/* * QEMU IDE Emulation: PCI Bus support. * * Copyright (c) 2003 Fabrice Bellard * Copyright (c) 2006 Openedhand Ltd. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "hw/hw.h" #include "hw/i386/pc.h" #include "hw/pci/pci.h" #include "hw/isa/isa.h" #include "sysemu/block-backend.h" #include "sysemu/dma.h" #include "qemu/error-report.h" #include "hw/ide/pci.h" #include "trace.h" #define BMDMA_PAGE_SIZE 4096 #define BM_MIGRATION_COMPAT_STATUS_BITS \ (IDE_RETRY_DMA | IDE_RETRY_PIO | \ IDE_RETRY_READ | IDE_RETRY_FLUSH) static void bmdma_start_dma(IDEDMA *dma, IDEState *s, BlockCompletionFunc *dma_cb) { BMDMAState *bm = DO_UPCAST(BMDMAState, dma, dma); bm->dma_cb = dma_cb; bm->cur_prd_last = 0; bm->cur_prd_addr = 0; bm->cur_prd_len = 0; if (bm->status & BM_STATUS_DMAING) { bm->dma_cb(bmdma_active_if(bm), 0); } } /** * Prepare an sglist based on available PRDs. * @limit: How many bytes to prepare total. * * Returns the number of bytes prepared, -1 on error. * IDEState.io_buffer_size will contain the number of bytes described * by the PRDs, whether or not we added them to the sglist. */ static int32_t bmdma_prepare_buf(IDEDMA *dma, int32_t limit) { BMDMAState *bm = DO_UPCAST(BMDMAState, dma, dma); IDEState *s = bmdma_active_if(bm); PCIDevice *pci_dev = PCI_DEVICE(bm->pci_dev); struct { uint32_t addr; uint32_t size; } prd; int l, len; pci_dma_sglist_init(&s->sg, pci_dev, s->nsector / (BMDMA_PAGE_SIZE / 512) + 1); s->io_buffer_size = 0; for(;;) { if (bm->cur_prd_len == 0) { /* end of table (with a fail safe of one page) */ if (bm->cur_prd_last || (bm->cur_addr - bm->addr) >= BMDMA_PAGE_SIZE) { return s->sg.size; } pci_dma_read(pci_dev, bm->cur_addr, &prd, 8); bm->cur_addr += 8; prd.addr = le32_to_cpu(prd.addr); prd.size = le32_to_cpu(prd.size); len = prd.size & 0xfffe; if (len == 0) len = 0x10000; bm->cur_prd_len = len; bm->cur_prd_addr = prd.addr; bm->cur_prd_last = (prd.size & 0x80000000); } l = bm->cur_prd_len; if (l > 0) { uint64_t sg_len; /* Don't add extra bytes to the SGList; consume any remaining * PRDs from the guest, but ignore them. */ sg_len = MIN(limit - s->sg.size, bm->cur_prd_len); if (sg_len) { qemu_sglist_add(&s->sg, bm->cur_prd_addr, sg_len); } bm->cur_prd_addr += l; bm->cur_prd_len -= l; s->io_buffer_size += l; } } qemu_sglist_destroy(&s->sg); s->io_buffer_size = 0; return -1; } /* return 0 if buffer completed */ static int bmdma_rw_buf(IDEDMA *dma, int is_write) { BMDMAState *bm = DO_UPCAST(BMDMAState, dma, dma); IDEState *s = bmdma_active_if(bm); PCIDevice *pci_dev = PCI_DEVICE(bm->pci_dev); struct { uint32_t addr; uint32_t size; } prd; int l, len; for(;;) { l = s->io_buffer_size - s->io_buffer_index; if (l <= 0) break; if (bm->cur_prd_len == 0) { /* end of table (with a fail safe of one page) */ if (bm->cur_prd_last || (bm->cur_addr - bm->addr) >= BMDMA_PAGE_SIZE) return 0; pci_dma_read(pci_dev, bm->cur_addr, &prd, 8); bm->cur_addr += 8; prd.addr = le32_to_cpu(prd.addr); prd.size = le32_to_cpu(prd.size); len = prd.size & 0xfffe; if (len == 0) len = 0x10000; bm->cur_prd_len = len; bm->cur_prd_addr = prd.addr; bm->cur_prd_last = (prd.size & 0x80000000); } if (l > bm->cur_prd_len) l = bm->cur_prd_len; if (l > 0) { if (is_write) { pci_dma_write(pci_dev, bm->cur_prd_addr, s->io_buffer + s->io_buffer_index, l); } else { pci_dma_read(pci_dev, bm->cur_prd_addr, s->io_buffer + s->io_buffer_index, l); } bm->cur_prd_addr += l; bm->cur_prd_len -= l; s->io_buffer_index += l; } } return 1; } static void