/*
* Copyright (C) 2009-2010 Nippon Telegraph and Telephone Corporation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* Contributions after 2012-01-13 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "qapi/error.h"
#include "qapi/qapi-visit-sockets.h"
#include "qapi/qapi-visit-block-core.h"
#include "qapi/qmp/qdict.h"
#include "qapi/qobject-input-visitor.h"
#include "qapi/qobject-output-visitor.h"
#include "qemu/uri.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#include "qemu/module.h"
#include "qemu/option.h"
#include "qemu/sockets.h"
#include "block/block_int.h"
#include "block/qdict.h"
#include "sysemu/block-backend.h"
#include "qemu/bitops.h"
#include "qemu/cutils.h"
#include "trace.h"
#define SD_PROTO_VER 0x01
#define SD_DEFAULT_ADDR "localhost"
#define SD_DEFAULT_PORT 7000
#define SD_OP_CREATE_AND_WRITE_OBJ 0x01
#define SD_OP_READ_OBJ 0x02
#define SD_OP_WRITE_OBJ 0x03
/* 0x04 is used internally by Sheepdog */
#define SD_OP_NEW_VDI 0x11
#define SD_OP_LOCK_VDI 0x12
#define SD_OP_RELEASE_VDI 0x13
#define SD_OP_GET_VDI_INFO 0x14
#define SD_OP_READ_VDIS 0x15
#define SD_OP_FLUSH_VDI 0x16
#define SD_OP_DEL_VDI 0x17
#define SD_OP_GET_CLUSTER_DEFAULT 0x18
#define SD_FLAG_CMD_WRITE 0x01
#define SD_FLAG_CMD_COW 0x02
#define SD_FLAG_CMD_CACHE 0x04 /* Writeback mode for cache */
#define SD_FLAG_CMD_DIRECT 0x08 /* Don't use cache */
#define SD_RES_SUCCESS 0x00 /* Success */
#define SD_RES_UNKNOWN 0x01 /* Unknown error */
#define SD_RES_NO_OBJ 0x02 /* No object found */
#define SD_RES_EIO 0x03 /* I/O error */
#define SD_RES_VDI_EXIST 0x04 /* Vdi exists already */
#define SD_RES_INVALID_PARMS 0x05 /* Invalid parameters */
#define SD_RES_SYSTEM_ERROR 0x06 /* System error */
#define SD_RES_VDI_LOCKED 0x07 /* Vdi is locked */
#define SD_RES_NO_VDI 0x08 /* No vdi found */
#define SD_RES_NO_BASE_VDI 0x09 /* No base vdi found */
#define SD_RES_VDI_READ 0x0A /* Cannot read requested vdi */
#define SD_RES_VDI_WRITE 0x0B /* Cannot write requested vdi */
#define SD_RES_BASE_VDI_READ 0x0C /* Cannot read base vdi */
#define SD_RES_BASE_VDI_WRITE 0x0D /* Cannot write base vdi */
#define SD_RES_NO_TAG 0x0E /* Requested tag is not found */
#define SD_RES_STARTUP 0x0F /* Sheepdog is on starting up */
#define SD_RES_VDI_NOT_LOCKED 0x10 /* Vdi is not locked */
#define SD_RES_SHUTDOWN 0x11 /* Sheepdog is shutting down */
#define SD_RES_NO_MEM 0x12 /* Cannot allocate memory */
#define SD_RES_FULL_VDI 0x13 /* we already have the maximum vdis */
#define SD_RES_VER_MISMATCH 0x14 /* Protocol version mismatch */
#define SD_RES_NO_SPACE 0x15 /* Server has no room for new objects */
#define SD_RES_WAIT_FOR_FORMAT 0x16 /* Waiting for a format operation */
#define SD_RES_WAIT_FOR_JOIN 0x17 /* Waiting for other nodes joining */
#define SD_RES_JOIN_FAILED 0x18 /* Target node had failed to join sheepdog */
#define SD_RES_HALT 0x19 /* Sheepdog is stopped serving IO request */
#define SD_RES_READONLY 0x1A /* Object is read-only */
/*
* Object ID rules
*
* 0 - 19 (20 bits): data object space
* 20 - 31 (12 bits): reserved data object space
* 32 - 55 (24 bits): vdi object space
* 56 - 59 ( 4 bits): reserved vdi object space
* 60 - 63 ( 4 bits): object type identifier space
*/
#define VDI_SPACE_SHIFT 32
#define VDI_BIT (UINT64_C(1) << 63)
#define VMSTATE_BIT (UINT64_C(1) << 62)
#define MAX_DATA_OBJS (UINT64_C(1) << 20)
#define MAX_CHILDREN 1024
#define SD_MAX_VDI_LEN 256
#define SD_MAX_VDI_TAG_LEN 256
#define SD_NR_VDIS (1U << 24)
#define SD_DATA_OBJ_SIZE (UINT64_C(1) << 22)
#define SD_MAX_VDI_SIZE (SD_DATA_OBJ_SIZE * MAX_DATA_OBJS)
#define SD_DEFAULT_BLOCK_SIZE_SHIFT 22
/*
* For erasure coding, we use at most SD_EC_MAX_STRIP for data strips and
* (SD_EC_MAX_STRIP - 1) for parity strips
*
* SD_MAX_COPIES is sum of number of data strips and parity strips.
*/
#define SD_EC_MAX_STRIP 16
#define SD_MAX_COPIES (SD_EC_MAX_STRIP * 2 - 1)
#define SD_INODE_SIZE (sizeof(SheepdogInode))
#define CURRENT_VDI_ID 0
#define LOCK_TYPE_NORMAL 0
#define LOCK_TYPE_SHARED 1 /* for iSCSI multipath */
typedef struct SheepdogReq {
uint8_t proto_ver;
uint8_t opcode;
uint16_t flags;
uint32_t epoch;
uint32_t id;
uint32_t data_length;
uint32_t opcode_specific[8];
} SheepdogReq;
typedef struct SheepdogRsp {
uint8_t proto_ver;
uint8_t opcode;
uint16_t flags;
uint32_t epoch;
uint32_t id;
uint32_t data_length;
uint32_t result;
uint32_t opcode_specific[7];
} SheepdogRsp;
typedef struct SheepdogObjReq {
uint8_t proto_ver;
uint8_t opcode;
uint16_t flags;
uint32_t epoch;
uint32_t id;
uint32_t data_length;
uint64_t oid;
uint64_t cow_oid;
uint8_t copies;
uint8_t copy_policy;
uint8_t reserved[6];
uint64_t offset;
} SheepdogObjReq;
typedef struct SheepdogObjRsp {
uint8_t proto_ver;
uint8_t opcode;
uint16_t flags;
uint32_t epoch;
uint32_t id;
uint32_t data_length;
uint32_t result;
uint8_t copies;
uint8_t copy_policy;
uint8_t reserved[2];
uint32_t pad[6];
} SheepdogObjRsp;
typedef struct SheepdogVdiReq {
uint8_t proto_ver;
uint8_t opcode;
uint16_t flags;
uint32_t epoch;
uint32_t id;
uint32_t data_length;
uint64_t vdi_size;
uint32_t base_vdi_id;
uint8_t copies;
uint8_t copy_policy;
uint8_t store_policy;
uint8_t block_size_shift;
uint32_t snapid;
uint32_t type;
uint32_t pad[2];
} SheepdogVdiReq;
typedef struct SheepdogVdiRsp {
uint8_t proto_ver;
uint8_t opcode;
uint16_t flags;
uint32_t epoch;
uint32_t id;
uint32_t data_length;
uint32_t result;
uint32_t rsvd;
uint32_t vdi_id;
uint32_t pad[5];
} SheepdogVdiRsp;
typedef struct SheepdogClusterRsp {
uint8_t proto_ver;
uint8_t opcode;
uint16_t flags;
uint32_t epoch;
uint32_t id;
uint32_t data_length;
uint32_t result;
uint8_t nr_copies;
uint8_t copy_policy;
uint8_t block_size_shift;
uint8_t __pad1;
uint32_t __pad2[6];
} SheepdogClusterRsp;
typedef struct SheepdogInode {
char name[SD_MAX_VDI_LEN];
char tag[SD_MAX_VDI_TAG_LEN];
uint64_t ctime;
uint64_t snap_ctime;
uint64_t vm_clock_nsec;
uint64_t vdi_size;
uint64_t vm_state_size;
uint16_t copy_policy;
uint8_t nr_copies;
uint8_t block_size_shift;
uint32_t snap_id;
uint32_t vdi_id;
uint32_t parent_vdi_id;
uint32_t child_vdi_id[MAX_CHILDREN];
uint32_t data_vdi_id[MAX_DATA_OBJS];
} SheepdogInode;
#define SD_INODE_HEADER_SIZE offsetof(SheepdogInode, data_vdi_id)
/*
* 64 bit FNV-1a non-zero initial basis
*/
#define FNV1A_64_INIT ((uint64_t)0xcbf29ce484222325ULL)
/*
* 64 bit Fowler/Noll/Vo FNV-1a hash code
*/
static inline uint64_t fnv_64a_buf(void *buf, size_t len, uint64_t hval)
{
unsigned char *bp = buf;
unsigned char *be = bp + len;
while (bp < be) {
hval ^= (uint64_t) *bp++;
hval += (hval << 1) + (hval << 4) + (hval << 5) +
(hval << 7) + (hval << 8) + (hval << 40);
}
return hval;
}
static inline bool is_data_obj_writable(SheepdogInode *inode, unsigned int idx)
{
return inode->vdi_id == inode->data_vdi_id[idx];
}
static inline bool is_data_obj(uint64_t oid)
{
return !(VDI_BIT & oid);
}
static inline uint64_t data_oid_to_idx(uint64_t oid)
{
return oid & (MAX_DATA_OBJS - 1);
}
static inline uint32_t oid_to_vid(uint64_t oid)
{
return (oid & ~VDI_BIT) >> VDI_SPACE_SHIFT;
}
static inline uint64_t vid_to_vdi_oid(uint32_t vid)
{
return VDI_BIT | ((uint64_t)vid << VDI_SPACE_SHIFT);
}
static inline uint64_t vid_to_vmstate_oid(uint32_t vid, uint32_t idx)
{
return VMSTATE_BIT | ((uint64_t)vid << VDI_SPACE_SHIFT) | idx;
}
static inline uint64_t vid_to_data_oid(uint32_t vid, uint32_t idx)
{
return ((uint64_t)vid << VDI_SPACE_SHIFT) | idx;
}
static inline bool is_snapshot(struct SheepdogInode *inode)
{
return !!inode->snap_ctime;
}
static inline size_t count_data_objs(const struct SheepdogInode *inode)
{
return DIV_ROUND_UP(inode->vdi_size,
(1UL << inode->block_size_shift));
}
typedef struct SheepdogAIOCB SheepdogAIOCB;
typedef struct BDRVSheepdogState BDRVSheepdogState;
typedef struct AIOReq {
SheepdogAIOCB *aiocb;
unsigned int iov_offset;
uint64_t oid;
uint64_t base_oid;
uint64_t offset;
unsigned int data_len;
uint8_t flags;
uint32_t id;
bool create;
QLIST_ENTRY(AIOReq) aio_siblings;
} AIOReq;
enum AIOCBState {
AIOCB_WRITE_UDATA,
AIOCB_READ_UDATA,
AIOCB_FLUSH_CACHE,
AIOCB_DISCARD_OBJ,
};
#define AIOCBOverlapping(x, y) \
(!(x->max_affect_data_idx < y->min_affect_data_idx \
|| y->max_affect_data_idx < x->min_affect_data_idx))
struct SheepdogAIOCB {
BDRVSheepdogState *s;
QEMUIOVector *qiov;
int64_t sector_num;
int nb_sectors;
int ret;
enum AIOCBState aiocb_type;
Coroutine *coroutine;
int nr_pending;
uint32_t min_affect_data_idx;
uint32_t max_affect_data_idx;
/*
* The difference between affect_data_idx and dirty_data_idx:
* affect_data_idx represents range of index of all request types.
* dirty_data_idx represents range of index updated by COW requests.
* dirty_data_idx is used for updating an inode object.
