/* * QEMU RISC-V Boot Helper * * Copyright (c) 2017 SiFive, Inc. * Copyright (c) 2019 Alistair Francis * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include "qemu/osdep.h" #include "qemu/datadir.h" #include "qemu/units.h" #include "qemu/error-report.h" #include "exec/cpu-defs.h" #include "hw/boards.h" #include "hw/loader.h" #include "hw/riscv/boot.h" #include "hw/riscv/boot_opensbi.h" #include "elf.h" #include "sysemu/device_tree.h" #include "sysemu/qtest.h" #include "sysemu/kvm.h" #include bool riscv_is_32bit(RISCVHartArrayState *harts) { return harts->harts[0].env.misa_mxl_max == MXL_RV32; } /* * Return the per-socket PLIC hart topology configuration string * (caller must free with g_free()) */ char *riscv_plic_hart_config_string(int hart_count) { g_autofree const char **vals = g_new(const char *, hart_count + 1); int i; for (i = 0; i < hart_count; i++) { CPUState *cs = qemu_get_cpu(i); CPURISCVState *env = &RISCV_CPU(cs)->env; if (kvm_enabled()) { vals[i] = "S"; } else if (riscv_has_ext(env, RVS)) { vals[i] = "MS"; } else { vals[i] = "M"; } } vals[i] = NULL; /* g_strjoinv() obliges us to cast away const here */ return g_strjoinv(",", (char **)vals); } target_ulong riscv_calc_kernel_start_addr(RISCVHartArrayState *harts, target_ulong firmware_end_addr) { if (riscv_is_32bit(harts)) { return QEMU_ALIGN_UP(firmware_end_addr, 4 * MiB); } else { return QEMU_ALIGN_UP(firmware_end_addr, 2 * MiB); } } target_ulong riscv_find_and_load_firmware(MachineState *machine, const char *default_machine_firmware, hwaddr firmware_load_addr, symbol_fn_t sym_cb) { char *firmware_filename = NULL; target_ulong firmware_end_addr = firmware_load_addr; if ((!machine->firmware) || (!strcmp(machine->firmware, "default"))) { /* * The user didn't specify -bios, or has specified "-bios default". * That means we are going to load the OpenSBI binary included in * the QEMU source. */ firmware_filename = riscv_find_firmware(default_machine_firmware); } else if (strcmp(machine->firmware, "none")) { firmware_filename = riscv_find_firmware(machine->firmware); } if (firmware_filename) { /* If not "none" load the firmware */ firmware_end_addr = riscv_load_firmware(firmware_filename, firmware_load_addr, sym_cb); g_free(firmware_filename); } return firmware_end_addr; } char *riscv_find_firmware(const char *firmware_filename) { char *filename; filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, firmware_filename); if (filename == NULL) { if (!qtest_enabled()) { /* * We only ship plain binary bios images in the QEMU source. * With Spike machine that uses ELF images as the default bios, * running QEMU test will complain hence let's suppress the error * report for QEMU testing. */ error_report("Unable to load the RISC-V firmware \"%s\"", firmware_filename); exit(1); } } return filename; } target_ulong riscv_load_firmware(const char *firmware_filename, hwaddr firmware_load_addr, symbol_fn_t sym_cb) { uint64_t firmware_entry, firmware_size, firmware_end; if (load_elf_ram_sym(firmware_filename, NULL, NULL, NULL, &firmware_entry, NULL, &firmware_end, NULL, 0, EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) { return firmware_end; } firmware_size = load_image_targphys_as(firmware_filename, firmware_load_addr, current_machine->ram_size, NULL); if (firmware_size > 0) { return firmware_load_addr + firmware_size; } error_report("could not load firmware '%s'", firmware_filename); exit(1); } target_ulong riscv_load_kernel(const char *kernel_filename, target_ulong kernel_start_addr, symbol_fn_t sym_cb) { uint64_t kernel_load_base, kernel_entry; /* * NB: Use low address not ELF entry point to ensure that the fw_dynamic * behaviour when loading an ELF matches the fw_payload, fw_jump and BBL * behaviour, as well as fw_dynamic with a raw binary, all of which jump to * the (expected) load address load address. This allows kernels to have * separate SBI and ELF entry points (used by FreeBSD, for example). */ if (load_elf_ram_sym(kernel_filename, NULL, NULL, NULL, NULL, &kernel_load_base, NULL, NULL, 0, EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) { return kernel_load_base; } if (load_uimage_as(kernel_filename, &kernel_entry, NULL, NULL, NULL, NULL, NULL) > 0) { return kernel_entry; } if (load_image_targphys_as(kernel_filename, kernel_start_addr, current_machine->ram_size, NULL) > 0) { return kernel_start_addr; } error_report("could not load kernel '%s'", kernel_filename); exit(1); } hwaddr