#include "exec.h" #include "host-utils.h" #include "helper.h" //#define DEBUG_PCALL //#define DEBUG_MMU //#define DEBUG_MXCC //#define DEBUG_UNALIGNED //#define DEBUG_UNASSIGNED //#define DEBUG_ASI #ifdef DEBUG_MMU #define DPRINTF_MMU(fmt, args...) \ do { printf("MMU: " fmt , ##args); } while (0) #else #define DPRINTF_MMU(fmt, args...) #endif #ifdef DEBUG_MXCC #define DPRINTF_MXCC(fmt, args...) \ do { printf("MXCC: " fmt , ##args); } while (0) #else #define DPRINTF_MXCC(fmt, args...) #endif #ifdef DEBUG_ASI #define DPRINTF_ASI(fmt, args...) \ do { printf("ASI: " fmt , ##args); } while (0) #else #define DPRINTF_ASI(fmt, args...) #endif void raise_exception(int tt) { env->exception_index = tt; cpu_loop_exit(); } void helper_trap(target_ulong nb_trap) { env->exception_index = TT_TRAP + (nb_trap & 0x7f); cpu_loop_exit(); } void helper_trapcc(target_ulong nb_trap, target_ulong do_trap) { if (do_trap) { env->exception_index = TT_TRAP + (nb_trap & 0x7f); cpu_loop_exit(); } } void helper_check_ieee_exceptions(void) { target_ulong status; status = get_float_exception_flags(&env->fp_status); if (status) { /* Copy IEEE 754 flags into FSR */ if (status & float_flag_invalid) env->fsr |= FSR_NVC; if (status & float_flag_overflow) env->fsr |= FSR_OFC; if (status & float_flag_underflow) env->fsr |= FSR_UFC; if (status & float_flag_divbyzero) env->fsr |= FSR_DZC; if (status & float_flag_inexact) env->fsr |= FSR_NXC; if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) { /* Unmasked exception, generate a trap */ env->fsr |= FSR_FTT_IEEE_EXCP; raise_exception(TT_FP_EXCP); } else { /* Accumulate exceptions */ env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5; } } } void helper_clear_float_exceptions(void) { set_float_exception_flags(0, &env->fp_status); } #ifdef USE_INT_TO_FLOAT_HELPERS void do_fitos(void) { FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status); } void do_fitod(void) { DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status); } #if defined(CONFIG_USER_ONLY) void do_fitoq(void) { QT0 = int32_to_float128(*((int32_t *)&FT1), &env->fp_status); } #endif #ifdef TARGET_SPARC64 void do_fxtos(void) { FT0 = int64_to_float32(*((int64_t *)&DT1), &env->fp_status); } void do_fxtod(void) { DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status); } #if defined(CONFIG_USER_ONLY) void do_fxtoq(void) { QT0 = int64_to_float128(*((int32_t *)&DT1), &env->fp_status); } #endif #endif #endif void helper_fabss(void) { FT0 = float32_abs(FT1); } #ifdef TARGET_SPARC64 void helper_fabsd(void) { DT0 = float64_abs(DT1); } #if defined(CONFIG_USER_ONLY) void helper_fabsq(void) { QT0 = float128_abs(QT1); } #endif #endif void helper_fsqrts(void) { FT0 = float32_sqrt(FT1, &env->fp_status); } void helper_fsqrtd(void) { DT0 = float64_sqrt(DT1, &env->fp_status); } #if defined(CONFIG_USER_ONLY) void helper_fsqrtq(void) { QT0 = float128_sqrt(QT1, &env->fp_status); } #endif #define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \ void glue(helper_, name) (void) \ { \ target_ulong new_fsr; \ \ env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \ case float_relation_unordered: \ new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \ if ((env->fsr & FSR_NVM) || TRAP) { \ env->fsr |= new_fsr; \ env->fsr |= FSR_NVC; \ env->fsr |= FSR_FTT_IEEE_EXCP; \ raise_exception(TT_FP_EXCP); \ } else { \ env->fsr |= FSR_NVA; \ } \ break; \ case float_relation_less: \ new_fsr = FSR_FCC0 << FS; \ break; \ case float_relation_greater: \ new_fsr = FSR_FCC1 << FS; \ break; \ default: \ new_fsr = 0; \ break; \ } \ env->fsr |= new_fsr; \ } GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0); GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0); GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1); GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1); #ifdef CONFIG_USER_ONLY GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0); GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1); #endif #ifdef TARGET_SPARC64 GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0); GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0); GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0); GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0); GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0); GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0); GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1); GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1); GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1); GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1); GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1); GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1); #ifdef CONFIG_USER_ONLY GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0); GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0); GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0); GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1); GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1); GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1); #endif #endif #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && defined(DEBUG_MXCC) static void dump_mxcc(CPUState *env) { printf("mxccdata: %016llx %016llx %016llx %016llx\n", env->mxccdata[0], env->mxccdata[1], env->mxccdata[2], env->mxccdata[3]); printf("mxccregs: %016llx %016llx %016llx %016llx\n" " %016llx %016llx %016llx %016llx\n", env->mxccregs[0], env->mxccregs[1], env->mxccregs[2], env->mxccregs[3], env->mxccregs[4], env->mxccregs[5], env->mxccregs[6], env->mxccregs[7]); } #endif #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \ && defined(DEBUG_ASI) static void dump_asi(const char *txt, target_ulong addr, int asi, int size, uint64_t r1) { switch (size) { case 1: DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt, addr, asi, r1 & 0xff); break; case 2: DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt, addr, asi, r1 & 0xffff); break; case 4: DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt, addr, asi, r1 & 0xffffffff); break; case 8: DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt, addr, asi, r1); break; } } #endif #ifndef TARGET_SPARC64 #ifndef CONFIG_USER_ONLY uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) { uint64_t ret = 0; #if defined(DEBUG_MXCC) || defined(DEBUG_ASI) uint32_t last_addr = addr; #endif switch (asi) { case 2: /* SuperSparc MXCC registers */ switch (addr) { case 0x01c00a00: /* MXCC control register */ if (size == 8) ret = env->mxccregs[3]; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00a04: /* MXCC control register */ if (size == 4) ret = env->mxccregs[3]; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00c00: /* Module reset register */ if (size == 8) { ret = env->mxccregs[5]; // should we do something here? } else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00f00: /* MBus port address register */ if (size == 8) ret = env->mxccregs[7]; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; default: DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr, size); break; } DPRINTF_MXCC("asi = %d, size = %d, sign = %d, addr = %08x -> ret = %08x," "addr = %08x\n", asi, size, sign, last_addr, ret, addr); #ifdef DEBUG_MXCC dump_mxcc(env); #endif break; case 3: /* MMU probe */ { int mmulev; mmulev = (addr >> 8) & 15; if (mmulev > 4) ret = 0; else ret = mmu_probe(env, addr, mmulev); DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n", addr, mmulev, ret); } break; case 4: /* read MMU regs */ { int reg = (addr >> 8) & 0x1f; ret = env->mmuregs[reg]; if (reg == 3) /* Fault status cleared on read */ env->mmuregs[3] = 0; else if (reg == 0x13) /* Fault status read */ ret = env->mmuregs[3]; else if (reg == 0x14) /* Fault address read */ ret = env->mmuregs[4]; DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret); } break; case 5: // Turbosparc ITLB Diagnostic case 6: // Turbosparc DTLB Diagnostic case 7: // Turbosparc IOTLB Diagnostic break; case 9: /* Supervisor code access */ switch(size) { case 1: ret = ldub_code(addr); break; case 2: ret = lduw_code(addr & ~1); break; default: case 4: ret = ldl_code(addr & ~3); break; case 8: ret = ldq_code(addr & ~7); break; } break; case 0xa: /* User data access */ switch(size) { case 1: ret = ldub_user(addr); break; case 2: ret = lduw_user(addr & ~1); break; default: case 4: ret = ldl_user(addr & ~3); break; case 8: ret = ldq_user(addr & ~7); break; } break; case 0xb: /* Supervisor data access */ switch(size) { case 1: ret = ldub_kernel(addr); break; case 2: ret = lduw_kernel(addr & ~1); break; default: case 4: ret = ldl_kernel(addr & ~3); break; case 8: ret = ldq_kernel(addr & ~7); break; } break; case 0xc: /* I-cache tag */ case 0xd: /* I-cache data */ case 0xe: /* D-cache tag */ case 0xf: /* D-cache data */ break; case 0x20: /* MMU passthrough */ switch(size) { case 1: ret = ldub_phys(addr); break; case 2: ret = lduw_phys(addr & ~1); break; default: case 4: ret = ldl_phys(addr & ~3); break; case 8: ret = ldq_phys(addr & ~7); break; } break; case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */ switch(size) { case 1: ret = ldub_phys((target_phys_addr_t)addr | ((target_phys_addr_t)(asi & 0xf) << 32)); break; case 2: ret = lduw_phys((target_phys_addr_t)(addr & ~1) | ((target_phys_addr_t)(asi & 0xf) << 32)); break; default: case 4: ret = ldl_phys((target_phys_addr_t)(addr & ~3) | ((target_phys_addr_t)(asi & 0xf) << 32)); break; case 8: ret = ldq_phys((target_phys_addr_t)(addr & ~7) | ((target_phys_addr_t)(asi & 0xf) << 32)); break; } break; case 0x30: // Turbosparc secondary cache diagnostic case 0x31: // Turbosparc RAM snoop case 0x32: // Turbosparc page table descriptor diagnostic case 0x39: /* data cache diagnostic register */ ret = 0; break; case 8: /* User code access, XXX */ default: do_unassigned_access(addr, 0, 0, asi); ret = 0; break; } if (sign) { switch(size) { case 1: ret = (int8_t) ret; break; case 2: ret = (int16_t) ret; break; case 4: ret = (int32_t) ret; break; default: break; } } #ifdef DEBUG_ASI dump_asi("read ", last_addr, asi, size, ret); #endif return ret; } void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size) { switch(asi) { case 2: /* SuperSparc MXCC registers */ switch (addr) { case 0x01c00000: /* MXCC stream data register 0 */ if (size == 8) env->mxccdata[0] = val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00008: /* MXCC stream data register 1 */ if (size == 8) env->mxccdata[1] = val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00010: /* MXCC stream data register 2 */ if (size == 8) env->mxccdata[2] = val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00018: /* MXCC stream data register 3 */ if (size == 8) env->mxccdata[3] = val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00100: /* MXCC stream source */ if (size == 8) env->mxccregs[0] = val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 0); env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 8); env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 16); env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 