*/
uint32_t min_dirty_data_idx;
uint32_t max_dirty_data_idx;
QLIST_ENTRY(SheepdogAIOCB) aiocb_siblings;
};
struct BDRVSheepdogState {
BlockDriverState *bs;
AioContext *aio_context;
SheepdogInode inode;
char name[SD_MAX_VDI_LEN];
bool is_snapshot;
uint32_t cache_flags;
bool discard_supported;
SocketAddress *addr;
int fd;
CoMutex lock;
Coroutine *co_send;
Coroutine *co_recv;
uint32_t aioreq_seq_num;
/* Every aio request must be linked to either of these queues. */
QLIST_HEAD(, AIOReq) inflight_aio_head;
QLIST_HEAD(, AIOReq) failed_aio_head;
CoMutex queue_lock;
CoQueue overlapping_queue;
QLIST_HEAD(, SheepdogAIOCB) inflight_aiocb_head;
};
typedef struct BDRVSheepdogReopenState {
int fd;
int cache_flags;
} BDRVSheepdogReopenState;
static const char *sd_strerror(int err)
{
int i;
static const struct {
int err;
const char *desc;
} errors[] = {
{SD_RES_SUCCESS, "Success"},
{SD_RES_UNKNOWN, "Unknown error"},
{SD_RES_NO_OBJ, "No object found"},
{SD_RES_EIO, "I/O error"},
{SD_RES_VDI_EXIST, "VDI exists already"},
{SD_RES_INVALID_PARMS, "Invalid parameters"},
{SD_RES_SYSTEM_ERROR, "System error"},
{SD_RES_VDI_LOCKED, "VDI is already locked"},
{SD_RES_NO_VDI, "No vdi found"},
{SD_RES_NO_BASE_VDI, "No base VDI found"},
{SD_RES_VDI_READ, "Failed read the requested VDI"},
{SD_RES_VDI_WRITE, "Failed to write the requested VDI"},
{SD_RES_BASE_VDI_READ, "Failed to read the base VDI"},
{SD_RES_BASE_VDI_WRITE, "Failed to write the base VDI"},
{SD_RES_NO_TAG, "Failed to find the requested tag"},
{SD_RES_STARTUP, "The system is still booting"},
{SD_RES_VDI_NOT_LOCKED, "VDI isn't locked"},
{SD_RES_SHUTDOWN, "The system is shutting down"},
{SD_RES_NO_MEM, "Out of memory on the server"},
{SD_RES_FULL_VDI, "We already have the maximum vdis"},
{SD_RES_VER_MISMATCH, "Protocol version mismatch"},
{SD_RES_NO_SPACE, "Server has no space for new objects"},
{SD_RES_WAIT_FOR_FORMAT, "Sheepdog is waiting for a format operation"},
{SD_RES_WAIT_FOR_JOIN, "Sheepdog is waiting for other nodes joining"},
{SD_RES_JOIN_FAILED, "Target node had failed to join sheepdog"},
{SD_RES_HALT, "Sheepdog is stopped serving IO request"},
{SD_RES_READONLY, "Object is read-only"},
};
for (i = 0; i < ARRAY_SIZE(errors); ++i) {
if (errors[i].err == err) {
return errors[i].desc;
}
}
return "Invalid error code";
}
/*
* Sheepdog I/O handling:
*
* 1. In sd_co_rw_vector, we send the I/O requests to the server and
* link the requests to the inflight_list in the
* BDRVSheepdogState. The function yields while waiting for
* receiving the response.
*
* 2. We receive the response in aio_read_response, the fd handler to
* the sheepdog connection. We switch back to sd_co_readv/sd_writev
* after all the requests belonging to the AIOCB are finished. If
* needed, sd_co_writev will send another requests for the vdi object.
*/
static inline AIOReq *alloc_aio_req(BDRVSheepdogState *s, SheepdogAIOCB *acb,
uint64_t oid, unsigned int data_len,
uint64_t offset, uint8_t flags, bool create,
uint64_t base_oid, unsigned int iov_offset)
{
AIOReq *aio_req;
aio_req = g_malloc(sizeof(*aio_req));
aio_req->aiocb = acb;
aio_req->iov_offset = iov_offset;
aio_req->oid = oid;
aio_req->base_oid = base_oid;
aio_req->offset = offset;
aio_req->data_len = data_len;
aio_req->flags = flags;
aio_req->id = s->aioreq_seq_num++;
aio_req->create = create;
acb->nr_pending++;
return aio_req;
}
static void wait_for_overlapping_aiocb(BDRVSheepdogState *s, SheepdogAIOCB *acb)
{
SheepdogAIOCB *cb;
retry:
QLIST_FOREACH(cb, &s->inflight_aiocb_head, aiocb_siblings) {
if (AIOCBOverlapping(acb, cb)) {
qemu_co_queue_wait(&s->overlapping_queue, &s->queue_lock);
goto retry;
}
}
}
static void sd_aio_setup(SheepdogAIOCB *acb, BDRVSheepdogState *s,
QEMUIOVector *qiov, int64_t sector_num, int nb_sectors,
int type)
{
uint32_t object_size;
object_size = (UINT32_C(1) << s->inode.block_size_shift);
acb->s = s;
acb->qiov = qiov;
acb->sector_num = sector_num;
acb->nb_sectors = nb_sectors;
acb->coroutine = qemu_coroutine_self();
acb->ret = 0;
acb->nr_pending = 0;
acb->min_affect_data_idx = acb->sector_num * BDRV_SECTOR_SIZE / object_size;
acb->max_affect_data_idx = (acb->sector_num * BDRV_SECTOR_SIZE +
acb->nb_sectors * BDRV_SECTOR_SIZE) / object_size;
acb->min_dirty_data_idx = UINT32_MAX;
acb->max_dirty_data_idx = 0;
acb->aiocb_type = type;
if (type == AIOCB_FLUSH_CACHE) {
return;
}
qemu_co_mutex_lock(&s->queue_lock);
wait_for_overlapping_aiocb(s, acb);
QLIST_INSERT_HEAD(&s->inflight_aiocb_head, acb, aiocb_siblings);
qemu_co_mutex_unlock(&s->queue_lock);
}
static SocketAddress *sd_server_config(QDict *options, Error **errp)
{
QDict *server = NULL;
Visitor *iv = NULL;
SocketAddress *saddr = NULL;
Error *local_err = NULL;
qdict_extract_subqdict(options, &server, "server.");
iv = qobject_input_visitor_new_flat_confused(server, errp);
if (!iv) {
goto done;
}
visit_type_SocketAddress(iv, NULL, &saddr, &local_err);
if (local_err) {
error_propagate(errp, local_err);
goto done;
}
done:
visit_free(iv);
qobject_unref(server);
return saddr;
}
/* Return -EIO in case of error, file descriptor on success */
static int connect_to_sdog(BDRVSheepdogState *s, Error **errp)
{
int fd;
fd = socket_connect(s->addr, errp);
if (s->addr->type == SOCKET_ADDRESS_TYPE_INET && fd >= 0) {
int ret = socket_set_nodelay(fd);
if (ret < 0) {
warn_report("can't set TCP_NODELAY: %s", strerror(errno));
}
}
if (fd >= 0) {
qemu_set_nonblock(fd);
} else {
fd = -EIO;
}
return fd;
}
/* Return 0 on success and -errno in case of error */
static coroutine_fn int send_co_req(int sockfd, SheepdogReq *hdr, void *data,
unsigned int *wlen)
{
int ret;
ret = qemu_co_send(sockfd, hdr, sizeof(*hdr));
if (ret != sizeof(*hdr)) {
error_report("failed to send a req, %s", strerror(errno));
return -errno;
}
ret = qemu_co_send(sockfd, data, *wlen);
if (ret != *wlen) {
error_report("failed to send a req, %s", strerror(errno));
return -errno;
}
return ret;
}
typedef struct SheepdogReqCo {
int sockfd;
BlockDriverState *bs;
AioContext *aio_context;
SheepdogReq *hdr;
void *data;
unsigned int *wlen;
unsigned int *rlen;
int ret;
bool finished;
Coroutine *co;
} SheepdogReqCo;
static void restart_co_req(void *opaque)
{
SheepdogReqCo *srco = opaque;
aio_co_wake(srco->co);
}
static coroutine_fn void do_co_req(void *opaque)
{
int ret;
SheepdogReqCo *srco = opaque;
int sockfd = srco->sockfd;
SheepdogReq *hdr = srco->hdr;
void *data = srco->data;
unsigned int *wlen = srco->wlen;
unsigned int *rlen = srco->rlen;
srco->co = qemu_coroutine_self();
aio_set_fd_handler(srco->aio_context, sockfd, false,
NULL, restart_co_req, NULL, srco);
ret = send_co_req(sockfd, hdr, data, wlen);
if (ret < 0) {
goto out;
}
aio_set_fd_handler(srco->aio_context, sockfd, false,
restart_co_req, NULL, NULL, srco);
ret = qemu_co_recv(sockfd, hdr, sizeof(*hdr));
if (ret != sizeof(*hdr)) {
error_report("failed to get a rsp, %s", strerror(errno));
ret = -errno;
goto out;
}
if (*rlen > hdr->data_length) {
*rlen = hdr->data_length;
}
if (*rlen) {
ret = qemu_co_recv(sockfd, data, *rlen);
if (ret != *rlen) {
error_report("failed to get the data, %s", strerror(errno));
ret = -errno;
goto out;
}
}
ret = 0;
out:
/* there is at most one request for this sockfd, so it is safe to
* set each handler to NULL. */
aio_set_fd_handler(srco->aio_context, sockfd, false,
NULL, NULL, NULL, NULL);
srco->co = NULL;
srco->ret = ret;
/* Set srco->finished before reading bs->wakeup. */
atomic_mb_set(&srco->finished, true);
if (srco->bs) {
bdrv_wakeup(srco->bs);
}
}
/*
* Send the request to the sheep in a synchronous manner.
*
* Return 0 on success, -errno in case of error.
*/
static int do_req(int sockfd, BlockDriverState *bs, SheepdogReq *hdr,
void *data, unsigned int *wlen, unsigned int *rlen)
{
Coroutine *co;
SheepdogReqCo srco = {
.sockfd = sockfd,
.aio_context = bs ? bdrv_get_aio_context(bs) : qemu_get_aio_context(),
.bs = bs,
.hdr = hdr,
.data = data,
.wlen = wlen,
.rlen = rlen,
.ret = 0,
.finished = false,
};
if (qemu_in_coroutine()) {
do_co_req(&srco);
} else {
co = qemu_coroutine_create(do_co_req, &srco);
if (bs) {
bdrv_coroutine_enter(bs, co);
BDRV_POLL_WHILE(bs, !srco.finished);
} else {
qemu_coroutine_enter(co);
while (!srco.finished) {
aio_poll(qemu_get_aio_context(), true);
}
}
}
return srco.ret;
}
static void coroutine_fn add_aio_request(BDRVSheepdogState *s, AIOReq *aio_req,
struct iovec *iov, int niov,
enum AIOCBState aiocb_type);
static void coroutine_fn resend_aioreq(BDRVSheepdogState *s, AIOReq *aio_req);
static int reload_inode(BDRVSheepdogState *s, uint32_t snapid, const char *tag);
static int get_sheep_fd(BDRVSheepdogState *s, Error **errp);
static void co_write_request(void *opaque);
static coroutine_fn void reconnect_to_sdog(void *opaque)
{
BDRVSheepdogState *s = opaque;
AIOReq *aio_req, *next;
aio_set_fd_handler(s->aio_context, s->fd, false, NULL,
NULL, NULL, NULL);
close(s->fd);
s->fd = -1;
/* Wait for outstanding write requests to be completed. */
while (s->co_send != NULL) {
co_write_request(opaque);
}
/* Try to reconnect the sheepdog server every one second. */
while (s->fd < 0) {
Error *local_err = NULL;
s->fd = get_sheep_fd(s, &local_err);
if (s->fd < 0) {
trace_sheepdog_reconnect_to_sdog();
error_report_err(local_err);
qemu_co_sleep_ns(QEMU_CLOCK_REALTIME, 1000000000ULL);
}
};
/*
* Now we have to resend all the request in the inflight queue. However,
* resend_aioreq() can yield and newly created requests can be added to the
* inflight queue before the coroutine is resumed. To avoid mixing them, we
* have to move all the inflight requests to the failed queue before
* resend_aioreq() is called.
*/
qemu_co_mutex_lock(&s->queue_lock);
QLIST_FOREACH_SAFE(aio_req, &s->inflight_aio_head, aio_siblings, next) {
QLIST_REMOVE(aio_req, aio_siblings);
QLIST_INSERT_HEAD(&s->failed_aio_head, aio_req, aio_siblings);
}
/* Resend all the failed aio requests. */
while (!QLIST_EMPTY(&s->failed_aio_head)) {
aio_req = QLIST_FIRST(&s->failed_aio_head);
QLIST_REMOVE(aio_req, aio_siblings);
qemu_co_mutex_unlock(&s->queue_lock);
resend_aioreq(s, aio_req);
qemu_co_mutex_lock(&s->queue_lock);
}
qemu_co_mutex_unlock(&s->queue_lock);
}
/*
* Receive responses of the I/O requests.
