/* * PMU emulation helpers for TCG IBM POWER chips * * Copyright IBM Corp. 2021 * * Authors: * Daniel Henrique Barboza * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "power8-pmu.h" #include "cpu.h" #include "helper_regs.h" #include "exec/exec-all.h" #include "exec/helper-proto.h" #include "qemu/error-report.h" #include "qemu/main-loop.h" #include "hw/ppc/ppc.h" #if defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY) #define PMC_COUNTER_NEGATIVE_VAL 0x80000000UL static bool pmc_is_inactive(CPUPPCState *env, int sprn) { if (env->spr[SPR_POWER_MMCR0] & MMCR0_FC) { return true; } if (sprn < SPR_POWER_PMC5) { return env->spr[SPR_POWER_MMCR0] & MMCR0_FC14; } return env->spr[SPR_POWER_MMCR0] & MMCR0_FC56; } static bool pmc_has_overflow_enabled(CPUPPCState *env, int sprn) { if (sprn == SPR_POWER_PMC1) { return env->spr[SPR_POWER_MMCR0] & MMCR0_PMC1CE; } return env->spr[SPR_POWER_MMCR0] & MMCR0_PMCjCE; } /* * For PMCs 1-4, IBM POWER chips has support for an implementation * dependent event, 0x1E, that enables cycle counting. The Linux kernel * makes extensive use of 0x1E, so let's also support it. * * Likewise, event 0x2 is an implementation-dependent event that IBM * POWER chips implement (at least since POWER8) that is equivalent to * PM_INST_CMPL. Let's support this event on PMCs 1-4 as well. */ static PMUEventType pmc_get_event(CPUPPCState *env, int sprn) { uint8_t mmcr1_evt_extr[] = { MMCR1_PMC1EVT_EXTR, MMCR1_PMC2EVT_EXTR, MMCR1_PMC3EVT_EXTR, MMCR1_PMC4EVT_EXTR }; PMUEventType evt_type = PMU_EVENT_INVALID; uint8_t pmcsel; int i; if (pmc_is_inactive(env, sprn)) { return PMU_EVENT_INACTIVE; } if (sprn == SPR_POWER_PMC5) { return PMU_EVENT_INSTRUCTIONS; } if (sprn == SPR_POWER_PMC6) { return PMU_EVENT_CYCLES; } i = sprn - SPR_POWER_PMC1; pmcsel = extract64(env->spr[SPR_POWER_MMCR1], mmcr1_evt_extr[i], MMCR1_EVT_SIZE); switch (pmcsel) { case 0x2: evt_type = PMU_EVENT_INSTRUCTIONS; break; case 0x1E: evt_type = PMU_EVENT_CYCLES; break; case 0xF0: /* * PMC1SEL = 0xF0 is the architected PowerISA v3.1 * event that counts cycles using PMC1. */ if (sprn == SPR_POWER_PMC1) { evt_type = PMU_EVENT_CYCLES; } break; case 0xFE: /* * PMC1SEL = 0xFE is the architected PowerISA v3.1 * event to sample instructions using PMC1. */ if (sprn == SPR_POWER_PMC1) { evt_type = PMU_EVENT_INSTRUCTIONS; } break; default: break; } return evt_type; } static void pmu_update_cycles(CPUPPCState *env) { uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); uint64_t time_delta = now - env->pmu_base_time; int sprn; for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) { if (pmc_get_event(env, sprn) != PMU_EVENT_CYCLES) { continue; } /* * The pseries and powernv clock runs at 1Ghz, meaning * that 1 nanosec equals 1 cycle. */ env->spr[sprn] += time_delta; } /* Update base_time for future calculations */ env->pmu_base_time = now; } /* * Helper function to retrieve the cycle overflow timer of the * 'sprn' counter. */ static QEMUTimer *get_cyc_overflow_timer(CPUPPCState *env, int sprn) { return env->pmu_cyc_overflow_timers[sprn - SPR_POWER_PMC1]; } static void pmc_update_overflow_timer(CPUPPCState *env, int sprn) { QEMUTimer *pmc_overflow_timer = get_cyc_overflow_timer(env, sprn); int64_t timeout; /* * PMC5 does not have an overflow timer and this pointer * will be NULL. */ if (!pmc_overflow_timer) { return; } if (pmc_get_event(env, sprn) != PMU_EVENT_CYCLES || !pmc_has_overflow_enabled(env, sprn)) { /* Overflow timer is not needed for this counter */ timer_del(pmc_overflow_timer); return; } if (env->spr[sprn] >= PMC_COUNTER_NEGATIVE_VAL) { timeout = 0; } else { timeout = PMC_COUNTER_NEGATIVE_VAL - env->spr[sprn]; } /* * Use timer_mod_anticipate() because an overflow timer might * be already running for this PMC. */ timer_mod_anticipate(pmc_overflow_timer, env->pmu_base_time + timeout); } static void pmu_update_overflow_timers(CPUPPCState *env) { int sprn; /* * Scroll through all PMCs and start counter overflow timers for * PM_CYC events, if needed. */ for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) { pmc_update_overflow_timer(env, sprn); } } void helper_store_mmcr0(CPUPPCState *env, target_ulong value) { pmu_update_cycles(env); env->spr[SPR_POWER_MMCR0] = value; /* MMCR0 writes can change HFLAGS_PMCCCLEAR */ hreg_compute_hflags(env); /* Update cycle overflow timers with the current MMCR0 state */ pmu_update_overflow_timers(env); } void helper_store_mmcr1(CPUPPCState *env, uint64_t value) { pmu_update_cycles(env); env->spr[SPR_POWER_MMCR1] = value; } target_ulong helper_read_pmc(CPUPPCState *env, uint32_t sprn) { pmu_update_cycles(env); return env->spr[sprn]; } void helper_store_pmc(CPUPPCState *env, uint32_t sprn, uint64_t value) { pmu_update_cycles(env); env->spr[sprn] = value; pmc_update_overflow_timer(env, sprn); } static void fire_PMC_interrupt(PowerPCCPU *cpu) { CPUPPCState *env = &cpu->env; if (!(env->spr[SPR_POWER_MMCR0] & MMCR0_EBE)) { return; } /* PMC interrupt not implemented yet */ return; } static void cpu_ppc_pmu_timer_cb(void *opaque) { PowerPCCPU *cpu = opaque; fire_PMC_interrupt(cpu); } void cpu_ppc_pmu_init(CPUPPCState *env) { PowerPCCPU *cpu = env_archcpu(env); int i, sprn; for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) { if (sprn == SPR_POWER_PMC5) { continue; } i = sprn - SPR_POWER_PMC1; env->pmu_cyc_overflow_timers[i] = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_pmu_timer_cb, cpu); } } #endif /* defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY) */