented by the * index 'i' of the loop. * * Given that this initialization is also valid for GPU associativity * arrays, handle everything in one single step by populating the * arrays up to NUMA_NODES_MAX_NUM. */ for (i = 0; i < NUMA_NODES_MAX_NUM; i++) { spapr->FORM2_assoc_array[i][0] = cpu_to_be32(1); spapr->FORM2_assoc_array[i][1] = cpu_to_be32(i); } } void spapr_numa_associativity_init(SpaprMachineState *spapr, MachineState *machine) { spapr_numa_FORM1_affinity_init(spapr, machine); spapr_numa_FORM2_affinity_init(spapr); } void spapr_numa_associativity_check(SpaprMachineState *spapr) { /* * FORM2 does not have any restrictions we need to handle * at CAS time, for now. */ if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { return; } spapr_numa_FORM1_affinity_check(MACHINE(spapr)); } void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt, int offset, int nodeid) { const uint32_t *associativity = get_associativity(spapr, nodeid); _FDT((fdt_setprop(fdt, offset, "ibm,associativity", associativity, get_numa_assoc_size(spapr) * sizeof(uint32_t)))); } static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr, PowerPCCPU *cpu) { const uint32_t *associativity = get_associativity(spapr, cpu->node_id); int max_distance_ref_points = get_max_dist_ref_points(spapr); int vcpu_assoc_size = get_vcpu_assoc_size(spapr); uint32_t *vcpu_assoc = g_new(uint32_t, vcpu_assoc_size); int index = spapr_get_vcpu_id(cpu); /* * VCPUs have an extra 'cpu_id' value in ibm,associativity * compared to other resources. Increment the size at index * 0, put cpu_id last, then copy the remaining associativity * domains. */ vcpu_assoc[0] = cpu_to_be32(max_distance_ref_points + 1); vcpu_assoc[vcpu_assoc_size - 1] = cpu_to_be32(index); memcpy(vcpu_assoc + 1, associativity + 1, (vcpu_assoc_size - 2) * sizeof(uint32_t)); return vcpu_assoc; } int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt, int offset, PowerPCCPU *cpu) { g_autofree uint32_t *vcpu_assoc = NULL; int vcpu_assoc_size = get_vcpu_assoc_size(spapr); vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu); /* Advertise NUMA via ibm,associativity */ return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc, vcpu_assoc_size * sizeof(uint32_t)); } int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt, int offset) { MachineState *machine = MACHINE(spapr); int max_distance_ref_points = get_max_dist_ref_points(spapr); int nb_numa_nodes = machine->numa_state->num_nodes; int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; g_autofree uint32_t *int_buf = NULL; uint32_t *cur_index; int i; /* ibm,associativity-lookup-arrays */ int_buf = g_new0(uint32_t, nr_nodes * max_distance_ref_points + 2); cur_index = int_buf; int_buf[0] = cpu_to_be32(nr_nodes); /* Number of entries per associativity list */ int_buf[1] = cpu_to_be32(max_distance_ref_points); cur_index += 2; for (i = 0; i < nr_nodes; i++) { /* * For the lookup-array we use the ibm,associativity array of the * current NUMA affinity, without the first element (size). */ const uint32_t *associativity = get_associativity(spapr, i); memcpy(cur_index, ++associativity, sizeof(uint32_t) * max_distance_ref_points); cur_index += max_distance_ref_points; } return fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, (cur_index - int_buf) * sizeof(uint32_t)); } static void spapr_numa_FORM1_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas) { MachineState *ms = MACHINE(spapr); SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); uint32_t number_nvgpus_nodes = spapr->gpu_numa_id - spapr_numa_initial_nvgpu_numa_id(ms); uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x3), cpu_to_be32(0x2), cpu_to_be32(0x1), }; uint32_t nr_refpoints = ARRAY_SIZE(refpoints); uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes; uint32_t maxdomains[] = { cpu_to_be32(4), cpu_to_be32(maxdomain), cpu_to_be32(maxdomain), cpu_to_be32(maxdomain), cpu_to_be32(maxdomain) }; if (smc->pre_5_2_numa_associativity || ms->numa_state->num_nodes <= 1) { uint32_t legacy_refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4), cpu_to_be32(0x2), }; uint32_t legacy_maxdomain = spapr->gpu_numa_id > 1 ? 1 : 0; uint32_t legacy_maxdomains[] = { cpu_to_be32(4), cpu_to_be32(legacy_maxdomain), cpu_to_be32(legacy_maxdomain), cpu_to_be32(legacy_maxdomain), cpu_to_be32(spapr->gpu_numa_id), }; G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints)); G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains)); nr_refpoints = 3; memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints)); memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains)); /* pseries-5.0 and older reference-points array is {0x4, 0x4} */ if (smc->pre_5_1_assoc_refpoints) { nr_refpoints = 2; } } _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", refpoints, nr_refpoints * sizeof(refpoints[0]))); _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", maxdomains, sizeof(maxdomains))); } static void spapr_numa_FORM2_write_rtas_tables(SpaprMachineState *spapr, void *fdt, int rtas) { MachineState *ms = MACHINE(spapr); int nb_numa_nodes = ms->numa_state->num_nodes; int distance_table_entries = nb_numa_nodes * nb_numa_nodes; g_autofree uint32_t *lookup_index_table = NULL; g_autofree uint8_t *distance_table = NULL; int src, dst, i, distance_table_size; /* * ibm,numa-lookup-index-table: array with length and a * list of NUMA ids present in the guest. */ lookup_index_table = g_new0(uint32_t, nb_numa_nodes + 1); lookup_index_table[0] = cpu_to_be32(nb_numa_nodes); for (i = 0; i < nb_numa_nodes; i++) { lookup_index_table[i + 1] = cpu_to_be32(i); } _FDT(fdt_setprop(fdt, rtas, "ibm,numa-lookup-index-table", lookup_index_table, (nb_numa_nodes + 1) * sizeof(uint32_t))); /* * ibm,numa-distance-table: contains all node distances. First * element is the size of the table as uint32, followed up * by all the uint8 distances from the first NUMA node, then all * distances from the second NUMA node and so on. * * ibm,numa-lookup-index-table is used by guest to navigate this * array because NUMA ids can be sparse (node 0 is the first, * node 8 is the second ...). */ distance_table_size = distance_table_entries * sizeof(uint8_t) + sizeof(uint32_t); distance_table = g_new0(uint8_t, distance_table_size); stl_be_p(distance_table, distance_table_entries); /* Skip the uint32_t array length at the start */ i = sizeof(uint32_t); for (src = 0; src < nb_numa_nodes; src++) { for (dst = 0; dst < nb_numa_nodes; dst++) { distance_table[i++] = get_numa_distance(ms, src, dst); } } _FDT(fdt_setprop(fdt, rtas, "ibm,numa-distance-table", distance_table, distance_table_size)); } /* * This helper could be compressed in a single function with * FORM1 logic since we're setting the same DT values, with the * difference being a call to spapr_numa_FORM2_write_rtas_tables() * in the end. The separation was made to avoid clogging FORM1 code * which already has to deal with compat modes from previous * QEMU machine types. */ static void spapr_numa_FORM2_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas) { MachineState *ms = MACHINE(spapr); uint32_t number_nvgpus_nodes = spapr->gpu_numa_id - spapr_numa_initial_nvgpu_numa_id(ms); /* * In FORM2, ibm,associativity-reference-points will point to * the element in the ibm,associativity array that contains the * primary domain index (for FORM2, the first element). * * This value (in our case, the numa-id) is then used as an index * to retrieve all other attributes of the node (distance, * bandwidth, latency) via ibm,numa-lookup-index-table and other * ibm,numa-*-table properties. */ uint32_t refpoints[] = { cpu_to_be32(1) }; uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes; uint32_t maxdomains[] = { cpu_to_be32(1), cpu_to_be32(maxdomain) }; _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", refpoints, sizeof(refpoints))); _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", maxdomains, sizeof(maxdomains))); spapr_numa_FORM2_write_rtas_tables(spapr, fdt, rtas); } /* * Helper that writes ibm,associativity-reference-points and * max-associativity-domains in the RTAS pointed by @rtas * in the DT @fdt. */ void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas) { if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { spapr_numa_FORM2_write_rtas_dt(spapr, fdt, rtas); return; } spapr_numa_FORM1_write_rtas_dt(spapr, fdt, rtas); } static target_ulong h_home_node_associativity(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { g_autofree uint32_t *vcpu_assoc = NULL; target_ulong flags = args[0]; target_ulong procno = args[1]; PowerPCCPU *tcpu; int idx, assoc_idx; int vcpu_assoc_size = get_vcpu_assoc_size(spapr); /* only support procno from H_REGISTER_VPA */ if (flags != 0x1) { return H_FUNCTION; } tcpu = spapr_find_cpu(procno); if (tcpu == NULL) { return H_P2; } /* * Given that we want to be flexible with the sizes and indexes, * we must consider that there is a hard limit of how many * associativities domain we can fit in R4 up to R9, which would be * 12 associativity domains for vcpus. Assert and bail if that's * not the case. */ g_assert((vcpu_assoc_size - 1) <= 12); vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu); /* assoc_idx starts at 1 to skip associativity size */ assoc_idx = 1; #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \ ((uint64_t)(b) & 0xffffffff)) for (idx = 0; idx < 6; idx++) { int32_t a, b; /* * vcpu_assoc[] will contain the associativity domains for tcpu, * including tcpu->node_id and procno, meaning that we don't * need to use these variables here. * * We'll read 2 values at a time to fill up the ASSOCIATIVITY() * macro. The ternary will fill the remaining registers with -1 * after we went through vcpu_assoc[]. */ a = assoc_idx < vcpu_assoc_size ? be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1; b = assoc_idx < vcpu_assoc_size ? be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1; args[idx] = ASSOCIATIVITY(a, b); } #undef ASSOCIATIVITY return H_SUCCESS; } static void spapr_numa_register_types(void) { /* Virtual Processor Home Node */ spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY, h_home_node_associativity); } type_init(spapr_numa_register_types)