*
* This function is registered as a fd handler, and called from the
* main loop when s->fd is ready for reading responses.
*/
static void coroutine_fn aio_read_response(void *opaque)
{
SheepdogObjRsp rsp;
BDRVSheepdogState *s = opaque;
int fd = s->fd;
int ret;
AIOReq *aio_req = NULL;
SheepdogAIOCB *acb;
uint64_t idx;
/* read a header */
ret = qemu_co_recv(fd, &rsp, sizeof(rsp));
if (ret != sizeof(rsp)) {
error_report("failed to get the header, %s", strerror(errno));
goto err;
}
/* find the right aio_req from the inflight aio list */
QLIST_FOREACH(aio_req, &s->inflight_aio_head, aio_siblings) {
if (aio_req->id == rsp.id) {
break;
}
}
if (!aio_req) {
error_report("cannot find aio_req %x", rsp.id);
goto err;
}
acb = aio_req->aiocb;
switch (acb->aiocb_type) {
case AIOCB_WRITE_UDATA:
if (!is_data_obj(aio_req->oid)) {
break;
}
idx = data_oid_to_idx(aio_req->oid);
if (aio_req->create) {
/*
* If the object is newly created one, we need to update
* the vdi object (metadata object). min_dirty_data_idx
* and max_dirty_data_idx are changed to include updated
* index between them.
*/
if (rsp.result == SD_RES_SUCCESS) {
s->inode.data_vdi_id[idx] = s->inode.vdi_id;
acb->max_dirty_data_idx = MAX(idx, acb->max_dirty_data_idx);
acb->min_dirty_data_idx = MIN(idx, acb->min_dirty_data_idx);
}
}
break;
case AIOCB_READ_UDATA:
ret = qemu_co_recvv(fd, acb->qiov->iov, acb->qiov->niov,
aio_req->iov_offset, rsp.data_length);
if (ret != rsp.data_length) {
error_report("failed to get the data, %s", strerror(errno));
goto err;
}
break;
case AIOCB_FLUSH_CACHE:
if (rsp.result == SD_RES_INVALID_PARMS) {
trace_sheepdog_aio_read_response();
s->cache_flags = SD_FLAG_CMD_DIRECT;
rsp.result = SD_RES_SUCCESS;
}
break;
case AIOCB_DISCARD_OBJ:
switch (rsp.result) {
case SD_RES_INVALID_PARMS:
error_report("server doesn't support discard command");
rsp.result = SD_RES_SUCCESS;
s->discard_supported = false;
break;
default:
break;
}
}
/* No more data for this aio_req (reload_inode below uses its own file
* descriptor handler which doesn't use co_recv).
*/
s->co_recv = NULL;
qemu_co_mutex_lock(&s->queue_lock);
QLIST_REMOVE(aio_req, aio_siblings);
qemu_co_mutex_unlock(&s->queue_lock);
switch (rsp.result) {
case SD_RES_SUCCESS:
break;
case SD_RES_READONLY:
if (s->inode.vdi_id == oid_to_vid(aio_req->oid)) {
ret = reload_inode(s, 0, "");
if (ret < 0) {
goto err;
}
}
if (is_data_obj(aio_req->oid)) {
aio_req->oid = vid_to_data_oid(s->inode.vdi_id,
data_oid_to_idx(aio_req->oid));
} else {
aio_req->oid = vid_to_vdi_oid(s->inode.vdi_id);
}
resend_aioreq(s, aio_req);
return;
default:
acb->ret = -EIO;
error_report("%s", sd_strerror(rsp.result));
break;
}
g_free(aio_req);
if (!--acb->nr_pending) {
/*
* We've finished all requests which belong to the AIOCB, so
* we can switch back to sd_co_readv/writev now.
*/
aio_co_wake(acb->coroutine);
}
return;
err:
reconnect_to_sdog(opaque);
}
static void co_read_response(void *opaque)
{
BDRVSheepdogState *s = opaque;
if (!s->co_recv) {
s->co_recv = qemu_coroutine_create(aio_read_response, opaque);
}
aio_co_enter(s->aio_context, s->co_recv);
}
static void co_write_request(void *opaque)
{
BDRVSheepdogState *s = opaque;
aio_co_wake(s->co_send);
}
/*
* Return a socket descriptor to read/write objects.
*
* We cannot use this descriptor for other operations because
* the block driver may be on waiting response from the server.
*/
static int get_sheep_fd(BDRVSheepdogState *s, Error **errp)
{
int fd;
fd = connect_to_sdog(s, errp);
if (fd < 0) {
return fd;
}
aio_set_fd_handler(s->aio_context, fd, false,
co_read_response, NULL, NULL, s);
return fd;
}
/*
* Parse numeric snapshot ID in @str
* If @str can't be parsed as number, return false.
* Else, if the number is zero or too large, set *@snapid to zero and
* return true.
* Else, set *@snapid to the number and return true.
*/
static bool sd_parse_snapid(const char *str, uint32_t *snapid)
{
unsigned long ul;
int ret;
ret = qemu_strtoul(str, NULL, 10, &ul);
if (ret == -ERANGE) {
ul = ret = 0;
}
if (ret) {
return false;
}
if (ul > UINT32_MAX) {
ul = 0;
}
*snapid = ul;
return true;
}
static bool sd_parse_snapid_or_tag(const char *str,
uint32_t *snapid, char tag[])
{
if (!sd_parse_snapid(str, snapid)) {
*snapid = 0;
if (g_strlcpy(tag, str, SD_MAX_VDI_TAG_LEN) >= SD_MAX_VDI_TAG_LEN) {
return false;
}
} else if (!*snapid) {
return false;
} else {
tag[0] = 0;
}
return true;
}
typedef struct {
const char *path; /* non-null iff transport is tcp */
const char *host; /* valid when transport is tcp */
int port; /* valid when transport is tcp */
char vdi[SD_MAX_VDI_LEN];
char tag[SD_MAX_VDI_TAG_LEN];
uint32_t snap_id;
/* Remainder is only for sd_config_done() */
URI *uri;
QueryParams *qp;
} SheepdogConfig;
static void sd_config_done(SheepdogConfig *cfg)
{
if (cfg->qp) {
query_params_free(cfg->qp);
}
uri_free(cfg->uri);
}
static void sd_parse_uri(SheepdogConfig *cfg, const char *filename,
Error **errp)
{
Error *err = NULL;
QueryParams *qp = NULL;
bool is_unix;
URI *uri;
memset(cfg, 0, sizeof(*cfg));
cfg->uri = uri = uri_parse(filename);
if (!uri) {
error_setg(&err, "invalid URI '%s'", filename);
goto out;
}
/* transport */
if (!g_strcmp0(uri->scheme, "sheepdog")) {
is_unix = false;
} else if (!g_strcmp0(uri->scheme, "sheepdog+tcp")) {
is_unix = false;
} else if (!g_strcmp0(uri->scheme, "sheepdog+unix")) {
is_unix = true;
} else {
error_setg(&err, "URI scheme must be 'sheepdog', 'sheepdog+tcp',"
" or 'sheepdog+unix'");
goto out;
}
if (uri->path == NULL || !strcmp(uri->path, "/")) {
error_setg(&err, "missing file path in URI");
goto out;
}
if (g_strlcpy(cfg->vdi, uri->path + 1, SD_MAX_VDI_LEN)
>= SD_MAX_VDI_LEN) {
error_setg(&err, "VDI name is too long");
goto out;
}
cfg->qp = qp = query_params_parse(uri->query);
if (is_unix) {
/* sheepdog+unix:///vdiname?socket=path */
if (uri->server || uri->port) {
error_setg(&err, "URI scheme %s doesn't accept a server address",
uri->scheme);
goto out;
}
if (!qp->n) {
error_setg(&err,
"URI scheme %s requires query parameter 'socket'",
uri->scheme);
goto out;
}
if (qp->n != 1 || strcmp(qp->p[0].name, "socket")) {
error_setg(&err, "unexpected query parameters");
goto out;
}
cfg->path = qp->p[0].value;
} else {
/* sheepdog[+tcp]://[host:port]/vdiname */
if (qp->n) {
error_setg(&err, "unexpected query parameters");
goto out;
}
cfg->host = uri->server;
cfg->port = uri->port;
}
/* snapshot tag */
if (uri->fragment) {
if (!sd_parse_snapid_or_tag(uri->fragment,
&cfg->snap_id, cfg->tag)) {
error_setg(&err, "'%s' is not a valid snapshot ID",
uri->fragment);
goto out;
}
} else {
cfg->snap_id = CURRENT_VDI_ID; /* search current vdi */
}
out:
if (err) {
error_propagate(errp, err);
sd_config_done(cfg);
}
}
/*
* Parse a filename (old syntax)
*
* filename must be one of the following formats:
* 1. [vdiname]
* 2. [vdiname]:[snapid]
* 3. [vdiname]:[tag]
* 4. [hostname]:[port]:[vdiname]
* 5. [hostname]:[port]:[vdiname]:[snapid]
* 6. [hostname]:[port]:[vdiname]:[tag]
*
* You can boot from the snapshot images by specifying `snapid` or
* `tag'.
*
* You can run VMs outside the Sheepdog cluster by specifying
* `hostname' and `port' (experimental).
*/
static void parse_vdiname(SheepdogConfig *cfg, const char *filename,
Error **errp)
{
Error *err = NULL;
char *p, *q, *uri;
const char *host_spec, *vdi_spec;
int nr_sep;
strstart(filename, "sheepdog:", &filename);
p = q = g_strdup(filename);
/* count the number of separators */
nr_sep = 0;
while (*p) {
if (*p == ':') {
nr_sep++;
}
p++;
}
p = q;
/* use the first two tokens as host_spec. */
if (nr_sep >= 2) {
host_spec = p;
p = strchr(p, ':');
p++;
p = strchr(p, ':');
*p++ = '\0';
} else {
host_spec = "";
}
vdi_spec = p;
p = strchr(vdi_spec, ':');
if (p) {
*p++ = '#';
}
uri = g_strdup_printf("sheepdog://%s/%s", host_spec, vdi_spec);
/*
* FIXME We to escape URI meta-characters, e.g. "x?y=z"
* produces "sheepdog://x?y=z". Because of that ...
*/
sd_parse_uri(cfg, uri, &err);
if (err) {
/*
* ... this can fail, but the error message is misleading.
* Replace it by the traditional useless one until the
* escaping is fixed.
*/
error_free(err);
error_setg(errp, "Can't parse filename");
}
g_free(q);
g_free(uri);
}
static void sd_parse_filename(const char *filename, QDict *options,
Error **errp)
{
Error *err = NULL;
SheepdogConfig cfg;
char buf[32];
if (strstr(filename, "://")) {
sd_parse_uri(&cfg, filename, &err);
} else {
parse_vdiname(&cfg, filename, &err);
}
if (err) {
error_propagate(errp, err);
return;
}
if (cfg.path) {
qdict_set_default_str(options, "server.path", cfg.path);
qdict_set_default_str(options, "server.type", "unix");
} else {
qdict_set_default_str(options, "server.type", "inet");
qdict_set_default_str(options, "server.host",
cfg.host ?: SD_DEFAULT_ADDR);
snprintf(buf, sizeof(buf), "%d", cfg.port ?: SD_DEFAULT_PORT);
qdict_set_default_str(options, "server.port", buf);
}
qdict_set_default_str(options, "vdi", cfg.vdi);
qdict_set_default_str(options, "tag", cfg.tag);
if (cfg.snap_id) {
snprintf(buf, sizeof(buf), "%d", cfg.snap_id);
qdict_set_default_str(options, "snap-id", buf);
}
sd_config_done(&cfg);
}
static int find_vdi_name(BDRVSheepdogState *s, const char *filename,
uint32_t snapid, const char *tag, uint32_t *vid,
bool lock, Error **errp)
{
int ret, fd;
SheepdogVdiReq hdr;
SheepdogVdiRsp *rsp = (SheepdogVdiRsp *)&hdr;
unsigned int wlen, rlen = 0;
char buf[SD_MAX_VDI_LEN + SD_MAX_VDI_TAG_LEN] QEMU_NONSTRING;
fd = connect_to_sdog(s, errp);
if (fd < 0) {
return fd;
}
/* This pair of strncpy calls ensures that the buffer is zero-filled,
* which is desirable since we'll soon be sending those bytes, and
* don't want the send_req to read uninitialized data.