24); break; case 0x01c00200: /* MXCC stream destination */ if (size == 8) env->mxccregs[1] = val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0, env->mxccdata[0]); stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8, env->mxccdata[1]); stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16, env->mxccdata[2]); stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24, env->mxccdata[3]); break; case 0x01c00a00: /* MXCC control register */ if (size == 8) env->mxccregs[3] = val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00a04: /* MXCC control register */ if (size == 4) env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000ULL) | val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00e00: /* MXCC error register */ // writing a 1 bit clears the error if (size == 8) env->mxccregs[6] &= ~val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00f00: /* MBus port address register */ if (size == 8) env->mxccregs[7] = val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; default: DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr, size); break; } DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %08x\n", asi, size, addr, val); #ifdef DEBUG_MXCC dump_mxcc(env); #endif break; case 3: /* MMU flush */ { int mmulev; mmulev = (addr >> 8) & 15; DPRINTF_MMU("mmu flush level %d\n", mmulev); switch (mmulev) { case 0: // flush page tlb_flush_page(env, addr & 0xfffff000); break; case 1: // flush segment (256k) case 2: // flush region (16M) case 3: // flush context (4G) case 4: // flush entire tlb_flush(env, 1); break; default: break; } #ifdef DEBUG_MMU dump_mmu(env); #endif } break; case 4: /* write MMU regs */ { int reg = (addr >> 8) & 0x1f; uint32_t oldreg; oldreg = env->mmuregs[reg]; switch(reg) { case 0: // Control Register env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) | (val & 0x00ffffff); // Mappings generated during no-fault mode or MMU // disabled mode are invalid in normal mode if ((oldreg & (MMU_E | MMU_NF | env->mmu_bm)) != (env->mmuregs[reg] & (MMU_E | MMU_NF | env->mmu_bm))) tlb_flush(env, 1); break; case 1: // Context Table Pointer Register env->mmuregs[reg] = val & env->mmu_ctpr_mask; break; case 2: // Context Register env->mmuregs[reg] = val & env->mmu_cxr_mask; if (oldreg != env->mmuregs[reg]) { /* we flush when the MMU context changes because QEMU has no MMU context support */ tlb_flush(env, 1); } break; case 3: // Synchronous Fault Status Register with Clear case 4: // Synchronous Fault Address Register break; case 0x10: // TLB Replacement Control Register env->mmuregs[reg] = val & env->mmu_trcr_mask; break; case 0x13: // Synchronous Fault Status Register with Read and Clear env->mmuregs[3] = val & env->mmu_sfsr_mask; break; case 0x14: // Synchronous Fault Address Register env->mmuregs[4] = val; break; default: env->mmuregs[reg] = val; break; } if (oldreg != env->mmuregs[reg]) { DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]); } #ifdef DEBUG_MMU dump_mmu(env); #endif } break; case 5: // Turbosparc ITLB Diagnostic case 6: // Turbosparc DTLB Diagnostic case 7: // Turbosparc IOTLB Diagnostic break; case 0xa: /* User data access */ switch(size) { case 1: stb_user(addr, val); break; case 2: stw_user(addr & ~1, val); break; default: case 4: stl_user(addr & ~3, val); break; case 8: stq_user(addr & ~7, val); break; } break; case 0xb: /* Supervisor data access */ switch(size) { case 1: stb_kernel(addr, val); break; case 2: stw_kernel(addr & ~1, val); break; default: case 4: stl_kernel(addr & ~3, val); break; case 8: stq_kernel(addr & ~7, val); break; } break; case 0xc: /* I-cache tag */ case 0xd: /* I-cache data */ case 0xe: /* D-cache tag */ case 