bmdma_set_inactive(IDEDMA *dma, bool more) { BMDMAState *bm = DO_UPCAST(BMDMAState, dma, dma); bm->dma_cb = NULL; if (more) { bm->status |= BM_STATUS_DMAING; } else { bm->status &= ~BM_STATUS_DMAING; } } static void bmdma_restart_dma(IDEDMA *dma) { BMDMAState *bm = DO_UPCAST(BMDMAState, dma, dma); bm->cur_addr = bm->addr; } static void bmdma_cancel(BMDMAState *bm) { if (bm->status & BM_STATUS_DMAING) { /* cancel DMA request */ bmdma_set_inactive(&bm->dma, false); } } static void bmdma_reset(IDEDMA *dma) { BMDMAState *bm = DO_UPCAST(BMDMAState, dma, dma); trace_bmdma_reset(); bmdma_cancel(bm); bm->cmd = 0; bm->status = 0; bm->addr = 0; bm->cur_addr = 0; bm->cur_prd_last = 0; bm->cur_prd_addr = 0; bm->cur_prd_len = 0; } static void bmdma_irq(void *opaque, int n, int level) { BMDMAState *bm = opaque; if (!level) { /* pass through lower */ qemu_set_irq(bm->irq, level); return; } bm->status |= BM_STATUS_INT; /* trigger the real irq */ qemu_set_irq(bm->irq, level); } void bmdma_cmd_writeb(BMDMAState *bm, uint32_t val) { trace_bmdma_cmd_writeb(val); /* Ignore writes to SSBM if it keeps the old value */ if ((val & BM_CMD_START) != (bm->cmd & BM_CMD_START)) { if (!(val & BM_CMD_START)) { ide_cancel_dma_sync(idebus_active_if(bm->bus)); bm->status &= ~BM_STATUS_DMAING; } else { bm->cur_addr = bm->addr; if (!(bm->status & BM_STATUS_DMAING)) { bm->status |= BM_STATUS_DMAING; /* start dma transfer if possible */ if (bm->dma_cb) bm->dma_cb(bmdma_active_if(bm), 0); } } } bm->cmd = val & 0x09; } static uint64_t bmdma_addr_read(void *opaque, hwaddr addr, unsigned width) { BMDMAState *bm = opaque; uint32_t mask = (1ULL << (width * 8)) - 1; uint64_t data; data = (bm->addr >> (addr * 8)) & mask; trace_bmdma_addr_read(data); return data; } static void bmdma_addr_write(void *opaque, hwaddr addr, uint64_t data, unsigned width) { BMDMAState *bm = opaque; int shift = addr * 8; uint32_t mask = (1ULL << (width * 8)) - 1; trace_bmdma_addr_write(data); bm->addr &= ~(mask << shift); bm->addr |= ((data & mask) << shift) & ~3; } MemoryRegionOps bmdma_addr_ioport_ops = { .read = bmdma_addr_read, .write = bmdma_addr_write, .endianness = DEVICE_LITTLE_ENDIAN, }; static bool ide_bmdma_current_needed(void *opaque) { BMDMAState *bm = opaque; return (bm->cur_prd_len != 0); } static bool ide_bmdma_status_needed(void *opaque) { BMDMAState *bm = opaque; /* Older versions abused some bits in the status register for internal * error state. If any of these bits are set, we must add a subsection to * transfer the real status register */ uint8_t abused_bits = BM_MIGRATION_COMPAT_STATUS_BITS; return ((bm->status & abused_bits) != 0); } static int ide_bmdma_pre_save(void *opaque) { BMDMAState *bm = opaque; uint8_t abused_bits = BM_MIGRATION_COMPAT_STATUS_BITS; if (!(bm->status & BM_STATUS_DMAING) && bm->dma_cb) { bm->bus->error_status = ide_dma_cmd_to_retry(bmdma_active_if(bm)->dma_cmd); } bm->migration_retry_unit = bm->bus->retry_unit; bm->migration_retry_sector_num = bm->bus->retry_sector_num; bm->migration_retry_nsector = bm->bus->retry_nsector; bm->migration_compat_status = (bm->status & ~abused_bits) | (bm->bus->error_status & abused_bits); return 0; } /* This function accesses bm->bus->error_status which is loaded only after * BMDMA itself. This is why the function is called from ide_pci_post_load * instead of being registered with VMState where it would run too early. */ static int ide_bmdma_post_load(void *opaque, int version_id) { BMDMAState *bm = opaque; uint8_t