*/
strncpy(buf, filename, SD_MAX_VDI_LEN);
strncpy(buf + SD_MAX_VDI_LEN, tag, SD_MAX_VDI_TAG_LEN);
memset(&hdr, 0, sizeof(hdr));
if (lock) {
hdr.opcode = SD_OP_LOCK_VDI;
hdr.type = LOCK_TYPE_NORMAL;
} else {
hdr.opcode = SD_OP_GET_VDI_INFO;
}
wlen = SD_MAX_VDI_LEN + SD_MAX_VDI_TAG_LEN;
hdr.proto_ver = SD_PROTO_VER;
hdr.data_length = wlen;
hdr.snapid = snapid;
hdr.flags = SD_FLAG_CMD_WRITE;
ret = do_req(fd, s->bs, (SheepdogReq *)&hdr, buf, &wlen, &rlen);
if (ret) {
error_setg_errno(errp, -ret, "cannot get vdi info");
goto out;
}
if (rsp->result != SD_RES_SUCCESS) {
error_setg(errp, "cannot get vdi info, %s, %s %" PRIu32 " %s",
sd_strerror(rsp->result), filename, snapid, tag);
if (rsp->result == SD_RES_NO_VDI) {
ret = -ENOENT;
} else if (rsp->result == SD_RES_VDI_LOCKED) {
ret = -EBUSY;
} else {
ret = -EIO;
}
goto out;
}
*vid = rsp->vdi_id;
ret = 0;
out:
closesocket(fd);
return ret;
}
static void coroutine_fn add_aio_request(BDRVSheepdogState *s, AIOReq *aio_req,
struct iovec *iov, int niov,
enum AIOCBState aiocb_type)
{
int nr_copies = s->inode.nr_copies;
SheepdogObjReq hdr;
unsigned int wlen = 0;
int ret;
uint64_t oid = aio_req->oid;
unsigned int datalen = aio_req->data_len;
uint64_t offset = aio_req->offset;
uint8_t flags = aio_req->flags;
uint64_t old_oid = aio_req->base_oid;
bool create = aio_req->create;
qemu_co_mutex_lock(&s->queue_lock);
QLIST_INSERT_HEAD(&s->inflight_aio_head, aio_req, aio_siblings);
qemu_co_mutex_unlock(&s->queue_lock);
if (!nr_copies) {
error_report("bug");
}
memset(&hdr, 0, sizeof(hdr));
switch (aiocb_type) {
case AIOCB_FLUSH_CACHE:
hdr.opcode = SD_OP_FLUSH_VDI;
break;
case AIOCB_READ_UDATA:
hdr.opcode = SD_OP_READ_OBJ;
hdr.flags = flags;
break;
case AIOCB_WRITE_UDATA:
if (create) {
hdr.opcode = SD_OP_CREATE_AND_WRITE_OBJ;
} else {
hdr.opcode = SD_OP_WRITE_OBJ;
}
wlen = datalen;
hdr.flags = SD_FLAG_CMD_WRITE | flags;
break;
case AIOCB_DISCARD_OBJ:
hdr.opcode = SD_OP_WRITE_OBJ;
hdr.flags = SD_FLAG_CMD_WRITE | flags;
s->inode.data_vdi_id[data_oid_to_idx(oid)] = 0;
offset = offsetof(SheepdogInode,
data_vdi_id[data_oid_to_idx(oid)]);
oid = vid_to_vdi_oid(s->inode.vdi_id);
wlen = datalen = sizeof(uint32_t);
break;
}
if (s->cache_flags) {
hdr.flags |= s->cache_flags;
}
hdr.oid = oid;
hdr.cow_oid = old_oid;
hdr.copies = s->inode.nr_copies;
hdr.data_length = datalen;
hdr.offset = offset;
hdr.id = aio_req->id;
qemu_co_mutex_lock(&s->lock);
s->co_send = qemu_coroutine_self();
aio_set_fd_handler(s->aio_context, s->fd, false,
co_read_response, co_write_request, NULL, s);
socket_set_cork(s->fd, 1);
/* send a header */
ret = qemu_co_send(s->fd, &hdr, sizeof(hdr));
if (ret != sizeof(hdr)) {
error_report("failed to send a req, %s", strerror(errno));
goto out;
}
if (wlen) {
ret = qemu_co_sendv(s->fd, iov, niov, aio_req->iov_offset, wlen);
if (ret != wlen) {
error_report("failed to send a data, %s", strerror(errno));
}
}
out:
socket_set_cork(s->fd, 0);
aio_set_fd_handler(s->aio_context, s->fd, false,
co_read_response, NULL, NULL, s);
s->co_send = NULL;
qemu_co_mutex_unlock(&s->lock);
}
static int read_write_object(int fd, BlockDriverState *bs, char *buf,
uint64_t oid, uint8_t copies,
unsigned int datalen, uint64_t offset,
bool write, bool create, uint32_t cache_flags)
{
SheepdogObjReq hdr;
SheepdogObjRsp *rsp = (SheepdogObjRsp *)&hdr;
unsigned int wlen, rlen;
int ret;
memset(&hdr, 0, sizeof(hdr));
if (write) {
wlen = datalen;
rlen = 0;
hdr.flags = SD_FLAG_CMD_WRITE;
if (create) {
hdr.opcode = SD_OP_CREATE_AND_WRITE_OBJ;
} else {
hdr.opcode = SD_OP_WRITE_OBJ;
}
} else {
wlen = 0;
rlen = datalen;
hdr.opcode = SD_OP_READ_OBJ;
}
hdr.flags |= cache_flags;
hdr.oid = oid;
hdr.data_length = datalen;
hdr.offset = offset;
hdr.copies = copies;
ret = do_req(fd, bs, (SheepdogReq *)&hdr, buf, &wlen, &rlen);
if (ret) {
error_report("failed to send a request to the sheep");
return ret;
}
switch (rsp->result) {
case SD_RES_SUCCESS:
return 0;
default:
error_report("%s", sd_strerror(rsp->result));
return -EIO;
}
}
static int read_object(int fd, BlockDriverState *bs, char *buf,
uint64_t oid, uint8_t copies,
unsigned int datalen, uint64_t offset,
uint32_t cache_flags)
{
return read_write_object(fd, bs, buf, oid, copies,
datalen, offset, false,
false, cache_flags);
}
static int write_object(int fd, BlockDriverState *bs, char *buf,
uint64_t oid, uint8_t copies,
unsigned int datalen, uint64_t offset, bool create,
uint32_t cache_flags)
{
return read_write_object(fd, bs, buf, oid, copies,
datalen, offset, true,
create, cache_flags);
}
/* update inode with the latest state */
static int reload_inode(BDRVSheepdogState *s, uint32_t snapid, const char *tag)
{
Error *local_err = NULL;
SheepdogInode *inode;
int ret = 0, fd;
uint32_t vid = 0;
fd = connect_to_sdog(s, &local_err);
if (fd < 0) {
error_report_err(local_err);
return -EIO;
}
inode = g_malloc(SD_INODE_HEADER_SIZE);
ret = find_vdi_name(s, s->name, snapid, tag, &vid, false, &local_err);
if (ret) {
error_report_err(local_err);
goto out;
}
ret = read_object(fd, s->bs, (char *)inode, vid_to_vdi_oid(vid),
s->inode.nr_copies, SD_INODE_HEADER_SIZE, 0,
s->cache_flags);
if (ret < 0) {
goto out;
}
if (inode->vdi_id != s->inode.vdi_id) {
memcpy(&s->inode, inode, SD_INODE_HEADER_SIZE);
}
out:
g_free(inode);
closesocket(fd);
return ret;
}
static void coroutine_fn resend_aioreq(BDRVSheepdogState *s, AIOReq *aio_req)
{
SheepdogAIOCB *acb = aio_req->aiocb;
aio_req->create = false;
/* check whether this request becomes a CoW one */
if (acb->aiocb_type == AIOCB_WRITE_UDATA && is_data_obj(aio_req->oid)) {
int idx = data_oid_to_idx(aio_req->oid);
if (is_data_obj_writable(&s->inode, idx)) {
goto out;
}
if (s->inode.data_vdi_id[idx]) {
aio_req->base_oid = vid_to_data_oid(s->inode.data_vdi_id[idx], idx);
aio_req->flags |= SD_FLAG_CMD_COW;
}
aio_req->create = true;
}
out:
if (is_data_obj(aio_req->oid)) {
add_aio_request(s, aio_req, acb->qiov->iov, acb->qiov->niov,
acb->aiocb_type);
} else {
struct iovec iov;
iov.iov_base = &s->inode;
iov.iov_len = sizeof(s->inode);
add_aio_request(s, aio_req, &iov, 1, AIOCB_WRITE_UDATA);
}
}
static void sd_detach_aio_context(BlockDriverState *bs)
{
BDRVSheepdogState *s = bs->opaque;
aio_set_fd_handler(s->aio_context, s->fd, false, NULL,
NULL, NULL, NULL);
}
static void sd_attach_aio_context(BlockDriverState *bs,
AioContext *new_context)
{
BDRVSheepdogState *s = bs->opaque;
s->aio_context = new_context;
aio_set_fd_handler(new_context, s->fd, false,
co_read_response, NULL, NULL, s);
}
static QemuOptsList runtime_opts = {
.name = "sheepdog",
.head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
.desc = {
{
.name = "vdi",
.type = QEMU_OPT_STRING,
},
{
.name = "snap-id",
.type = QEMU_OPT_NUMBER,
},
{
.name = "tag",
.type = QEMU_OPT_STRING,
},
{ /* end of list */ }
},
};
static int sd_open(BlockDriverState *bs, QDict *options, int flags,
Error **errp)
{
int ret, fd;
uint32_t vid = 0;
BDRVSheepdogState *s = bs->opaque;
const char *vdi, *snap_id_str, *tag;
uint64_t snap_id;
char *buf = NULL;
QemuOpts *opts;
Error *local_err = NULL;
s->bs = bs;
s->aio_context = bdrv_get_aio_context(bs);
opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
qemu_opts_absorb_qdict(opts, options, &local_err);
if (local_err) {
error_propagate(errp, local_err);
ret = -EINVAL;
goto err_no_fd;
}
s->addr = sd_server_config(options, errp);
if (!s->addr) {
ret = -EINVAL;
goto err_no_fd;
}
vdi = qemu_opt_get(opts, "vdi");
snap_id_str = qemu_opt_get(opts, "snap-id");
snap_id = qemu_opt_get_number(opts, "snap-id", CURRENT_VDI_ID);
tag = qemu_opt_get(opts, "tag");
if (!vdi) {
error_setg(errp, "parameter 'vdi' is missing");
ret = -EINVAL;
goto err_no_fd;
}
if (strlen(vdi) >= SD_MAX_VDI_LEN) {
error_setg(errp, "value of parameter 'vdi' is too long");
ret = -EINVAL;
goto err_no_fd;
}
if (snap_id > UINT32_MAX) {
snap_id = 0;
}
if (snap_id_str && !snap_id) {
error_setg(errp, "'snap-id=%s' is not a valid snapshot ID",
snap_id_str);
ret = -EINVAL;
goto err_no_fd;
}
if (!tag) {
tag = "";
}
if (strlen(tag) >= SD_MAX_VDI_TAG_LEN) {
error_setg(errp, "value of parameter 'tag' is too long");
ret = -EINVAL;
goto err_no_fd;
}
QLIST_INIT(&s->inflight_aio_head);
QLIST_INIT(&s->failed_aio_head);
QLIST_INIT(&s->inflight_aiocb_head);
s->fd = get_sheep_fd(s, errp);
if (s->fd < 0) {
ret = s->fd;
goto err_no_fd;
}
ret = find_vdi_name(s, vdi, (uint32_t)snap_id, tag, &vid, true, errp);
if (ret) {
goto err;
}
/*
* QEMU block layer emulates writethrough cache as 'writeback + flush', so
* we always set SD_FLAG_CMD_CACHE (writeback cache) as default.