0xf: /* D-cache data */ case 0x10: /* I/D-cache flush page */ case 0x11: /* I/D-cache flush segment */ case 0x12: /* I/D-cache flush region */ case 0x13: /* I/D-cache flush context */ case 0x14: /* I/D-cache flush user */ break; case 0x17: /* Block copy, sta access */ { // val = src // addr = dst // copy 32 bytes unsigned int i; uint32_t src = val & ~3, dst = addr & ~3, temp; for (i = 0; i < 32; i += 4, src += 4, dst += 4) { temp = ldl_kernel(src); stl_kernel(dst, temp); } } break; case 0x1f: /* Block fill, stda access */ { // addr = dst // fill 32 bytes with val unsigned int i; uint32_t dst = addr & 7; for (i = 0; i < 32; i += 8, dst += 8) stq_kernel(dst, val); } break; case 0x20: /* MMU passthrough */ { switch(size) { case 1: stb_phys(addr, val); break; case 2: stw_phys(addr & ~1, val); break; case 4: default: stl_phys(addr & ~3, val); break; case 8: stq_phys(addr & ~7, val); break; } } break; case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */ { switch(size) { case 1: stb_phys((target_phys_addr_t)addr | ((target_phys_addr_t)(asi & 0xf) << 32), val); break; case 2: stw_phys((target_phys_addr_t)(addr & ~1) | ((target_phys_addr_t)(asi & 0xf) << 32), val); break; case 4: default: stl_phys((target_phys_addr_t)(addr & ~3) | ((target_phys_addr_t)(asi & 0xf) << 32), val); break; case 8: stq_phys((target_phys_addr_t)(addr & ~7) | ((target_phys_addr_t)(asi & 0xf) << 32), val); break; } } break; case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic case 0x31: // store buffer data, Ross RT620 I-cache flush or // Turbosparc snoop RAM case 0x32: // store buffer control or Turbosparc page table descriptor diagnostic case 0x36: /* I-cache flash clear */ case 0x37: /* D-cache flash clear */ case 0x38: /* breakpoint diagnostics */ case 0x4c: /* breakpoint action */ break; case 8: /* User code access, XXX */ case 9: /* Supervisor code access, XXX */ default: do_unassigned_access(addr, 1, 0, asi); break; } #ifdef DEBUG_ASI dump_asi("write", addr, asi, size, val); #endif } #endif /* CONFIG_USER_ONLY */ #else /* TARGET_SPARC64 */ #ifdef CONFIG_USER_ONLY uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) { uint64_t ret = 0; #if defined(DEBUG_ASI) target_ulong last_addr = addr; #endif if (asi < 0x80) raise_exception(TT_PRIV_ACT); switch (asi) { case 0x80: // Primary case 0x82: // Primary no-fault case 0x88: // Primary LE case 0x8a: // Primary no-fault LE { switch(size) { case 1: ret = ldub_raw(addr); break; case 2: ret = lduw_raw(addr & ~1); break; case 4: ret = ldl_raw(addr & ~3); break; default: case 8: ret = ldq_raw(addr & ~7); break; } } break; case 0x81: // Secondary case 0x83: // Secondary no-fault case 0x89: // Secondary LE case 0x8b: // Secondary no-fault LE // XXX break; default: break; } /* Convert from little endian */ switch (asi) { case 0x88: // Primary LE case 0x89: // Secondary LE case 0x8a: // Primary no-fault LE case 0x8b: // Secondary no-fault LE switch(size) { case 2: ret = bswap16(ret); break; case 4: ret = bswap32(ret); break; case 8: ret = bswap64(ret); break; default: break; } default: break; } /* Convert to signed number */ if (sign) { switch(size) { case 1: ret = (int8_t) ret; break; case 2: ret = (int16_t) ret; break; case 4: ret = (int32_t) ret; break; default: break; } } #ifdef DEBUG_ASI dump_asi("read ", last_addr, asi, size, ret); #endif return ret; } void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) { #ifdef DEBUG_ASI dump_asi("write", addr, asi, size, val); #endif if (asi < 0x80) raise_exception(TT_PRIV_ACT); /* Convert to little endian */ switch (asi) { case 0x88: // Primary LE case 0x89: // Secondary LE switch(size) { case 2: addr = bswap16(addr); break; case 4: addr = bswap32(addr); break; case 8: addr = bswap64(addr); break; default: break; } default: break; } switch(asi) { case 0x80: // Primary case 0x88: // Primary LE { switch(size) { case 1: stb_raw(addr, val); break; case 2: stw_raw(addr & ~1, val); break; case 4: stl_raw(addr & ~3, val); break; case 8: default: stq_raw(addr & ~7, val); break; } } break; case 0x81: // Secondary case 0x89: // Secondary LE // XXX return; case 0x82: // Primary no-fault, RO case 0x83: // Secondary no-fault, RO case 0x8a: // Primary no-fault LE, RO case 0x8b: // Secondary no-fault LE, RO default: do_unassigned_access(addr, 1, 0, 1); return; } } #else /* CONFIG_USER_ONLY */ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) { uint64_t ret = 0; #if defined(DEBUG_ASI) target_ulong last_addr = addr; #endif if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV))) raise_exception(TT_PRIV_ACT); switch (asi) { case 0x10: // As if user primary case 0x18: // As if user primary LE case 0x80: // Primary case 0x82: // Primary no-fault case 0x88: // Primary LE case 0x8a: // Primary no-fault LE if ((asi & 0x80) && (env->pstate & PS_PRIV)) { if (env->hpstate & HS_PRIV) { switch(size) { case 1: ret = ldub_hypv(addr); break; case 2: ret = lduw_hypv(addr & ~1); break; case 4: ret = ldl_hypv(addr & ~3); break; default: case 8: ret = ldq_hypv(addr & ~7); break; } } else { switch(size) { case 1: ret = ldub_kernel(addr); break; case 2: ret = lduw_kernel(addr & ~1); break; case 4: ret = ldl_kernel(addr & ~3); break; default: case 8: ret = ldq_kernel(addr & ~7); break; } } } else { switch(size) { case 1: ret = ldub_user(addr); break; case 2: ret = lduw_user(addr & ~1); break; case 4: ret = ldl_user(addr & ~3); break; default: case 8: ret = ldq_user(addr & ~7); break; } } break; case 0x14: // Bypass case 0x15: // Bypass, non-cacheable case 0x1c: // Bypass LE case 0x1d: // Bypass, non-cacheable LE { switch(size) { case 1: ret = ldub_phys(addr); break; case 2: ret = lduw_phys(addr & ~1); break; case 4: ret = ldl_phys(addr & ~3); break; default: case 8: ret = ldq_phys(addr & ~7); break; } break; } case 0x04: // Nucleus case 0x0c: // Nucleus Little Endian (LE) case 0x11: // As if user secondary case 0x19: // As if user secondary LE case 0x24: // Nucleus quad LDD 128 bit atomic case 0x2c: // Nucleus quad LDD 128 bit atomic case 0x4a: // UPA config case 0x81: // Secondary case 0x83: // Secondary no-fault case 0x89: // Secondary LE case 0x8b: // Secondary no-fault LE // XXX break; case 0x45: // LSU ret = env->lsu; break; case 0x50: // I-MMU regs { int reg = (addr >> 3) & 0xf; ret = env->immuregs[reg]; break; } case 0x51: // I-MMU 8k TSB pointer case 0x52: // I-MMU 64k TSB pointer case 0x55: // I-MMU data access // XXX break; case 0x56: // I-MMU tag read { unsigned int i; for (i = 0; i < 64; i++) { // Valid, ctx match, vaddr match if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 && env->itlb_tag[i] == addr) { ret = env->itlb_tag[i]; break; } } break; } case 0x58: // D-MMU regs { int reg = (addr >> 3) & 0xf; ret = env->dmmuregs[reg]; break; } case 0x5e: // D-MMU tag read { unsigned int i; for (i = 0; i < 64; i++) { // Valid, ctx match, vaddr match if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 && env->dtlb_tag[i] == addr) { ret = env->dtlb_tag[i]; break; } } break; } case 0x59: // D-MMU 8k TSB pointer case 0x5a: // D-MMU 64k TSB pointer case 0x5b: // D-MMU data pointer case 0x5d: // D-MMU data access case 0x48: // Interrupt dispatch, RO case 0x49: // Interrupt data receive case 0x7f: // Incoming interrupt vector, RO // XXX break; case 0x54: // I-MMU data in, WO case 0x57: // I-MMU demap, WO case 0x5c: // D-MMU data in, WO case 0x5f: // D-MMU demap, WO