abused_bits = BM_MIGRATION_COMPAT_STATUS_BITS; if (bm->status == 0) { bm->status = bm->migration_compat_status & ~abused_bits; bm->bus->error_status |= bm->migration_compat_status & abused_bits; } if (bm->bus->error_status) { bm->bus->retry_sector_num = bm->migration_retry_sector_num; bm->bus->retry_nsector = bm->migration_retry_nsector; bm->bus->retry_unit = bm->migration_retry_unit; } return 0; } static const VMStateDescription vmstate_bmdma_current = { .name = "ide bmdma_current", .version_id = 1, .minimum_version_id = 1, .needed = ide_bmdma_current_needed, .fields = (VMStateField[]) { VMSTATE_UINT32(cur_addr, BMDMAState), VMSTATE_UINT32(cur_prd_last, BMDMAState), VMSTATE_UINT32(cur_prd_addr, BMDMAState), VMSTATE_UINT32(cur_prd_len, BMDMAState), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_bmdma_status = { .name ="ide bmdma/status", .version_id = 1, .minimum_version_id = 1, .needed = ide_bmdma_status_needed, .fields = (VMStateField[]) { VMSTATE_UINT8(status, BMDMAState), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_bmdma = { .name = "ide bmdma", .version_id = 3, .minimum_version_id = 0, .pre_save = ide_bmdma_pre_save, .fields = (VMStateField[]) { VMSTATE_UINT8(cmd, BMDMAState), VMSTATE_UINT8(migration_compat_status, BMDMAState), VMSTATE_UINT32(addr, BMDMAState), VMSTATE_INT64(migration_retry_sector_num, BMDMAState), VMSTATE_UINT32(migration_retry_nsector, BMDMAState), VMSTATE_UINT8(migration_retry_unit, BMDMAState), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription*[]) { &vmstate_bmdma_current, &vmstate_bmdma_status, NULL } }; static int ide_pci_post_load(void *opaque, int version_id) { PCIIDEState *d = opaque; int i; for(i = 0; i < 2; i++) { /* current versions always store 0/1, but older version stored bigger values. We only need last bit */ d->bmdma[i].migration_retry_unit &= 1; ide_bmdma_post_load(&d->bmdma[i], -1); } return 0; } const VMStateDescription vmstate_ide_pci = { .name = "ide", .version_id = 3, .minimum_version_id = 0, .post_load = ide_pci_post_load, .fields = (VMStateField[]) { VMSTATE_PCI_DEVICE(parent_obj, PCIIDEState), VMSTATE_STRUCT_ARRAY(bmdma, PCIIDEState, 2, 0, vmstate_bmdma, BMDMAState), VMSTATE_IDE_BUS_ARRAY(bus, PCIIDEState, 2), VMSTATE_IDE_DRIVES(bus[0].ifs, PCIIDEState), VMSTATE_IDE_DRIVES(bus[1].ifs, PCIIDEState), VMSTATE_END_OF_LIST() } }; void pci_ide_create_devs(PCIDevice *dev, DriveInfo **hd_table) { PCIIDEState *d = PCI_IDE(dev); static const int bus[4] = { 0, 0, 1, 1 }; static const int unit[4] = { 0, 1, 0, 1 }; int i; for (i = 0; i < 4; i++) { if (hd_table[i] == NULL) continue; ide_create_drive(d->bus+bus[i], unit[i], hd_table[i]); } } static const struct IDEDMAOps bmdma_ops = { .start_dma = bmdma_start_dma, .prepare_buf = bmdma_prepare_buf, .rw_buf = bmdma_rw_buf, .restart_dma = bmdma_restart_dma, .set_inactive = bmdma_set_inactive, .reset = bmdma_reset, }; void bmdma_init(IDEBus *bus, BMDMAState *bm, PCIIDEState *d) { if (bus->dma == &bm->dma) { return; } bm->dma.ops = &bmdma_ops; bus->dma = &bm->dma; bm->irq = bus->irq; bus->irq = qemu_allocate_irq(bmdma_irq, bm, 0); bm->pci_dev = d; } static const TypeInfo pci_ide_type_info = { .name = TYPE_PCI_IDE, .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(PCIIDEState), .abstract = true, .interfaces = (InterfaceInfo[]) { { INTERFACE_CONVENTIONAL_PCI_DEVICE }, { }, }, }; static void pci_ide_register_types(void) { type_register_static(&pci_ide_type_info); } type_init(pci_ide_register_types)