*/
s->cache_flags = SD_FLAG_CMD_CACHE;
if (flags & BDRV_O_NOCACHE) {
s->cache_flags = SD_FLAG_CMD_DIRECT;
}
s->discard_supported = true;
if (snap_id || tag[0]) {
trace_sheepdog_open(vid);
s->is_snapshot = true;
}
fd = connect_to_sdog(s, errp);
if (fd < 0) {
ret = fd;
goto err;
}
buf = g_malloc(SD_INODE_SIZE);
ret = read_object(fd, s->bs, buf, vid_to_vdi_oid(vid),
0, SD_INODE_SIZE, 0, s->cache_flags);
closesocket(fd);
if (ret) {
error_setg(errp, "Can't read snapshot inode");
goto err;
}
memcpy(&s->inode, buf, sizeof(s->inode));
bs->total_sectors = s->inode.vdi_size / BDRV_SECTOR_SIZE;
bs->supported_truncate_flags = BDRV_REQ_ZERO_WRITE;
pstrcpy(s->name, sizeof(s->name), vdi);
qemu_co_mutex_init(&s->lock);
qemu_co_mutex_init(&s->queue_lock);
qemu_co_queue_init(&s->overlapping_queue);
qemu_opts_del(opts);
g_free(buf);
return 0;
err:
aio_set_fd_handler(bdrv_get_aio_context(bs), s->fd,
false, NULL, NULL, NULL, NULL);
closesocket(s->fd);
err_no_fd:
qemu_opts_del(opts);
g_free(buf);
return ret;
}
static int sd_reopen_prepare(BDRVReopenState *state, BlockReopenQueue *queue,
Error **errp)
{
BDRVSheepdogState *s = state->bs->opaque;
BDRVSheepdogReopenState *re_s;
int ret = 0;
re_s = state->opaque = g_new0(BDRVSheepdogReopenState, 1);
re_s->cache_flags = SD_FLAG_CMD_CACHE;
if (state->flags & BDRV_O_NOCACHE) {
re_s->cache_flags = SD_FLAG_CMD_DIRECT;
}
re_s->fd = get_sheep_fd(s, errp);
if (re_s->fd < 0) {
ret = re_s->fd;
return ret;
}
return ret;
}
static void sd_reopen_commit(BDRVReopenState *state)
{
BDRVSheepdogReopenState *re_s = state->opaque;
BDRVSheepdogState *s = state->bs->opaque;
if (s->fd) {
aio_set_fd_handler(s->aio_context, s->fd, false,
NULL, NULL, NULL, NULL);
closesocket(s->fd);
}
s->fd = re_s->fd;
s->cache_flags = re_s->cache_flags;
g_free(state->opaque);
state->opaque = NULL;
return;
}
static void sd_reopen_abort(BDRVReopenState *state)
{
BDRVSheepdogReopenState *re_s = state->opaque;
BDRVSheepdogState *s = state->bs->opaque;
if (re_s == NULL) {
return;
}
if (re_s->fd) {
aio_set_fd_handler(s->aio_context, re_s->fd, false,
NULL, NULL, NULL, NULL);
closesocket(re_s->fd);
}
g_free(state->opaque);
state->opaque = NULL;
return;
}
static int do_sd_create(BDRVSheepdogState *s, uint32_t *vdi_id, int snapshot,
Error **errp)
{
SheepdogVdiReq hdr;
SheepdogVdiRsp *rsp = (SheepdogVdiRsp *)&hdr;
int fd, ret;
unsigned int wlen, rlen = 0;
char buf[SD_MAX_VDI_LEN];
fd = connect_to_sdog(s, errp);
if (fd < 0) {
return fd;
}
/* FIXME: would it be better to fail (e.g., return -EIO) when filename
* does not fit in buf? For now, just truncate and avoid buffer overrun.
*/
memset(buf, 0, sizeof(buf));
pstrcpy(buf, sizeof(buf), s->name);
memset(&hdr, 0, sizeof(hdr));
hdr.opcode = SD_OP_NEW_VDI;
hdr.base_vdi_id = s->inode.vdi_id;
wlen = SD_MAX_VDI_LEN;
hdr.flags = SD_FLAG_CMD_WRITE;
hdr.snapid = snapshot;
hdr.data_length = wlen;
hdr.vdi_size = s->inode.vdi_size;
hdr.copy_policy = s->inode.copy_policy;
hdr.copies = s->inode.nr_copies;
hdr.block_size_shift = s->inode.block_size_shift;
ret = do_req(fd, NULL, (SheepdogReq *)&hdr, buf, &wlen, &rlen);
closesocket(fd);
if (ret) {
error_setg_errno(errp, -ret, "create failed");
return ret;
}
if (rsp->result != SD_RES_SUCCESS) {
error_setg(errp, "%s, %s", sd_strerror(rsp->result), s->inode.name);
return -EIO;
}
if (vdi_id) {
*vdi_id = rsp->vdi_id;
}
return 0;
}
static int sd_prealloc(BlockDriverState *bs, int64_t old_size, int64_t new_size,
Error **errp)
{
BlockBackend *blk = NULL;
BDRVSheepdogState *base = bs->opaque;
unsigned long buf_size;
uint32_t idx, max_idx;
uint32_t object_size;
void *buf = NULL;
int ret;
blk = blk_new_with_bs(bs,
BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE | BLK_PERM_RESIZE,
BLK_PERM_ALL, errp);
if (!blk) {
ret = -EPERM;
goto out_with_err_set;
}
blk_set_allow_write_beyond_eof(blk, true);
object_size = (UINT32_C(1) << base->inode.block_size_shift);
buf_size = MIN(object_size, SD_DATA_OBJ_SIZE);
buf = g_malloc0(buf_size);
max_idx = DIV_ROUND_UP(new_size, buf_size);
for (idx = old_size / buf_size; idx < max_idx; idx++) {
/*
* The created image can be a cloned image, so we need to read
* a data from the source image.
*/
ret = blk_pread(blk, idx * buf_size, buf, buf_size);
if (ret < 0) {
goto out;
}
ret = blk_pwrite(blk, idx * buf_size, buf, buf_size, 0);
if (ret < 0) {
goto out;
}
}
ret = 0;
out:
if (ret < 0) {
error_setg_errno(errp, -ret, "Can't pre-allocate");
}
out_with_err_set:
blk_unref(blk);
g_free(buf);
return ret;
}
static int sd_create_prealloc(BlockdevOptionsSheepdog *location, int64_t size,
Error **errp)
{
BlockDriverState *bs;
Visitor *v;
QObject *obj = NULL;
QDict *qdict;
int ret;
v = qobject_output_visitor_new(&obj);
visit_type_BlockdevOptionsSheepdog(v, NULL, &location, &error_abort);
visit_free(v);
qdict = qobject_to(QDict, obj);
qdict_flatten(qdict);
qdict_put_str(qdict, "driver", "sheepdog");
bs = bdrv_open(NULL, NULL, qdict, BDRV_O_PROTOCOL | BDRV_O_RDWR, errp);
if (bs == NULL) {
ret = -EIO;
goto fail;
}
ret = sd_prealloc(bs, 0, size, errp);
fail:
bdrv_unref(bs);
qobject_unref(qdict);
return ret;
}
static int parse_redundancy(BDRVSheepdogState *s, SheepdogRedundancy *opt)
{
struct SheepdogInode *inode = &s->inode;
switch (opt->type) {
case SHEEPDOG_REDUNDANCY_TYPE_FULL:
if (opt->u.full.copies > SD_MAX_COPIES || opt->u.full.copies < 1) {
return -EINVAL;
}
inode->copy_policy = 0;
inode->nr_copies = opt->u.full.copies;
return 0;
case SHEEPDOG_REDUNDANCY_TYPE_ERASURE_CODED:
{
int64_t copy = opt->u.erasure_coded.data_strips;
int64_t parity = opt->u.erasure_coded.parity_strips;
if (copy != 2 && copy != 4 && copy != 8 && copy != 16) {
return -EINVAL;
}
if (parity >= SD_EC_MAX_STRIP || parity < 1) {
return -EINVAL;
}
/*
* 4 bits for parity and 4 bits for data.
* We have to compress upper data bits because it can't represent 16
*/
inode->copy_policy = ((copy / 2) << 4) + parity;
inode->nr_copies = copy + parity;
return 0;
}
default:
g_assert_not_reached();
}
return -EINVAL;
}
/*
* Sheepdog support two kinds of redundancy, full replication and erasure
* coding.
*
* # create a fully replicated vdi with x copies
* -o redundancy=x (1 <= x <= SD_MAX_COPIES)
*
* # create a erasure coded vdi with x data strips and y parity strips
* -o redundancy=x:y (x must be one of {2,4,8,16} and 1 <= y < SD_EC_MAX_STRIP)
*/
static SheepdogRedundancy *parse_redundancy_str(const char *opt)
{
SheepdogRedundancy *redundancy;
const char *n1, *n2;
long copy, parity;
char p[10];
int ret;
pstrcpy(p, sizeof(p), opt);
n1 = strtok(p, ":");
n2 = strtok(NULL, ":");
if (!n1) {
return NULL;
}
ret = qemu_strtol(n1, NULL, 10, ©);
if (ret < 0) {
return NULL;
}
redundancy = g_new0(SheepdogRedundancy, 1);
if (!n2) {
*redundancy = (SheepdogRedundancy) {
.type = SHEEPDOG_REDUNDANCY_TYPE_FULL,
.u.full.copies = copy,
};
} else {
ret = qemu_strtol(n2, NULL, 10, &parity);
if (ret < 0) {
g_free(redundancy);
return NULL;
}
*redundancy = (SheepdogRedundancy) {
.type = SHEEPDOG_REDUNDANCY_TYPE_ERASURE_CODED,
.u.erasure_coded = {
.data_strips = copy,
.parity_strips = parity,
},
};
}
return redundancy;
}
static int parse_block_size_shift(BDRVSheepdogState *s,
BlockdevCreateOptionsSheepdog *opts)
{
struct SheepdogInode *inode = &s->inode;
uint64_t object_size;
int obj_order;
if (opts->has_object_size) {
object_size = opts->object_size;
if ((object_size - 1) & object_size) { /* not a power of 2? */
return -EINVAL;
}
obj_order = ctz32(object_size);
if (obj_order < 20 || obj_order > 31) {
return -EINVAL;
}
inode->block_size_shift = (uint8_t)obj_order;
}
return 0;
}
static int sd_co_create(BlockdevCreateOptions *options, Error **errp)
{
BlockdevCreateOptionsSheepdog *opts = &options->u.sheepdog;
int ret = 0;
uint32_t vid = 0;
char *backing_file = NULL;
char *buf = NULL;
BDRVSheepdogState *s;
uint64_t max_vdi_size;
bool prealloc = false;
assert(options->driver == BLOCKDEV_DRIVER_SHEEPDOG);
s = g_new0(BDRVSheepdogState, 1);
/* Steal SocketAddress from QAPI, set NULL to prevent double free */
s->addr = opts->location->server;
opts->location->server = NULL;
if (strlen(opts->location->vdi) >= sizeof(s->name)) {
error_setg(errp, "'vdi' string too long");
ret = -EINVAL;
goto out;
}
pstrcpy(s->name, sizeof(s->name), opts->location->vdi);
s->inode.vdi_size = opts->size;
backing_file = opts->backing_file;
if (!opts->has_preallocation) {
opts->preallocation = PREALLOC_MODE_OFF;
}
switch (opts->preallocation) {
case PREALLOC_MODE_OFF:
prealloc = false;
break;
case PREALLOC_MODE_FULL:
prealloc = true;
break;
default:
error_setg(errp, "Preallocation mode not supported for Sheepdog");
ret = -EINVAL;
goto out;
}
if (opts->has_redundancy) {
ret = parse_redundancy(s, opts->redundancy);
if (ret < 0) {
error_setg(errp, "Invalid redundancy mode");
goto out;
}
}
ret = parse_block_size_shift(s, opts);
if (ret < 0) {
error_setg(errp, "Invalid object_size."
" obect_size needs to be power of 2"
" and be limited from 2^20 to 2^31");
goto out;
}
if (opts->has_backing_file) {
BlockBackend *blk;
BDRVSheepdogState *base;
BlockDriver *drv;
/* Currently, only Sheepdog backing image is supported. */
drv = bdrv_find_protocol(opts->backing_file, true, NULL);
if (!drv || strcmp(drv->protocol_name, "sheepdog") != 0) {
error_setg(errp, "backing_file must be a sheepdog image");
ret = -EINVAL;
goto out;
}
blk = blk_new_open(opts->backing_file, NULL, NULL,
BDRV_O_PROTOCOL, errp);
if (blk == NULL) {
ret = -EIO;
goto out;
}
base = blk_bs(blk)->opaque;
if (!is_snapshot(&base->inode)) {
error_setg(errp, "cannot clone from a non snapshot vdi");
blk_unref(blk);
ret = -EINVAL;
goto out;
}
s->inode.vdi_id = base->inode.vdi_id;
blk_unref(blk);
}
s->aio_context = qemu_get_aio_context();
/* if block_size_shift is not specified, get cluster default value */
if (s->inode.block_size_shift == 0) {
SheepdogVdiReq hdr;
SheepdogClusterRsp *rsp = (SheepdogClusterRsp *)&hdr;
int fd;
unsigned int wlen = 0, rlen = 0;
fd = connect_to_sdog(s, errp);
if (fd < 0) {
ret = fd;
goto out;
}
memset(&hdr, 0, sizeof(hdr));
hdr.opcode = SD_OP_GET_CLUSTER_DEFAULT;
hdr.proto_ver = SD_PROTO_VER;
ret = do_req(fd, NULL, (SheepdogReq *)&hdr,
NULL, &wlen, &rlen);
closesocket(fd);
if (ret) {
error_setg_errno(errp, -ret, "failed to get cluster default");
goto out;
}
if (rsp->result == SD_RES_SUCCESS) {
s->inode.block_size_shift = rsp->block_size_shift;
} else {
s->inode.block_size_shift = SD_DEFAULT_BLOCK_SIZE_SHIFT;
}
}
max_vdi_size = (UINT64_C(1) << s->inode.block_size_shift) * MAX_DATA_OBJS;
if (s->inode.vdi_size > max_vdi_size) {
error_setg(errp, "An image is too large."
