/* * QEMU Sun4u/Sun4v System Emulator * * Copyright (c) 2005 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qemu/units.h" #include "qemu/error-report.h" #include "qapi/error.h" #include "qemu/datadir.h" #include "cpu.h" #include "hw/pci/pci.h" #include "hw/pci/pci_bridge.h" #include "hw/pci/pci_bus.h" #include "hw/pci/pci_host.h" #include "hw/qdev-properties.h" #include "hw/pci-host/sabre.h" #include "hw/char/serial.h" #include "hw/char/parallel.h" #include "hw/rtc/m48t59.h" #include "migration/vmstate.h" #include "hw/input/i8042.h" #include "hw/block/fdc.h" #include "net/net.h" #include "qemu/timer.h" #include "sysemu/runstate.h" #include "sysemu/sysemu.h" #include "hw/boards.h" #include "hw/nvram/sun_nvram.h" #include "hw/nvram/chrp_nvram.h" #include "hw/sparc/sparc64.h" #include "hw/nvram/fw_cfg.h" #include "hw/sysbus.h" #include "hw/ide/pci.h" #include "hw/loader.h" #include "hw/fw-path-provider.h" #include "elf.h" #include "trace.h" #include "qom/object.h" #define KERNEL_LOAD_ADDR 0x00404000 #define CMDLINE_ADDR 0x003ff000 #define PROM_SIZE_MAX (4 * MiB) #define PROM_VADDR 0x000ffd00000ULL #define PBM_SPECIAL_BASE 0x1fe00000000ULL #define PBM_MEM_BASE 0x1ff00000000ULL #define PBM_PCI_IO_BASE (PBM_SPECIAL_BASE + 0x02000000ULL) #define PROM_FILENAME "openbios-sparc64" #define NVRAM_SIZE 0x2000 #define MAX_IDE_BUS 2 #define BIOS_CFG_IOPORT 0x510 #define FW_CFG_SPARC64_WIDTH (FW_CFG_ARCH_LOCAL + 0x00) #define FW_CFG_SPARC64_HEIGHT (FW_CFG_ARCH_LOCAL + 0x01) #define FW_CFG_SPARC64_DEPTH (FW_CFG_ARCH_LOCAL + 0x02) #define IVEC_MAX 0x40 struct hwdef { uint16_t machine_id; uint64_t prom_addr; uint64_t console_serial_base; }; struct EbusState { /*< private >*/ PCIDevice parent_obj; ISABus *isa_bus; qemu_irq isa_bus_irqs[ISA_NUM_IRQS]; uint64_t console_serial_base; MemoryRegion bar0; MemoryRegion bar1; }; #define TYPE_EBUS "ebus" OBJECT_DECLARE_SIMPLE_TYPE(EbusState, EBUS) const char *fw_cfg_arch_key_name(uint16_t key) { static const struct { uint16_t key; const char *name; } fw_cfg_arch_wellknown_keys[] = { {FW_CFG_SPARC64_WIDTH, "width"}, {FW_CFG_SPARC64_HEIGHT, "height"}, {FW_CFG_SPARC64_DEPTH, "depth"}, }; for (size_t i = 0; i < ARRAY_SIZE(fw_cfg_arch_wellknown_keys); i++) { if (fw_cfg_arch_wellknown_keys[i].key == key) { return fw_cfg_arch_wellknown_keys[i].name; } } return NULL; } static void fw_cfg_boot_set(void *opaque, const char *boot_device, Error **errp) { fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]); } static int sun4u_NVRAM_set_params(Nvram *nvram, uint16_t NVRAM_size, const char *arch, ram_addr_t RAM_size, const char *boot_devices, uint32_t kernel_image, uint32_t kernel_size, const char *cmdline, uint32_t initrd_image, uint32_t initrd_size, uint32_t NVRAM_image, int width, int height, int depth, const uint8_t *macaddr) { unsigned int i; int sysp_end; uint8_t image[0x1ff0]; NvramClass *k = NVRAM_GET_CLASS(nvram); memset(image, '\0', sizeof(image)); /* OpenBIOS nvram variables partition */ sysp_end = chrp_nvram_create_system_partition(image, 0, 0x1fd0); /* Free space partition */ chrp_nvram_create_free_partition(&image[sysp_end], 0x1fd0 - sysp_end); Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 0x80); for (i = 0; i < sizeof(image); i++) { (k->write)(nvram, i, image[i]); } return 0; } static uint64_t sun4u_load_kernel(const char *kernel_filename, const char *initrd_filename, ram_addr_t RAM_size, uint64_t *initrd_size, uint64_t *initrd_addr, uint64_t *kernel_addr, uint64_t *kernel_entry) { int linux_boot; unsigned int i; long kernel_size; uint8_t *ptr; uint64_t kernel_top = 0; linux_boot = (kernel_filename != NULL); kernel_size = 0; if (linux_boot) { int bswap_needed; #ifdef BSWAP_NEEDED bswap_needed = 1; #else bswap_needed = 0; #endif kernel_size = load_elf(kernel_filename, NULL, NULL, NULL, kernel_entry, kernel_addr, &kernel_top, NULL, 1, EM_SPARCV9, 0, 0); if (kernel_size < 0) { *kernel_addr = KERNEL_LOAD_ADDR; *kernel_entry = KERNEL_LOAD_ADDR; kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR, RAM_size - KERNEL_LOAD_ADDR, bswap_needed, TARGET_PAGE_SIZE); } if (kernel_size < 0) { kernel_size = load_image_targphys(kernel_filename, KERNEL_LOAD_ADDR, RAM_size - KERNEL_LOAD_ADDR); } if (kernel_size < 0) { error_report("could not load kernel '%s'", kernel_filename); exit(1); } /* load initrd above kernel */ *initrd_size = 0; if (initrd_filename && kernel_top) { *initrd_addr = TARGET_PAGE_ALIGN(kernel_top); *initrd_size = load_image_targphys(initrd_filename, *initrd_addr, RAM_size - *initrd_addr); if ((int)*initrd_size < 0) { error_report("could not load initial ram disk '%s'", initrd_filename); exit(1); } } if (*initrd_size > 0) { for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) { ptr = rom_ptr(*kernel_addr + i, 32); if (ptr && ldl_p(ptr + 8) == 0x48647253) { /* HdrS */ stl_p(ptr + 24, *initrd_addr + *kernel_addr); stl_p(ptr + 28, *initrd_size); break; } } } } return kernel_size; } typedef struct ResetData { SPARCCPU *cpu; uint64_t prom_addr; } ResetData; #define TYPE_SUN4U_POWER "power" OBJECT_DECLARE_SIMPLE_TYPE(PowerDevice, SUN4U_POWER) struct PowerDevice { SysBusDevice parent_obj; MemoryRegion power_mmio; }; /* Power */ static uint64_t power_mem_read(void *opaque, hwaddr addr, unsigned size) { return 0; } static void power_mem_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { /* According to a real Ultra 5, bit 24 controls the power */ if (val & 0x1000000) { qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); } } static const MemoryRegionOps power_mem_ops = { .read = power_mem_read, .write = power_mem_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, }, }; static void power_realize(DeviceState *dev, Error **errp) { PowerDevice *d = SUN4U_POWER(dev); SysBusDevice *sbd = SYS_BUS_DEVICE(dev); memory_region_init_io(&d->power_mmio, OBJECT(dev), &power_mem_ops, d, "power", sizeof(uint32_t)); sysbus_init_mmio(sbd, &d->power_mmio); } static void power_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = power_realize; } static const TypeInfo power_info = { .name = TYPE_SUN4U_POWER, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(PowerDevice), .class_init = power_class_init, }; static void ebus_isa_irq_handler(void *opaque, int n, int level) { EbusState *s = EBUS(opaque); qemu_irq irq = s->isa_bus_irqs[n]; /* Pass ISA bus IRQs onto their gpio equivalent */ trace_ebus_isa_irq_handler(n, level); if (irq) { qemu_set_irq(irq, level); } } /* EBUS (Eight bit bus) bridge */ static void ebus_realize(PCIDevice *pci_dev, Error **errp) { EbusState *s = EBUS(pci_dev); ISADevice *isa_dev; SysBusDevice *sbd; DeviceState *dev; qemu_irq *isa_irq; DriveInfo *fd[MAX_FD]; int i; s->isa_bus = isa_bus_new(DEVICE(pci_dev), get_system_memory(), pci_address_space_io(pci_dev), errp); if (!s->isa_bus) { error_setg(errp, "unable to instantiate EBUS ISA bus"); return; } /* ISA bus */ isa_irq = qemu_allocate_irqs(ebus_isa_irq_handler, s, ISA_NUM_IRQS); isa_bus_irqs(s->isa_bus, isa_irq); qdev_init_gpio_out_named(DEVICE(s), s->isa_bus_irqs, "isa-irq", ISA_NUM_IRQS); /* Serial ports */ i = 0; if (s->console_serial_base) { serial_mm_init(pci_address_space(pci_dev), s->console_serial_base, 0, NULL, 115200, serial_hd(i), DEVICE_BIG_ENDIAN); i++; } serial_hds_isa_init(s->isa_bus, i, MAX_ISA_SERIAL_PORTS); /* Parallel ports */ parallel_hds_isa_init(s->isa_bus, MAX_PARALLEL_PORTS); /* Keyboard */ isa_create_simple(s->isa_bus, "i8042"); /* Floppy */ for (i = 0; i < MAX_FD; i++) { fd[i] = drive_get(IF_FLOPPY, 0, i); } isa_dev = isa_new(TYPE_ISA_FDC); dev = DEVICE(isa_dev); qdev_prop_set_uint32(dev, "dma", -1); isa_realize_and_unref(isa_dev, s->isa_bus, &error_fatal); isa_fdc_init_drives(isa_dev, fd); /* Power */ dev = qdev_new(TYPE_SUN4U_POWER); sbd = SYS_BUS_DEVICE(dev); sysbus_realize_and_unref(sbd, &error_fatal); memory_region_add_subregion(pci_address_space_io(pci_dev), 0x7240, sysbus_mmio_get_region(sbd, 0)); /* PCI */ pci_dev->config[0x04] = 0x06; // command = bus master, pci mem pci_dev->config[0x05] = 0x00; pci_dev->config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error pci_dev->config[0x07] = 0x03; // status = medium devsel pci_dev->config[0x09] = 0x00; // programming i/f pci_dev->config[0x0D] = 0x0a; // latency_timer memory_region_init_alias(&s->bar0, OBJECT(s), "bar0", get_system_io(), 0, 0x1000000); pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar0); memory_region_init_alias(&s->bar1, OBJECT(s), "bar1", get_system_io(), 0, 0x8000); pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->bar1); } static Property ebus_properties[] = { DEFINE_PROP_UINT64("console-serial-base", EbusState, console_serial_base, 0), DEFINE_PROP_END_OF_LIST(), }; static void ebus_class_init(ObjectClass *klass, void *data) { PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); DeviceClass *dc = DEVICE_CLASS(klass); k->realize = ebus_realize; k->vendor_id = PCI_VENDOR_ID_SUN; k->device_id = PCI_DEVICE_ID_SUN_EBUS; k->revision = 0x01; k->class_id = PCI_CLASS_BRIDGE_OTHER; device_class_set_props(dc, ebus_properties); } static const TypeInfo ebus_info = { .name = TYPE_EBUS, .parent = TYPE_PCI_DEVICE, .class_init = ebus_class_init, .instance_size = sizeof(EbusState), .interfaces = (InterfaceInfo[]) { { INTERFACE_CONVENTIONAL_PCI_DEVICE }, { }, }, }; #define TYPE_OPENPROM "openprom" typedef struct PROMState PROMState; DECLARE_INSTANCE_CHECKER(PROMState, OPENPROM, TYPE_OPENPROM) struct PROMState { SysBusDevice parent_obj; MemoryRegion prom; }; static uint64_t translate_prom_address(void *opaque, uint64_t addr) { hwaddr *base_addr = (hwaddr *)opaque; return addr + *base_addr - PROM_VADDR; } /* Boot PROM (OpenBIOS) */ static void prom_init(hwaddr addr, const char *bios_name) { DeviceState *dev; SysBusDevice *s; char *filename; int ret; dev = qdev_new(TYPE_OPENPROM); s = SYS_BUS_DEVICE(dev); sysbus_realize_and_unref(s, &error_fatal); sysbus_mmio_map(s, 0, addr); /* load boot prom */ if (bios_name == NULL) { bios_name = PROM_FILENAME; } filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); if (filename) { ret = load_elf(filename, NULL, translate_prom_address, &addr, NULL, NULL, NULL, NULL, 1, EM_SPARCV9, 0, 0); if (ret < 0 || ret > PROM_SIZE_MAX) { ret = load_image_targphys(filename, addr, PROM_SIZE_MAX); } g_free(filename); } else { ret = -1; } if (ret < 0 || ret > PROM_SIZE_MAX) { error_report("could not load prom '%s'", bios_name); exit(1); } } static void prom_realize(DeviceState *ds, Error **errp) { PROMState *s = OPENPROM(ds); SysBusDevice *dev = SYS_BUS_DEVICE(ds); Error *local_err = NULL; memory_region_init_ram_nomigrate(&s->prom, OBJECT(ds), "sun4u.prom", PROM_SIZE_MAX, &local_err); if (local_err) { error_propagate(errp, local_err); return; } vmstate_register_ram_global(&s->prom); memory_region_set_readonly(&s->prom, true); sysbus_init_mmio(dev, &s->prom); } static Property prom_properties[] = { {/* end of property list */}, }; static void prom_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); device_class_set_props(dc, prom_properties); dc->realize = prom_realize; } static const TypeInfo prom_info = { .name = TYPE_OPENPROM, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(PROMState), .class_init = prom_class_init, }; #define TYPE_SUN4U_MEMORY "memory" typedef struct RamDevice RamDevice; DECLARE_INSTANCE_CHECKER(RamDevice, SUN4U_RAM, TYPE_SUN4U_MEMORY) struct RamDevice { SysBusDevice parent_obj; MemoryRegion ram; uint64_t size; }; /* System RAM */ static void ram_realize(DeviceState *dev, Error **errp) { RamDevice *d = SUN4U_RAM(dev); SysBusDevice *sbd = SYS_BUS_DEVICE(dev); memory_region_init_ram_nomigrate(&d->ram, OBJECT(d), "sun4u.ram", d->size, &error_fatal); vmstate_register_ram_global(&d->ram); sysbus_init_mmio(sbd, &d->ram); } static void ram_init(hwaddr addr, ram_addr_t RAM_size) { DeviceState *dev; SysBusDevice *s; RamDevice *d; /* allocate RAM */ dev = qdev_new(TYPE_SUN4U_MEMORY); s = SYS_BUS_DEVICE(dev); d = SUN4U_RAM(dev); d->size = RAM_size; sysbus_realize_and_unref(s, &error_fatal); sysbus_mmio_map(s, 0, addr); } static Property ram_properties[] = { DEFINE_PROP_UINT64("size", RamDevice, size, 0), DEFINE_PROP_END_OF_LIST(), }; static void ram_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = ram_realize; device_class_set_props(dc, ram_properties); } static const TypeInfo ram_info = { .name = TYPE_SUN4U_MEMORY, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(RamDevice), .class_init = ram_class_init, }; static void sun4uv_init(MemoryRegion *address_space_mem, MachineState *machine, const struct hwdef *hwdef) { SPARCCPU *cpu; Nvram *nvram; unsigned int i; uint64_t initrd_addr, initrd_size, kernel_addr, kernel_size, kernel_entry; SabreState *sabre; PCIBus *pci_bus, *pci_busA, *pci_busB; PCIDevice *ebus, *pci_dev; SysBusDevice *s; DeviceState *iommu, *dev; FWCfgState *fw_cfg; NICInfo *nd; MACAddr macaddr; bool onboard_nic; /* init CPUs */ cpu = sparc64_cpu_devinit(machine->cpu_type, hwdef->prom_addr); /* IOMMU */ iommu = qdev_new(TYPE_SUN4U_IOMMU); sysbus_realize_and_unref(SYS_BUS_DEVICE(iommu), &error_fatal); /* set up devices */ ram_init(0, machine->ram_size); prom_init(hwdef->prom_addr, machine->firmware); /* Init sabre (PCI host bridge) */ sabre = SABRE(qdev_new(TYPE_SABRE)); qdev_prop_set_uint64(DEVICE(sabre), "special-base", PBM_SPECIAL_BASE); qdev_prop_set_uint64(DEVICE(sabre), "mem-base", PBM_MEM_BASE); object_property_set_link(OBJECT(sabre), "iommu", OBJECT(iommu), &error_abort); sysbus_realize_and_unref(SYS_BUS_DEVICE(sabre), &error_fatal); /* sabre_config */ sysbus_mmio_map(SYS_BUS_DEVICE(sabre), 0, PBM_SPECIAL_BASE); /* PCI configuration space */ sysbus_mmio_map(SYS_BUS_DEVICE(sabre), 1, PBM_SPECIAL_BASE + 0x1000000ULL); /* pci_ioport */ sysbus_mmio_map(SYS_BUS_DEVICE(sabre), 2, PBM_SPECIAL_BASE + 0x2000000ULL); /* Wire up PCI interrupts to CPU */ for (i = 0; i < IVEC_MAX; i++) { qdev_connect_gpio_out_named(DEVICE(sabre), "ivec-irq", i, qdev_get_gpio_in_named(DEVICE(cpu), "ivec-irq", i)); } pci_bus = PCI_HOST_BRIDGE(sabre)->bus; pci_busA = pci_bridge_get_sec_bus(sabre->bridgeA); pci_busB = pci_bridge_get_sec_bus(sabre->bridgeB); /* Only in-built Simba APBs can exist on the root bus, slot 0 on busA is reserved (leaving no slots free after on-board devices) however slots 0-3 are free on busB */ pci_bus->slot_reserved_mask = 0xfffffffc; pci_busA->slot_reserved_mask = 0xfffffff1; pci_busB->slot_reserved_mask = 0xfffffff0; ebus = pci_new_multifunction(PCI_DEVFN(1, 0), true, TYPE_EBUS); qdev_prop_set_uint64(DEVICE(ebus), "console-serial-base", hwdef->console_serial_base); pci_realize_and_unref(ebus, pci_busA, &error_fatal); /* Wire up "well-known" ISA IRQs to PBM legacy obio IRQs */ qdev_connect_gpio_out_named(DEVICE(ebus), "isa-irq", 7, qdev_get_gpio_in_named(DEVICE(sabre), "pbm-irq", OBIO_LPT_IRQ)); qdev_connect_gpio_out_named(DEVICE(ebus), "isa-irq", 6, qdev_get_gpio_in_named(DEVICE(sabre), "pbm-irq", OBIO_FDD_IRQ)); qdev_connect_gpio_out_named(DEVICE(ebus), "isa-irq", 1, qdev_get_gpio_in_named(DEVICE(sabre), "pbm-irq", OBIO_KBD_IRQ)); qdev_connect_gpio_out_named(DEVICE(ebus), "isa-irq", 12, qdev_get_gpio_in_named(DEVICE(sabre), "pbm-irq", OBIO_MSE_IRQ)); qdev_connect_gpio_out_named(DEVICE(ebus), "isa-irq", 4, qdev_get_gpio_in_named(DEVICE(sabre), "pbm-irq", OBIO_SER_IRQ)); switch (vga_interface_type) { case VGA_STD: pci_create_simple(pci_busA, PCI_DEVFN(2, 0), "VGA"); break; case VGA_NONE: break; default: abort(); /* Should not happen - types are checked in vl.c already */ } memset(&macaddr, 0, sizeof(MACAddr)); onboard_nic = false; for (i = 0; i < nb_nics; i++) { PCIBus *bus; nd = &nd_table[i]; if (!nd->model || strcmp(nd->model, "sunhme") == 0) { if (!onboard_nic) { pci_dev = pci_new_multifunction(PCI_DEVFN(1, 1), true, "sunhme"); bus = pci_busA; memcpy(&macaddr, &nd->macaddr.a, sizeof(MACAddr)); onboard_nic = true; } else { pci_dev = pci_new(-1, "sunhme"); bus = pci_busB; } } else { pci_dev = pci_new(-1, nd->model); bus = pci_busB; } dev = &pci_dev->qdev; qdev_set_nic_properties(dev, nd); pci_realize_and_unref(pci_dev, bus, &error_fatal); } /* If we don't have an onboard NIC, grab a default MAC address so that * we have a valid machine id */ if (!onboard_nic) { qemu_macaddr_default_if_unset(&macaddr); } pci_dev = pci_new(PCI_DEVFN(3, 0), "cmd646-ide"); qdev_prop_set_uint32(&pci_dev->qdev, "secondary", 1); pci_realize_and_unref(pci_dev, pci_busA, &error_fatal); pci_ide_create_devs(pci_dev); /* Map NVRAM into I/O (ebus) space */ dev = qdev_new("sysbus-m48t59"); qdev_prop_set_int32(dev, "base-year", 1968); s = SYS_BUS_DEVICE(dev); sysbus_realize_and_unref(s, &error_fatal); memory_region_add_subregion(pci_address_space_io(ebus), 0x2000, sysbus_mmio_get_region(s, 0)); nvram = NVRAM(dev); initrd_size = 0; initrd_addr = 0; kernel_size = sun4u_load_kernel(machine->kernel_filename, machine->initrd_filename, machine->ram_size, &initrd_size, &initrd_addr, &kernel_addr, &kernel_entry); sun4u_NVRAM_set_params(nvram, NVRAM_SIZE, "Sun4u", machine->ram_size, machine->boot_order, kernel_addr, kernel_size, machine->kernel_cmdline, initrd_addr, initrd_size, /* XXX: need an option to load a NVRAM image */ 0, graphic_width, graphic_height, graphic_depth, (uint8_t *)&macaddr); dev = qdev_new(TYPE_FW_CFG_IO); qdev_prop_set_bit(dev, "dma_enabled", false); object_property_add_child(OBJECT(ebus), TYPE_FW_CFG, OBJECT(dev)); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); memory_region_add_subregion(pci_address_space_io(ebus), BIOS_CFG_IOPORT, &FW_CFG_IO(dev)->comb_iomem); fw_cfg = FW_CFG(dev); fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)machine->smp.cpus); fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)machine->smp.max_cpus); fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)machine->ram_size); fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id); fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_ADDR, kernel_entry); fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); if (machine->kernel_cmdline) { fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(machine->kernel_cmdline) + 1); fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline); } else { fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0); } fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]); fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_WIDTH, graphic_width); fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_HEIGHT, graphic_height); fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_DEPTH, graphic_depth); qemu_register_boot_set(fw_cfg_boot_set, fw_cfg); } enum { sun4u_id = 0, sun4v_id = 64, }; /* * Implementation of an interface to adjust firmware path * for the bootindex property handling. */ static char *sun4u_fw_dev_path(FWPathProvider *p, BusState *bus, DeviceState *dev) { PCIDevice *pci; if (!strcmp(object_get_typename(OBJECT(dev)), "pbm-bridge")) { pci = PCI_DEVICE(dev); if (PCI_FUNC(pci->devfn)) { return g_strdup_printf("pci@%x,%x", PCI_SLOT(pci->devfn), PCI_FUNC(pci->devfn)); } else { return g_strdup_printf("pci@%x", PCI_SLOT(pci->devfn)); } } if (!strcmp(object_get_typename(OBJECT(dev)), "ide-hd")) { return g_strdup("disk"); } if (!strcmp(object_get_typename(OBJECT(dev)), "ide-cd")) { return g_strdup("cdrom"); } if (!strcmp(object_get_typename(OBJECT(dev)), "virtio-blk-device")) { return g_strdup("disk"); } return NULL; } static const struct hwdef hwdefs[] = { /* Sun4u generic PC-like machine */ { .machine_id = sun4u_id, .prom_addr = 0x1fff0000000ULL, .console_serial_base = 0, }, /* Sun4v generic PC-like machine */ { .machine_id = sun4v_id, .prom_addr = 0x1fff0000000ULL, .console_serial_base = 0, }, }; /* Sun4u hardware initialisation */ static void sun4u_init(MachineState *machine) { sun4uv_init(get_system_memory(), machine, &hwdefs[0]); } /* Sun4v hardware initialisation */ static void sun4v_init(MachineState *machine) { sun4uv_init(get_system_memory(), machine, &hwdefs[1]); } static void sun4u_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); mc->desc = "Sun4u platform"; mc->init = sun4u_init; mc->block_default_type = IF_IDE; mc->max_cpus = 1; /* XXX for now */ mc->is_default = true; mc->default_boot_order = "c"; mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-UltraSparc-IIi"); mc->ignore_boot_device_suffixes = true; mc->default_display = "std"; fwc->get_dev_path = sun4u_fw_dev_path; } static const TypeInfo sun4u_type = { .name = MACHINE_TYPE_NAME("sun4u"), .parent = TYPE_MACHINE, .class_init = sun4u_class_init, .interfaces = (InterfaceInfo[]) { { TYPE_FW_PATH_PROVIDER }, { } }, }; static void sun4v_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->desc = "Sun4v platform"; mc->init = sun4v_init; mc->block_default_type = IF_IDE; mc->max_cpus = 1; /* XXX for now */ mc->default_boot_order = "c"; mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Sun-UltraSparc-T1"); mc->default_display = "std"; } static const TypeInfo sun4v_type = { .name = MACHINE_TYPE_NAME("sun4v"), .parent = TYPE_MACHINE, .class_init = sun4v_class_init, }; static void sun4u_register_types(void) { type_register_static(&power_info); type_register_static(&ebus_info); type_register_static(&prom_info); type_register_static(&ram_info); type_register_static(&sun4u_type); type_register_static(&sun4v_type); } type_init(sun4u_register_types)