/* * QEMU Leon3 System Emulator * * Copyright (c) 2010-2019 AdaCore * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qemu/units.h" #include "qemu/error-report.h" #include "qapi/error.h" #include "qemu/datadir.h" #include "cpu.h" #include "hw/irq.h" #include "qemu/timer.h" #include "hw/ptimer.h" #include "hw/qdev-properties.h" #include "sysemu/sysemu.h" #include "sysemu/qtest.h" #include "sysemu/reset.h" #include "hw/boards.h" #include "hw/loader.h" #include "elf.h" #include "trace.h" #include "hw/sparc/grlib.h" #include "hw/misc/grlib_ahb_apb_pnp.h" /* Default system clock. */ #define CPU_CLK (40 * 1000 * 1000) #define LEON3_PROM_FILENAME "u-boot.bin" #define LEON3_PROM_OFFSET (0x00000000) #define LEON3_RAM_OFFSET (0x40000000) #define LEON3_UART_OFFSET (0x80000100) #define LEON3_UART_IRQ (3) #define LEON3_IRQMP_OFFSET (0x80000200) #define LEON3_TIMER_OFFSET (0x80000300) #define LEON3_TIMER_IRQ (6) #define LEON3_TIMER_COUNT (2) #define LEON3_APB_PNP_OFFSET (0x800FF000) #define LEON3_AHB_PNP_OFFSET (0xFFFFF000) typedef struct ResetData { SPARCCPU *cpu; uint32_t entry; /* save kernel entry in case of reset */ target_ulong sp; /* initial stack pointer */ } ResetData; static uint32_t *gen_store_u32(uint32_t *code, hwaddr addr, uint32_t val) { stl_p(code++, 0x82100000); /* mov %g0, %g1 */ stl_p(code++, 0x84100000); /* mov %g0, %g2 */ stl_p(code++, 0x03000000 + extract32(addr, 10, 22)); /* sethi %hi(addr), %g1 */ stl_p(code++, 0x82106000 + extract32(addr, 0, 10)); /* or %g1, addr, %g1 */ stl_p(code++, 0x05000000 + extract32(val, 10, 22)); /* sethi %hi(val), %g2 */ stl_p(code++, 0x8410a000 + extract32(val, 0, 10)); /* or %g2, val, %g2 */ stl_p(code++, 0xc4204000); /* st %g2, [ %g1 ] */ return code; } /* * When loading a kernel in RAM the machine is expected to be in a different * state (eg: initialized by the bootloader). This little code reproduces * this behavior. */ static void write_bootloader(CPUSPARCState *env, uint8_t *base, hwaddr kernel_addr) { uint32_t *p = (uint32_t *) base; /* Initialize the UARTs */ /* *UART_CONTROL = UART_RECEIVE_ENABLE | UART_TRANSMIT_ENABLE; */ p = gen_store_u32(p, 0x80000108, 3); /* Initialize the TIMER 0 */ /* *GPTIMER_SCALER_RELOAD = 40 - 1; */ p = gen_store_u32(p, 0x80000304, 39); /* *GPTIMER0_COUNTER_RELOAD = 0xFFFE; */ p = gen_store_u32(p, 0x80000314, 0xFFFFFFFE); /* *GPTIMER0_CONFIG = GPTIMER_ENABLE | GPTIMER_RESTART; */ p = gen_store_u32(p, 0x80000318, 3); /* JUMP to the entry point */ stl_p(p++, 0x82100000); /* mov %g0, %g1 */ stl_p(p++, 0x03000000 + extract32(kernel_addr, 10, 22)); /* sethi %hi(kernel_addr), %g1 */ stl_p(p++, 0x82106000 + extract32(kernel_addr, 0, 10)); /* or kernel_addr, %g1 */ stl_p(p++, 0x81c04000); /* jmp %g1 */ stl_p(p++, 0x01000000); /* nop */ } static void main_cpu_reset(void *opaque) { ResetData *s = (ResetData *)opaque; CPUState *cpu = CPU(s->cpu); CPUSPARCState *env = &s->cpu->env; cpu_reset(cpu); cpu->halted = 0; env->pc = s->entry; env->npc = s->entry + 4; env->regbase[6] = s->sp; } static void leon3_cache_control_int(CPUSPARCState *env) { uint32_t state = 0; if (env->cache_control & CACHE_CTRL_IF) { /* Instruction cache state */ state = env->cache_control & CACHE_STATE_MASK; if (state == CACHE_ENABLED) { state = CACHE_FROZEN; trace_int_helper_icache_freeze(); } env->cache_control &= ~CACHE_STATE_MASK; env->cache_control |= state; } if (env->cache_control & CACHE_CTRL_DF) { /* Data cache state */ state = (env->cache_control >> 2) & CACHE_STATE_MASK; if (state == CACHE_ENABLED) { state = CACHE_FROZEN; trace_int_helper_dcache_freeze(); } env->cache_control &= ~(CACHE_STATE_MASK << 2); env->cache_control |= (state << 2); } } static void leon3_irq_ack(void *irq_manager, int intno) { grlib_irqmp_ack((DeviceState *)irq_manager, intno); } /* * This device assumes that the incoming 'level' value on the * qemu_irq is the interrupt number, not just a simple 0/1 level. */ static void leon3_set_pil_in(void *opaque, int n, int level) { CPUSPARCState *env = opaque; uint32_t pil_in = level; CPUState *cs; assert(env != NULL); env->pil_in = pil_in; if (env->pil_in && (env->interrupt_index == 0 || (env->interrupt_index & ~15) == TT_EXTINT)) { unsigned int i; for (i = 15; i > 0; i--) { if (env->pil_in & (1 << i)) { int old_interrupt = env->interrupt_index; env->interrupt_index = TT_EXTINT | i; if (old_interrupt != env->interrupt_index) { cs = env_cpu(env); trace_leon3_set_irq(i); cpu_interrupt(cs, CPU_INTERRUPT_HARD); } break; } } } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) { cs = env_cpu(env); trace_leon3_reset_irq(env->interrupt_index & 15); env->interrupt_index = 0; cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); } } static void leon3_irq_manager(CPUSPARCState *env, void *irq_manager, int intno) { leon3_irq_ack(irq_manager, intno); leon3_cache_control_int(env); } static void leon3_generic_hw_init(MachineState *machine) { ram_addr_t ram_size = machine->ram_size; const char *bios_name = machine->firmware ?: LEON3_PROM_FILENAME; const char *kernel_filename = machine->kernel_filename; SPARCCPU *cpu; CPUSPARCState *env; MemoryRegion *address_space_mem = get_system_memory(); MemoryRegion *prom = g_new(MemoryRegion, 1); int ret; char *filename; int bios_size; int prom_size; ResetData *reset_info; DeviceState *dev, *irqmpdev; int i; AHBPnp *ahb_pnp; APBPnp *apb_pnp; /* Init CPU */ cpu = SPARC_CPU(cpu_create(machine->cpu_type)); env = &cpu->env; cpu_sparc_set_id(env, 0); /* Reset data */ reset_info = g_new0(ResetData, 1); reset_info->cpu = cpu; reset_info->sp = LEON3_RAM_OFFSET + ram_size; qemu_register_reset(main_cpu_reset, reset_info); ahb_pnp = GRLIB_AHB_PNP(qdev_new(TYPE_GRLIB_AHB_PNP)); sysbus_realize_and_unref(SYS_BUS_DEVICE(ahb_pnp), &error_fatal); sysbus_mmio_map(SYS_BUS_DEVICE(ahb_pnp), 0, LEON3_AHB_PNP_OFFSET); grlib_ahb_pnp_add_entry(ahb_pnp, 0, 0, GRLIB_VENDOR_GAISLER, GRLIB_LEON3_DEV, GRLIB_AHB_MASTER, GRLIB_CPU_AREA); apb_pnp = GRLIB_APB_PNP(qdev_new(TYPE_GRLIB_APB_PNP)); sysbus_realize_and_unref(SYS_BUS_DEVICE(apb_pnp), &error_fatal); sysbus_mmio_map(SYS_BUS_DEVICE(apb_pnp), 0, LEON3_APB_PNP_OFFSET); grlib_ahb_pnp_add_entry(ahb_pnp, LEON3_APB_PNP_OFFSET, 0xFFF, GRLIB_VENDOR_GAISLER, GRLIB_APBMST_DEV, GRLIB_AHB_SLAVE, GRLIB_AHBMEM_AREA); /* Allocate IRQ manager */ irqmpdev = qdev_new(TYPE_GRLIB_IRQMP); qdev_init_gpio_in_named_with_opaque(DEVICE(cpu), leon3_set_pil_in, env, "pil", 1); qdev_connect_gpio_out_named(irqmpdev, "grlib-irq", 0, qdev_get_gpio_in_named(DEVICE(cpu), "pil", 0)); sysbus_realize_and_unref(SYS_BUS_DEVICE(irqmpdev), &error_fatal); sysbus_mmio_map(SYS_BUS_DEVICE(irqmpdev), 0, LEON3_IRQMP_OFFSET); env->irq_manager = irqmpdev; env->qemu_irq_ack = leon3_irq_manager; grlib_apb_pnp_add_entry(apb_pnp, LEON3_IRQMP_OFFSET, 0xFFF, GRLIB_VENDOR_GAISLER, GRLIB_IRQMP_DEV, 2, 0, GRLIB_APBIO_AREA); /* Allocate RAM */ if (ram_size > 1 * GiB) { error_report("Too much memory for this machine: %" PRId64 "MB," " maximum 1G", ram_size / MiB); exit(1); } memory_region_add_subregion(address_space_mem, LEON3_RAM_OFFSET, machine->ram); /* Allocate BIOS */ prom_size = 8 * MiB; memory_region_init_rom(prom, NULL, "Leon3.bios", prom_size, &error_fatal); memory_region_add_subregion(address_space_mem, LEON3_PROM_OFFSET, prom); /* Load boot prom */ filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); if (filename) { bios_size = get_image_size(filename); } else { bios_size = -1; } if (bios_size > prom_size) { error_report("could not load prom '%s': file too big", filename); exit(1); } if (bios_size > 0) { ret = load_image_targphys(filename, LEON3_PROM_OFFSET, bios_size); if (ret < 0 || ret > prom_size) { error_report("could not load prom '%s'", filename); exit(1); } } else if (kernel_filename == NULL && !qtest_enabled()) { error_report("Can't read bios image '%s'", filename ? filename : LEON3_PROM_FILENAME); exit(1); } g_free(filename); /* Can directly load an application. */ if (kernel_filename != NULL) { long kernel_size; uint64_t entry; kernel_size = load_elf(kernel_filename, NULL, NULL, NULL, &entry, NULL, NULL, NULL, 1 /* big endian */, EM_SPARC, 0, 0); if (kernel_size < 0) { kernel_size = load_uimage(kernel_filename, NULL, &entry, NULL, NULL, NULL); } if (kernel_size < 0) { error_report("could not load kernel '%s'", kernel_filename); exit(1); } if (bios_size <= 0) { /* * If there is no bios/monitor just start the application but put * the machine in an initialized state through a little * bootloader. */ uint8_t *bootloader_entry; bootloader_entry = memory_region_get_ram_ptr(prom); write_bootloader(env, bootloader_entry, entry); env->pc = LEON3_PROM_OFFSET; env->npc = LEON3_PROM_OFFSET + 4; reset_info->entry = LEON3_PROM_OFFSET; } } /* Allocate timers */ dev = qdev_new(TYPE_GRLIB_GPTIMER); qdev_prop_set_uint32(dev, "nr-timers", LEON3_TIMER_COUNT); qdev_prop_set_uint32(dev, "frequency", CPU_CLK); qdev_prop_set_uint32(dev, "irq-line", LEON3_TIMER_IRQ); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, LEON3_TIMER_OFFSET); for (i = 0; i < LEON3_TIMER_COUNT; i++) { sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, qdev_get_gpio_in(irqmpdev, LEON3_TIMER_IRQ + i)); } grlib_apb_pnp_add_entry(apb_pnp, LEON3_TIMER_OFFSET, 0xFFF, GRLIB_VENDOR_GAISLER, GRLIB_GPTIMER_DEV, 0, LEON3_TIMER_IRQ, GRLIB_APBIO_AREA); /* Allocate uart */ dev = qdev_new(TYPE_GRLIB_APB_UART); qdev_prop_set_chr(dev, "chrdev", serial_hd(0)); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, LEON3_UART_OFFSET); sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(irqmpdev, LEON3_UART_IRQ)); grlib_apb_pnp_add_entry(apb_pnp, LEON3_UART_OFFSET, 0xFFF, GRLIB_VENDOR_GAISLER, GRLIB_APBUART_DEV, 1, LEON3_UART_IRQ, GRLIB_APBIO_AREA); } static void leon3_generic_machine_init(MachineClass *mc) { mc->desc = "Leon-3 generic"; mc->init = leon3_generic_hw_init; mc->default_cpu_type = SPARC_CPU_TYPE_NAME("LEON3"); mc->default_ram_id = "leon3.ram"; } DEFINE_MACHINE("leon3_generic", leon3_generic_machine_init)