" The maximum image size is %"PRIu64 "GB",
max_vdi_size / 1024 / 1024 / 1024);
ret = -EINVAL;
goto out;
}
ret = do_sd_create(s, &vid, 0, errp);
if (ret) {
goto out;
}
if (prealloc) {
ret = sd_create_prealloc(opts->location, opts->size, errp);
}
out:
g_free(backing_file);
g_free(buf);
g_free(s->addr);
g_free(s);
return ret;
}
static int coroutine_fn sd_co_create_opts(BlockDriver *drv,
const char *filename,
QemuOpts *opts,
Error **errp)
{
BlockdevCreateOptions *create_options = NULL;
QDict *qdict, *location_qdict;
Visitor *v;
char *redundancy;
Error *local_err = NULL;
int ret;
redundancy = qemu_opt_get_del(opts, BLOCK_OPT_REDUNDANCY);
qdict = qemu_opts_to_qdict(opts, NULL);
qdict_put_str(qdict, "driver", "sheepdog");
location_qdict = qdict_new();
qdict_put(qdict, "location", location_qdict);
sd_parse_filename(filename, location_qdict, &local_err);
if (local_err) {
error_propagate(errp, local_err);
ret = -EINVAL;
goto fail;
}
qdict_flatten(qdict);
/* Change legacy command line options into QMP ones */
static const QDictRenames opt_renames[] = {
{ BLOCK_OPT_BACKING_FILE, "backing-file" },
{ BLOCK_OPT_OBJECT_SIZE, "object-size" },
{ NULL, NULL },
};
if (!qdict_rename_keys(qdict, opt_renames, errp)) {
ret = -EINVAL;
goto fail;
}
/* Get the QAPI object */
v = qobject_input_visitor_new_flat_confused(qdict, errp);
if (!v) {
ret = -EINVAL;
goto fail;
}
visit_type_BlockdevCreateOptions(v, NULL, &create_options, &local_err);
visit_free(v);
if (local_err) {
error_propagate(errp, local_err);
ret = -EINVAL;
goto fail;
}
assert(create_options->driver == BLOCKDEV_DRIVER_SHEEPDOG);
create_options->u.sheepdog.size =
ROUND_UP(create_options->u.sheepdog.size, BDRV_SECTOR_SIZE);
if (redundancy) {
create_options->u.sheepdog.has_redundancy = true;
create_options->u.sheepdog.redundancy =
parse_redundancy_str(redundancy);
if (create_options->u.sheepdog.redundancy == NULL) {
error_setg(errp, "Invalid redundancy mode");
ret = -EINVAL;
goto fail;
}
}
ret = sd_co_create(create_options, errp);
fail:
qapi_free_BlockdevCreateOptions(create_options);
qobject_unref(qdict);
g_free(redundancy);
return ret;
}
static void sd_close(BlockDriverState *bs)
{
Error *local_err = NULL;
BDRVSheepdogState *s = bs->opaque;
SheepdogVdiReq hdr;
SheepdogVdiRsp *rsp = (SheepdogVdiRsp *)&hdr;
unsigned int wlen, rlen = 0;
int fd, ret;
trace_sheepdog_close(s->name);
fd = connect_to_sdog(s, &local_err);
if (fd < 0) {
error_report_err(local_err);
return;
}
memset(&hdr, 0, sizeof(hdr));
hdr.opcode = SD_OP_RELEASE_VDI;
hdr.type = LOCK_TYPE_NORMAL;
hdr.base_vdi_id = s->inode.vdi_id;
wlen = strlen(s->name) + 1;
hdr.data_length = wlen;
hdr.flags = SD_FLAG_CMD_WRITE;
ret = do_req(fd, s->bs, (SheepdogReq *)&hdr,
s->name, &wlen, &rlen);
closesocket(fd);
if (!ret && rsp->result != SD_RES_SUCCESS &&
rsp->result != SD_RES_VDI_NOT_LOCKED) {
error_report("%s, %s", sd_strerror(rsp->result), s->name);
}
aio_set_fd_handler(bdrv_get_aio_context(bs), s->fd,
false, NULL, NULL, NULL, NULL);
closesocket(s->fd);
qapi_free_SocketAddress(s->addr);
}
static int64_t sd_getlength(BlockDriverState *bs)
{
BDRVSheepdogState *s = bs->opaque;
return s->inode.vdi_size;
}
static int coroutine_fn sd_co_truncate(BlockDriverState *bs, int64_t offset,
bool exact, PreallocMode prealloc,
BdrvRequestFlags flags, Error **errp)
{
BDRVSheepdogState *s = bs->opaque;
int ret, fd;
unsigned int datalen;
uint64_t max_vdi_size;
int64_t old_size = s->inode.vdi_size;
if (prealloc != PREALLOC_MODE_OFF && prealloc != PREALLOC_MODE_FULL) {
error_setg(errp, "Unsupported preallocation mode '%s'",
PreallocMode_str(prealloc));
return -ENOTSUP;
}
max_vdi_size = (UINT64_C(1) << s->inode.block_size_shift) * MAX_DATA_OBJS;
if (offset < old_size) {
error_setg(errp, "shrinking is not supported");
return -EINVAL;
} else if (offset > max_vdi_size) {
error_setg(errp, "too big image size");
return -EINVAL;
}
fd = connect_to_sdog(s, errp);
if (fd < 0) {
return fd;
}
/* we don't need to update entire object */
datalen = SD_INODE_HEADER_SIZE;
s->inode.vdi_size = offset;
ret = write_object(fd, s->bs, (char *)&s->inode,
vid_to_vdi_oid(s->inode.vdi_id), s->inode.nr_copies,
datalen, 0, false, s->cache_flags);
close(fd);
if (ret < 0) {
error_setg_errno(errp, -ret, "failed to update an inode");
return ret;
}
if (prealloc == PREALLOC_MODE_FULL) {
ret = sd_prealloc(bs, old_size, offset, errp);
if (ret < 0) {
return ret;
}
}
return 0;
}
/*
* This function is called after writing data objects. If we need to
* update metadata, this sends a write request to the vdi object.
*/
static void coroutine_fn sd_write_done(SheepdogAIOCB *acb)
{
BDRVSheepdogState *s = acb->s;
struct iovec iov;
AIOReq *aio_req;
uint32_t offset, data_len, mn, mx;
mn = acb->min_dirty_data_idx;
mx = acb->max_dirty_data_idx;
if (mn <= mx) {
/* we need to update the vdi object. */
++acb->nr_pending;
offset = sizeof(s->inode) - sizeof(s->inode.data_vdi_id) +
mn * sizeof(s->inode.data_vdi_id[0]);
data_len = (mx - mn + 1) * sizeof(s->inode.data_vdi_id[0]);
acb->min_dirty_data_idx = UINT32_MAX;
acb->max_dirty_data_idx = 0;
iov.iov_base = &s->inode;
iov.iov_len = sizeof(s->inode);
aio_req = alloc_aio_req(s, acb, vid_to_vdi_oid(s->inode.vdi_id),
data_len, offset, 0, false, 0, offset);
add_aio_request(s, aio_req, &iov, 1, AIOCB_WRITE_UDATA);
if (--acb->nr_pending) {
qemu_coroutine_yield();
}
}
}
/* Delete current working VDI on the snapshot chain */
static bool sd_delete(BDRVSheepdogState *s)
{
Error *local_err = NULL;
unsigned int wlen = SD_MAX_VDI_LEN, rlen = 0;
SheepdogVdiReq hdr = {
.opcode = SD_OP_DEL_VDI,
.base_vdi_id = s->inode.vdi_id,
.data_length = wlen,
.flags = SD_FLAG_CMD_WRITE,
};
SheepdogVdiRsp *rsp = (SheepdogVdiRsp *)&hdr;
int fd, ret;
fd = connect_to_sdog(s, &local_err);
if (fd < 0) {
error_report_err(local_err);
return false;
}
ret = do_req(fd, s->bs, (SheepdogReq *)&hdr,
s->name, &wlen, &rlen);
closesocket(fd);
if (ret) {
return false;
}
switch (rsp->result) {
case SD_RES_NO_VDI:
error_report("%s was already deleted", s->name);
/* fall through */
case SD_RES_SUCCESS:
break;
default:
error_report("%s, %s", sd_strerror(rsp->result), s->name);
return false;
}
return true;
}
/*
* Create a writable VDI from a snapshot
*/
static int sd_create_branch(BDRVSheepdogState *s)
{
Error *local_err = NULL;
int ret, fd;
uint32_t vid;
char *buf;
bool deleted;
trace_sheepdog_create_branch_snapshot(s->inode.vdi_id);
buf = g_malloc(SD_INODE_SIZE);
/*
* Even If deletion fails, we will just create extra snapshot based on
* the working VDI which was supposed to be deleted. So no need to
* false bail out.
*/
deleted = sd_delete(s);
ret = do_sd_create(s, &vid, !deleted, &local_err);
if (ret) {
error_report_err(local_err);
goto out;
}
trace_sheepdog_create_branch_created(vid);
fd = connect_to_sdog(s, &local_err);
if (fd < 0) {
error_report_err(local_err);
ret = fd;
goto out;
}
ret = read_object(fd, s->bs, buf, vid_to_vdi_oid(vid),
s->inode.nr_copies, SD_INODE_SIZE, 0, s->cache_flags);
closesocket(fd);
if (ret < 0) {
goto out;
}
memcpy(&s->inode, buf, sizeof(s->inode));
s->is_snapshot = false;
ret = 0;
trace_sheepdog_create_branch_new(s->inode.vdi_id);
out:
g_free(buf);
return ret;
}
/*
* Send I/O requests to the server.
*
* This function sends requests to the server, links the requests to
* the inflight_list in BDRVSheepdogState, and exits without
* waiting the response. The responses are received in the
* `aio_read_response' function which is called from the main loop as
* a fd handler.
*
* Returns 1 when we need to wait a response, 0 when there is no sent
* request and -errno in error cases.
*/
static void coroutine_fn sd_co_rw_vector(SheepdogAIOCB *acb)
{
int ret = 0;
unsigned long len, done = 0, total = acb->nb_sectors * BDRV_SECTOR_SIZE;
unsigned long idx;
uint32_t object_size;
uint64_t oid;
uint64_t offset;
BDRVSheepdogState *s = acb->s;
SheepdogInode *inode = &s->inode;
AIOReq *aio_req;
if (acb->aiocb_type == AIOCB_WRITE_UDATA && s->is_snapshot) {
/*
* In the case we open the snapshot VDI, Sheepdog creates the
* writable VDI when we do a write operation first.
*/
ret = sd_create_branch(s);
if (ret) {
acb->ret = -EIO;
return;
}
}
object_size = (UINT32_C(1) << inode->block_size_shift);
idx = acb->sector_num * BDRV_SECTOR_SIZE / object_size;
offset = (acb->sector_num * BDRV_SECTOR_SIZE) % object_size;
/*
* Make sure we don't free the aiocb before we are done with all requests.
* This additional reference is dropped at the end of this function.
*/
acb->nr_pending++;
while (done != total) {
uint8_t flags = 0;
uint64_t old_oid = 0;
bool create = false;
oid = vid_to_data_oid(inode->data_vdi_id[idx], idx);
len = MIN(total - done, object_size - offset);
switch (acb->aiocb_type) {
case AIOCB_READ_UDATA:
if (!inode->data_vdi_id[idx]) {
qemu_iovec_memset(acb->qiov, done, 0, len);
goto done;
}
break;
case AIOCB_WRITE_UDATA:
if (!inode->data_vdi_id[idx]) {
create = true;
} else if (!is_data_obj_writable(inode, idx)) {
/* Copy-On-Write */
create = true;
old_oid = oid;
flags = SD_FLAG_CMD_COW;
}
break;
case AIOCB_DISCARD_OBJ:
/*
* We discard the object only when the whole object is
* 1) allocated 2) trimmed. Otherwise, simply skip it.