riscv_load_initrd(const char *filename, uint64_t mem_size, uint64_t kernel_entry, hwaddr *start) { int size; /* * We want to put the initrd far enough into RAM that when the * kernel is uncompressed it will not clobber the initrd. However * on boards without much RAM we must ensure that we still leave * enough room for a decent sized initrd, and on boards with large * amounts of RAM we must avoid the initrd being so far up in RAM * that it is outside lowmem and inaccessible to the kernel. * So for boards with less than 256MB of RAM we put the initrd * halfway into RAM, and for boards with 256MB of RAM or more we put * the initrd at 128MB. */ *start = kernel_entry + MIN(mem_size / 2, 128 * MiB); size = load_ramdisk(filename, *start, mem_size - *start); if (size == -1) { size = load_image_targphys(filename, *start, mem_size - *start); if (size == -1) { error_report("could not load ramdisk '%s'", filename); exit(1); } } return *start + size; } uint32_t riscv_load_fdt(hwaddr dram_base, uint64_t mem_size, void *fdt) { uint32_t temp, fdt_addr; hwaddr dram_end = dram_base + mem_size; int ret, fdtsize = fdt_totalsize(fdt); if (fdtsize <= 0) { error_report("invalid device-tree"); exit(1); } /* * We should put fdt as far as possible to avoid kernel/initrd overwriting * its content. But it should be addressable by 32 bit system as well. * Thus, put it at an 16MB aligned address that less than fdt size from the * end of dram or 3GB whichever is lesser. */ temp = MIN(dram_end, 3072 * MiB); fdt_addr = QEMU_ALIGN_DOWN(temp - fdtsize, 16 * MiB); ret = fdt_pack(fdt); /* Should only fail if we've built a corrupted tree */ g_assert(ret == 0); /* copy in the device tree */ qemu_fdt_dumpdtb(fdt, fdtsize); rom_add_blob_fixed_as("fdt", fdt, fdtsize, fdt_addr, &address_space_memory); return fdt_addr; } void riscv_rom_copy_firmware_info(MachineState *machine, hwaddr rom_base, hwaddr rom_size, uint32_t reset_vec_size, uint64_t kernel_entry) { struct fw_dynamic_info dinfo; size_t dinfo_len; if (sizeof(dinfo.magic) == 4) { dinfo.magic = cpu_to_le32(FW_DYNAMIC_INFO_MAGIC_VALUE); dinfo.version = cpu_to_le32(FW_DYNAMIC_INFO_VERSION); dinfo.next_mode = cpu_to_le32(FW_DYNAMIC_INFO_NEXT_MODE_S); dinfo.next_addr = cpu_to_le32(kernel_entry); } else { dinfo.magic = cpu_to_le64(FW_DYNAMIC_INFO_MAGIC_VALUE); dinfo.version = cpu_to_le64(FW_DYNAMIC_INFO_VERSION); dinfo.next_mode = cpu_to_le64(FW_DYNAMIC_INFO_NEXT_MODE_S); dinfo.next_addr = cpu_to_le64(kernel_entry); } dinfo.options = 0; dinfo.boot_hart = 0; dinfo_len = sizeof(dinfo); /** * copy the dynamic firmware info. This information is specific to * OpenSBI but doesn't break any other firmware as long as they don't * expect any certain value in "a2" register. */ if (dinfo_len > (rom_size - reset_vec_size)) { error_report("not enough space to store dynamic firmware info"); exit(1); } rom_add_blob_fixed_as("mrom.finfo", &dinfo, dinfo_len, rom_base + reset_vec_size, &address_space_memory); } void riscv_setup_rom_reset_vec(MachineState *machine, RISCVHartArrayState *harts, hwaddr start_addr, hwaddr rom_base, hwaddr rom_size, uint64_t kernel_entry, uint32_t fdt_load_addr, void *fdt) { int i; uint32_t start_addr_hi32 = 0x00000000; if (!riscv_is_32bit(harts)) { start_addr_hi32 = start_addr >> 32; } /* reset vector */ uint32_t reset_vec[10] = { 0x00000297, /* 1: auipc t0, %pcrel_hi(fw_dyn) */ 0x02828613, /* addi a2, t0, %pcrel_lo(1b) */ 0xf1402573, /* csrr a0, mhartid */ 0, 0, 0x00028067, /* jr t0 */ start_addr, /* start: .dword */ start_addr_hi32, fdt_load_addr, /* fdt_laddr: .dword */ 0x00000000, /* fw_dyn: */ }; if (riscv_is_32bit(harts)) { reset_vec[3] = 0x0202a583; /* lw a1, 32(t0) */ reset_vec[4] = 0x0182a283; /* lw t0, 24(t0) */ } else { reset_vec[3] = 0x0202b583; /* ld a1, 32(t0) */ reset_vec[4] = 0x0182b283; /* ld t0, 24(t0) */ } /* copy in the reset vector in little_endian byte order */ for (i = 0; i < ARRAY_SIZE(reset_vec); i++) { reset_vec[i] = cpu_to_le32(reset_vec[i]); } rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec), rom_base, &address_space_memory); riscv_rom_copy_firmware_info(machine, rom_base, rom_size, sizeof(reset_vec), kernel_entry); return; } void riscv_setup_direct_kernel(hwaddr kernel_addr, hwaddr fdt_addr) { CPUState *cs; for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) { RISCVCPU *riscv_cpu = RISCV_CPU(cs); riscv_cpu->env.kernel_addr = kernel_addr; riscv_cpu->env.fdt_addr = fdt_addr; } }