*/
if (len != object_size || inode->data_vdi_id[idx] == 0) {
goto done;
}
break;
default:
break;
}
if (create) {
trace_sheepdog_co_rw_vector_update(inode->vdi_id, oid,
vid_to_data_oid(inode->data_vdi_id[idx], idx),
idx);
oid = vid_to_data_oid(inode->vdi_id, idx);
trace_sheepdog_co_rw_vector_new(oid);
}
aio_req = alloc_aio_req(s, acb, oid, len, offset, flags, create,
old_oid,
acb->aiocb_type == AIOCB_DISCARD_OBJ ?
0 : done);
add_aio_request(s, aio_req, acb->qiov->iov, acb->qiov->niov,
acb->aiocb_type);
done:
offset = 0;
idx++;
done += len;
}
if (--acb->nr_pending) {
qemu_coroutine_yield();
}
}
static void sd_aio_complete(SheepdogAIOCB *acb)
{
BDRVSheepdogState *s;
if (acb->aiocb_type == AIOCB_FLUSH_CACHE) {
return;
}
s = acb->s;
qemu_co_mutex_lock(&s->queue_lock);
QLIST_REMOVE(acb, aiocb_siblings);
qemu_co_queue_restart_all(&s->overlapping_queue);
qemu_co_mutex_unlock(&s->queue_lock);
}
static coroutine_fn int sd_co_writev(BlockDriverState *bs, int64_t sector_num,
int nb_sectors, QEMUIOVector *qiov,
int flags)
{
SheepdogAIOCB acb;
int ret;
int64_t offset = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE;
BDRVSheepdogState *s = bs->opaque;
assert(!flags);
if (offset > s->inode.vdi_size) {
ret = sd_co_truncate(bs, offset, false, PREALLOC_MODE_OFF, 0, NULL);
if (ret < 0) {
return ret;
}
}
sd_aio_setup(&acb, s, qiov, sector_num, nb_sectors, AIOCB_WRITE_UDATA);
sd_co_rw_vector(&acb);
sd_write_done(&acb);
sd_aio_complete(&acb);
return acb.ret;
}
static coroutine_fn int sd_co_readv(BlockDriverState *bs, int64_t sector_num,
int nb_sectors, QEMUIOVector *qiov)
{
SheepdogAIOCB acb;
BDRVSheepdogState *s = bs->opaque;
sd_aio_setup(&acb, s, qiov, sector_num, nb_sectors, AIOCB_READ_UDATA);
sd_co_rw_vector(&acb);
sd_aio_complete(&acb);
return acb.ret;
}
static int coroutine_fn sd_co_flush_to_disk(BlockDriverState *bs)
{
BDRVSheepdogState *s = bs->opaque;
SheepdogAIOCB acb;
AIOReq *aio_req;
if (s->cache_flags != SD_FLAG_CMD_CACHE) {
return 0;
}
sd_aio_setup(&acb, s, NULL, 0, 0, AIOCB_FLUSH_CACHE);
acb.nr_pending++;
aio_req = alloc_aio_req(s, &acb, vid_to_vdi_oid(s->inode.vdi_id),
0, 0, 0, false, 0, 0);
add_aio_request(s, aio_req, NULL, 0, acb.aiocb_type);
if (--acb.nr_pending) {
qemu_coroutine_yield();
}
sd_aio_complete(&acb);
return acb.ret;
}
static int sd_snapshot_create(BlockDriverState *bs, QEMUSnapshotInfo *sn_info)
{
Error *local_err = NULL;
BDRVSheepdogState *s = bs->opaque;
int ret, fd;
uint32_t new_vid;
SheepdogInode *inode;
unsigned int datalen;
trace_sheepdog_snapshot_create_info(sn_info->name, sn_info->id_str, s->name,
sn_info->vm_state_size, s->is_snapshot);
if (s->is_snapshot) {
error_report("You can't create a snapshot of a snapshot VDI, "
"%s (%" PRIu32 ").", s->name, s->inode.vdi_id);
return -EINVAL;
}
trace_sheepdog_snapshot_create(sn_info->name, sn_info->id_str);
s->inode.vm_state_size = sn_info->vm_state_size;
s->inode.vm_clock_nsec = sn_info->vm_clock_nsec;
/* It appears that inode.tag does not require a NUL terminator,
* which means this use of strncpy is ok.
*/
strncpy(s->inode.tag, sn_info->name, sizeof(s->inode.tag));
/* we don't need to update entire object */
datalen = SD_INODE_HEADER_SIZE;
inode = g_malloc(datalen);
/* refresh inode. */
fd = connect_to_sdog(s, &local_err);
if (fd < 0) {
error_report_err(local_err);
ret = fd;
goto cleanup;
}
ret = write_object(fd, s->bs, (char *)&s->inode,
vid_to_vdi_oid(s->inode.vdi_id), s->inode.nr_copies,
datalen, 0, false, s->cache_flags);
if (ret < 0) {
error_report("failed to write snapshot's inode.");
goto cleanup;
}
ret = do_sd_create(s, &new_vid, 1, &local_err);
if (ret < 0) {
error_reportf_err(local_err,
"failed to create inode for snapshot: ");
goto cleanup;
}
ret = read_object(fd, s->bs, (char *)inode,
vid_to_vdi_oid(new_vid), s->inode.nr_copies, datalen, 0,
s->cache_flags);
if (ret < 0) {
error_report("failed to read new inode info. %s", strerror(errno));
goto cleanup;
}
memcpy(&s->inode, inode, datalen);
trace_sheepdog_snapshot_create_inode(s->inode.name, s->inode.snap_id,
s->inode.vdi_id);
cleanup:
g_free(inode);
closesocket(fd);
return ret;
}
/*
* We implement rollback(loadvm) operation to the specified snapshot by
* 1) switch to the snapshot
* 2) rely on sd_create_branch to delete working VDI and
* 3) create a new working VDI based on the specified snapshot
*/
static int sd_snapshot_goto(BlockDriverState *bs, const char *snapshot_id)
{
BDRVSheepdogState *s = bs->opaque;
BDRVSheepdogState *old_s;
char tag[SD_MAX_VDI_TAG_LEN];
uint32_t snapid = 0;
int ret;
if (!sd_parse_snapid_or_tag(snapshot_id, &snapid, tag)) {
return -EINVAL;
}
old_s = g_new(BDRVSheepdogState, 1);
memcpy(old_s, s, sizeof(BDRVSheepdogState));
ret = reload_inode(s, snapid, tag);
if (ret) {
goto out;
}
ret = sd_create_branch(s);
if (ret) {
goto out;
}
g_free(old_s);
return 0;
out:
/* recover bdrv_sd_state */
memcpy(s, old_s, sizeof(BDRVSheepdogState));
g_free(old_s);
error_report("failed to open. recover old bdrv_sd_state.");
return ret;
}
#define NR_BATCHED_DISCARD 128
static int remove_objects(BDRVSheepdogState *s, Error **errp)
{
int fd, i = 0, nr_objs = 0;
int ret;
SheepdogInode *inode = &s->inode;
fd = connect_to_sdog(s, errp);
if (fd < 0) {
return fd;
}
nr_objs = count_data_objs(inode);
while (i < nr_objs) {
int start_idx, nr_filled_idx;
while (i < nr_objs && !inode->data_vdi_id[i]) {
i++;
}
start_idx = i;
nr_filled_idx = 0;
while (i < nr_objs && nr_filled_idx < NR_BATCHED_DISCARD) {
if (inode->data_vdi_id[i]) {
inode->data_vdi_id[i] = 0;
nr_filled_idx++;
}
i++;
}
ret = write_object(fd, s->bs,
(char *)&inode->data_vdi_id[start_idx],
vid_to_vdi_oid(s->inode.vdi_id), inode->nr_copies,
(i - start_idx) * sizeof(uint32_t),
offsetof(struct SheepdogInode,
data_vdi_id[start_idx]),
false, s->cache_flags);
if (ret < 0) {
error_setg(errp, "Failed to discard snapshot inode");
goto out;
}
}
ret = 0;
out:
closesocket(fd);
return ret;
}
static int sd_snapshot_delete(BlockDriverState *bs,
const char *snapshot_id,
const char *name,
Error **errp)
{
/*
* FIXME should delete the snapshot matching both @snapshot_id and
* @name, but @name not used here
*/
unsigned long snap_id = 0;
char snap_tag[SD_MAX_VDI_TAG_LEN];
int fd, ret;
char buf[SD_MAX_VDI_LEN + SD_MAX_VDI_TAG_LEN];
BDRVSheepdogState *s = bs->opaque;
unsigned int wlen = SD_MAX_VDI_LEN + SD_MAX_VDI_TAG_LEN, rlen = 0;
uint32_t vid;
SheepdogVdiReq hdr = {
.opcode = SD_OP_DEL_VDI,
.data_length = wlen,
.flags = SD_FLAG_CMD_WRITE,
};
SheepdogVdiRsp *rsp = (SheepdogVdiRsp *)&hdr;
ret = remove_objects(s, errp);
if (ret) {
return ret;
}
memset(buf, 0, sizeof(buf));
memset(snap_tag, 0, sizeof(snap_tag));
pstrcpy(buf, SD_MAX_VDI_LEN, s->name);
/* TODO Use sd_parse_snapid() once this mess is cleaned up */
ret = qemu_strtoul(snapshot_id, NULL, 10, &snap_id);
if (ret || snap_id > UINT32_MAX) {
/*
* FIXME Since qemu_strtoul() returns -EINVAL when
* @snapshot_id is null, @snapshot_id is mandatory. Correct
* would be to require at least one of @snapshot_id and @name.
*/
error_setg(errp, "Invalid snapshot ID: %s",
snapshot_id ? snapshot_id : "");
return -EINVAL;
}
if (snap_id) {
hdr.snapid = (uint32_t) snap_id;
} else {
/* FIXME I suspect we should use @name here */
/* FIXME don't truncate silently */
pstrcpy(snap_tag, sizeof(snap_tag), snapshot_id);
pstrcpy(buf + SD_MAX_VDI_LEN, SD_MAX_VDI_TAG_LEN, snap_tag);
}
ret = find_vdi_name(s, s->name, snap_id, snap_tag, &vid, true, errp);
if (ret) {
return ret;
}
fd = connect_to_sdog(s, errp);
if (fd < 0) {
return fd;
}
ret = do_req(fd, s->bs, (SheepdogReq *)&hdr,
buf, &wlen, &rlen);
closesocket(fd);
if (ret) {
error_setg_errno(errp, -ret, "Couldn't send request to server");
return ret;
}
switch (rsp->result) {
case SD_RES_NO_VDI:
error_setg(errp, "Can't find the snapshot");
return -ENOENT;
case SD_RES_SUCCESS:
break;
default:
error_setg(errp, "%s", sd_strerror(rsp->result));
return -EIO;
}
return 0;
}
static int sd_snapshot_list(BlockDriverState *bs, QEMUSnapshotInfo **psn_tab)
{
Error *local_err = NULL;
BDRVSheepdogState *s = bs->opaque;
SheepdogReq req;
int fd, nr = 1024, ret, max = BITS_TO_LONGS(SD_NR_VDIS) * sizeof(long);
QEMUSnapshotInfo *sn_tab = NULL;
unsigned wlen, rlen;
int found = 0;
SheepdogInode *inode;
unsigned long *vdi_inuse;
unsigned int start_nr;
uint64_t hval;
uint32_t vid;
vdi_inuse = g_malloc(max);
inode = g_malloc(SD_INODE_HEADER_SIZE);
fd = connect_to_sdog(s, &local_err);
if (fd < 0) {
error_report_err(local_err);
ret = fd;
goto out;
}
rlen = max;
wlen = 0;
memset(&req, 0, sizeof(req));
req.opcode = SD_OP_READ_VDIS;
req.data_length = max;
ret = do_req(fd, s->bs, &req, vdi_inuse, &wlen, &rlen);
closesocket(fd);
if (ret) {
goto out;
}
sn_tab = g_new0(QEMUSnapshotInfo, nr);
/* calculate a vdi id with hash function */
hval = fnv_64a_buf(s->name, strlen(s->name), FNV1A_64_INIT);
start_nr = hval & (SD_NR_VDIS - 1);
fd = connect_to_sdog(s, &local_err);
if (fd < 0) {
error_report_err(local_err);
ret = fd;
goto out;
}
for (vid = start_nr; found < nr; vid = (vid + 1) % SD_NR_VDIS) {
if (!test_bit(vid, vdi_inuse)) {
break;
}
/* we don't need to read entire object */
ret = read_object(fd, s->bs, (char *)inode,
vid_to_vdi_oid(vid),
0, SD_INODE_HEADER_SIZE, 0,
s->cache_flags);
if (ret) {
continue;
}
if (!strcmp(inode->name, s->name) && is_snapshot(inode)) {
sn_tab[found].date_sec = inode->snap_ctime >> 32;
sn_tab[found].date_nsec = inode->snap_ctime & 0xffffffff;
sn_tab[found].vm_state_size = inode->vm_state_size;
sn_tab[found].vm_clock_nsec = inode->vm_clock_nsec;
snprintf(sn_tab[found].id_str, sizeof(sn_tab[found].id_str),
"%" PRIu32, inode->snap_id);
pstrcpy(sn_tab[found].name,
MIN(sizeof(sn_tab[found].name), sizeof(inode->tag)),
inode->tag);
found++;
}
}
closesocket(fd);
out:
*psn_tab = sn_tab;
g_free(vdi_inuse);
g_free(inode);
if (ret < 0) {
return ret;
}
return found;
}
static int do_load_save_vmstate(BDRVSheepdogState *s, uint8_t *data,
int64_t pos, int size, int load)
{
Error *local_err = NULL;
bool create;
int fd, ret = 0, remaining = size;
unsigned int data_len;
uint64_t vmstate_oid;
uint64_t offset;
uint32_t vdi_index;
uint32_t vdi_id = load ? s->inode.parent_vdi_id : s->inode.vdi_id;
uint32_t object_size = (UINT32_C(1) << s->inode.block_size_shift);
fd = connect_to_sdog(s, &local_err);
if (fd < 0) {
error_report_err(local_err);
return fd;
}
while (remaining) {
vdi_index = pos / object_size;
offset = pos % object_size;
data_len = MIN(remaining, object_size - offset);
vmstate_oid = vid_to_vmstate_oid(vdi_id, vdi_index);
create = (offset == 0);
if (load) {
ret = read_object(fd, s->bs, (char *)data, vmstate_oid,
s->inode.nr_copies, data_len, offset,
s->cache_flags);
} else {
ret = write_object(fd, s->bs, (char *)data, vmstate_oid,
s->inode.nr_copies, data_len, offset, create,
s->cache_flags);
}
if (ret < 0) {
error_report("failed to save vmstate %s", strerror(errno));
goto cleanup;
}
pos += data_len;
data += data_len;
remaining -= data_len;
}
ret = size;
cleanup:
closesocket(fd);
return ret;
}
static int sd_save_vmstate(BlockDriverState *bs, QEMUIOVector *qiov,
int64_t pos)
{
BDRVSheepdogState *s = bs->opaque;
void *buf;
int ret;
buf = qemu_blockalign(bs, qiov->size);
qemu_iovec_to_buf(qiov, 0, buf, qiov->size);
ret = do_load_save_vmstate(s, (uint8_t *) buf, pos, qiov->size, 0);
qemu_vfree(buf);
return ret;
}
static int sd_load_vmstate(BlockDriverState *bs, QEMUIOVector *qiov,
int64_t pos)
{
BDRVSheepdogState *s = bs->opaque;
void *buf;
int ret;
buf = qemu_blockalign(bs, qiov->size);
ret = do_load_save_vmstate(s, buf, pos, qiov->size, 1);
qemu_iovec_from_buf(qiov, 0, buf, qiov->size);
qemu_vfree(buf);
return ret;
}
static coroutine_fn int sd_co_pdiscard(BlockDriverState *bs, int64_t offset,
int bytes)
{
SheepdogAIOCB acb;
BDRVSheepdogState *s = bs->opaque;
QEMUIOVector discard_iov;
struct iovec iov;
uint32_t zero = 0;
if (!s->discard_supported) {
return 0;
}
memset(&discard_iov, 0, sizeof(discard_iov));
memset(&iov, 0, sizeof(iov));
iov.iov_base = &zero;
iov.iov_len = sizeof(zero);
discard_iov.iov = &iov;
discard_iov.niov = 1;
if (!QEMU_IS_ALIGNED(offset | bytes, BDRV_SECTOR_SIZE)) {
return -ENOTSUP;
}
sd_aio_setup(&acb, s, &discard_iov, offset >> BDRV_SECTOR_BITS,
bytes >> BDRV_SECTOR_BITS, AIOCB_DISCARD_OBJ);
sd_co_rw_vector(&acb);
sd_aio_complete(&acb);
return acb.ret;
}
static coroutine_fn int
sd_co_block_status(BlockDriverState *bs, bool want_zero, int64_t offset,
int64_t bytes, int64_t *pnum, int64_t *map,
BlockDriverState **file)
{
BDRVSheepdogState *s = bs->opaque;
SheepdogInode *inode = &s->inode;
uint32_t object_size = (UINT32_C(1) << inode->block_size_shift);
unsigned long start = offset / object_size,
end = DIV_ROUND_UP(offset + bytes, object_size);
unsigned long idx;
*map = offset;
int ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
for (idx = start; idx < end; idx++) {
if (inode->data_vdi_id[idx] == 0) {
break;
}
}
if (idx == start) {
/* Get the longest length of unallocated sectors */
ret = 0;
for (idx = start + 1; idx < end; idx++) {
if (inode->data_vdi_id[idx] != 0) {
break;
}
}
}
*pnum = (idx - start) * object_size;
if (*pnum > bytes) {
*pnum = bytes;
}
if (ret > 0 && ret & BDRV_BLOCK_OFFSET_VALID) {
*file = bs;
}
return ret;
}
static int64_t sd_get_allocated_file_size(BlockDriverState *bs)
{
BDRVSheepdogState *s = bs->opaque;
SheepdogInode *inode = &s->inode;
uint32_t object_size = (UINT32_C(1) << inode->block_size_shift);
unsigned long i, last = DIV_ROUND_UP(inode->vdi_size, object_size);
uint64_t size = 0;
for (i = 0; i < last; i++) {
if (inode->data_vdi_id[i] == 0) {
continue;
}
size += object_size;
}
return size;
}
static QemuOptsList sd_create_opts = {
.name = "sheepdog-create-opts",
.head = QTAILQ_HEAD_INITIALIZER(sd_create_opts.head),
.desc = {
{
.name = BLOCK_OPT_SIZE,
.type = QEMU_OPT_SIZE,
.help = "Virtual disk size"
},
{
.name = BLOCK_OPT_BACKING_FILE,
.type = QEMU_OPT_STRING,
.help = "File name of a base image"
},
{
.name = BLOCK_OPT_PREALLOC,
.type = QEMU_OPT_STRING,
.help = "Preallocation mode (allowed values: off, full)"
},
{
.name = BLOCK_OPT_REDUNDANCY,
.type = QEMU_OPT_STRING,
.help = "Redundancy of the image"
},
{
.name = BLOCK_OPT_OBJECT_SIZE,
.type = QEMU_OPT_SIZE,
.help = "Object size of the image"
},
{ /* end of list */ }
}
};
static const char *const sd_strong_runtime_opts[] = {
"vdi",
"snap-id",
"tag",
"server.",
NULL
};
static BlockDriver bdrv_sheepdog = {
.format_name = "sheepdog",
.protocol_name = "sheepdog",
.instance_size = sizeof(BDRVSheepdogState),
.bdrv_parse_filename = sd_parse_filename,
.bdrv_file_open = sd_open,
.bdrv_reopen_prepare = sd_reopen_prepare,
.bdrv_reopen_commit = sd_reopen_commit,
.bdrv_reopen_abort = sd_reopen_abort,
.bdrv_close = sd_close,
.bdrv_co_create = sd_co_create,
.bdrv_co_create_opts = sd_co_create_opts,
.bdrv_has_zero_init = bdrv_has_zero_init_1,
.bdrv_getlength = sd_getlength,
.bdrv_get_allocated_file_size = sd_get_allocated_file_size,
.bdrv_co_truncate = sd_co_truncate,
.bdrv_co_readv = sd_co_readv,
.bdrv_co_writev = sd_co_writev,
.bdrv_co_flush_to_disk = sd_co_flush_to_disk,
.bdrv_co_pdiscard = sd_co_pdiscard,
.bdrv_co_block_status = sd_co_block_status,
.bdrv_snapshot_create = sd_snapshot_create,
.bdrv_snapshot_goto = sd_snapshot_goto,
.bdrv_snapshot_delete = sd_snapshot_delete,
.bdrv_snapshot_list = sd_snapshot_list,
.bdrv_save_vmstate = sd_save_vmstate,
.bdrv_load_vmstate = sd_load_vmstate,
.bdrv_detach_aio_context = sd_detach_aio_context,
.bdrv_attach_aio_context = sd_attach_aio_context,
.create_opts = &sd_create_opts,
.strong_runtime_opts = sd_strong_runtime_opts,
};
static BlockDriver bdrv_sheepdog_tcp = {
.format_name = "sheepdog",
.protocol_name = "sheepdog+tcp",
.instance_size = sizeof(BDRVSheepdogState),
.bdrv_parse_filename = sd_parse_filename,
.bdrv_file_open = sd_open,
.bdrv_reopen_prepare = sd_reopen_prepare,
.bdrv_reopen_commit = sd_reopen_commit,
.bdrv_reopen_abort = sd_reopen_abort,
.bdrv_close = sd_close,
.bdrv_co_create = sd_co_create,
.bdrv_co_create_opts = sd_co_create_opts,
.bdrv_has_zero_init = bdrv_has_zero_init_1,
.bdrv_getlength = sd_getlength,
.bdrv_get_allocated_file_size = sd_get_allocated_file_size,
.bdrv_co_truncate = sd_co_truncate,
.bdrv_co_readv = sd_co_readv,
.bdrv_co_writev = sd_co_writev,
.bdrv_co_flush_to_disk = sd_co_flush_to_disk,
.bdrv_co_pdiscard = sd_co_pdiscard,
.bdrv_co_block_status = sd_co_block_status,
.bdrv_snapshot_create = sd_snapshot_create,
.bdrv_snapshot_goto = sd_snapshot_goto,
.bdrv_snapshot_delete = sd_snapshot_delete,
.bdrv_snapshot_list = sd_snapshot_list,
.bdrv_save_vmstate = sd_save_vmstate,
.bdrv_load_vmstate = sd_load_vmstate,
.bdrv_detach_aio_context = sd_detach_aio_context,
.bdrv_attach_aio_context = sd_attach_aio_context,
.create_opts = &sd_create_opts,
.strong_runtime_opts = sd_strong_runtime_opts,
};
static BlockDriver bdrv_sheepdog_unix = {
.format_name = "sheepdog",
.protocol_name = "sheepdog+unix",
.instance_size = sizeof(BDRVSheepdogState),
.bdrv_parse_filename = sd_parse_filename,
.bdrv_file_open = sd_open,
.bdrv_reopen_prepare = sd_reopen_prepare,
.bdrv_reopen_commit = sd_reopen_commit,
.bdrv_reopen_abort = sd_reopen_abort,
.bdrv_close = sd_close,
.bdrv_co_create = sd_co_create,
.bdrv_co_create_opts = sd_co_create_opts,
.bdrv_has_zero_init = bdrv_has_zero_init_1,
.bdrv_getlength = sd_getlength,
.bdrv_get_allocated_file_size = sd_get_allocated_file_size,
.bdrv_co_truncate = sd_co_truncate,
.bdrv_co_readv = sd_co_readv,
.bdrv_co_writev = sd_co_writev,
.bdrv_co_flush_to_disk = sd_co_flush_to_disk,
.bdrv_co_pdiscard = sd_co_pdiscard,
.bdrv_co_block_status = sd_co_block_status,
.bdrv_snapshot_create = sd_snapshot_create,
.bdrv_snapshot_goto = sd_snapshot_goto,
.bdrv_snapshot_delete = sd_snapshot_delete,
.bdrv_snapshot_list = sd_snapshot_list,
.bdrv_save_vmstate = sd_save_vmstate,
.bdrv_load_vmstate = sd_load_vmstate,
.bdrv_detach_aio_context = sd_detach_aio_context,
.bdrv_attach_aio_context = sd_attach_aio_context,
.create_opts = &sd_create_opts,
.strong_runtime_opts = sd_strong_runtime_opts,
};
static void bdrv_sheepdog_init(void)
{
bdrv_register(&bdrv_sheepdog);
bdrv_register(&bdrv_sheepdog_tcp);
bdrv_register(&bdrv_sheepdog_unix);
}
block_init(bdrv_sheepdog_init);