case 0x77: // Interrupt vector, WO default: do_unassigned_access(addr, 0, 0, 1); ret = 0; break; } /* Convert from little endian */ switch (asi) { case 0x0c: // Nucleus Little Endian (LE) case 0x18: // As if user primary LE case 0x19: // As if user secondary LE case 0x1c: // Bypass LE case 0x1d: // Bypass, non-cacheable LE case 0x88: // Primary LE case 0x89: // Secondary LE case 0x8a: // Primary no-fault LE case 0x8b: // Secondary no-fault LE switch(size) { case 2: ret = bswap16(ret); break; case 4: ret = bswap32(ret); break; case 8: ret = bswap64(ret); break; default: break; } default: break; } /* Convert to signed number */ if (sign) { switch(size) { case 1: ret = (int8_t) ret; break; case 2: ret = (int16_t) ret; break; case 4: ret = (int32_t) ret; break; default: break; } } #ifdef DEBUG_ASI dump_asi("read ", last_addr, asi, size, ret); #endif return ret; } void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) { #ifdef DEBUG_ASI dump_asi("write", addr, asi, size, val); #endif if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV))) raise_exception(TT_PRIV_ACT); /* Convert to little endian */ switch (asi) { case 0x0c: // Nucleus Little Endian (LE) case 0x18: // As if user primary LE case 0x19: // As if user secondary LE case 0x1c: // Bypass LE case 0x1d: // Bypass, non-cacheable LE case 0x88: // Primary LE case 0x89: // Secondary LE switch(size) { case 2: addr = bswap16(addr); break; case 4: addr = bswap32(addr); break; case 8: addr = bswap64(addr); break; default: break; } default: break; } switch(asi) { case 0x10: // As if user primary case 0x18: // As if user primary LE case 0x80: // Primary case 0x88: // Primary LE if ((asi & 0x80) && (env->pstate & PS_PRIV)) { if (env->hpstate & HS_PRIV) { switch(size) { case 1: stb_hypv(addr, val); break; case 2: stw_hypv(addr & ~1, val); break; case 4: stl_hypv(addr & ~3, val); break; case 8: default: stq_hypv(addr & ~7, val); break; } } else { switch(size) { case 1: stb_kernel(addr, val); break; case 2: stw_kernel(addr & ~1, val); break; case 4: stl_kernel(addr & ~3, val); break; case 8: default: stq_kernel(addr & ~7, val); break; } } } else { switch(size) { case 1: stb_user(addr, val); break; case 2: stw_user(addr & ~1, val); break; case 4: stl_user(addr & ~3, val); break; case 8: default: stq_user(addr & ~7, val); break; } } break; case 0x14: // Bypass case 0x15: // Bypass, non-cacheable case 0x1c: // Bypass LE case 0x1d: // Bypass, non-cacheable LE { switch(size) { case 1: stb_phys(addr, val); break; case 2: stw_phys(addr & ~1, val); break; case 4: stl_phys(addr & ~3, val); break; case 8: default: stq_phys(addr & ~7, val); break; } } return; case 0x04: // Nucleus case 0x0c: // Nucleus Little Endian (LE) case 0x11: // As if user secondary case 0x19: // As if user secondary LE case 0x24: // Nucleus quad LDD 128 bit atomic case 0x2c: // Nucleus quad LDD 128 bit atomic case 0x4a: // UPA config case 0x81: // Secondary case 0x89: // Secondary LE // XXX return; case 0x45: // LSU { uint64_t oldreg; oldreg = env->lsu; env->lsu = val & (DMMU_E | IMMU_E); // Mappings generated during D/I MMU disabled mode are // invalid in normal mode if (oldreg != env->lsu) { DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu); #ifdef DEBUG_MMU dump_mmu(env); #endif tlb_flush(env, 1); } return; } case 0x50: // I-MMU regs { int reg = (addr >> 3) & 0xf; uint64_t oldreg; oldreg = env->immuregs[reg]; switch(reg) { case 0: // RO case 4: return; case 1: // Not in I-MMU case 2: case 7: case 8: return; case 3: // SFSR if ((val & 1) == 0) val = 0; // Clear SFSR break; case 5: // TSB access case 6: // Tag access default: break; } env->immuregs[reg] = val; if (oldreg != env->immuregs[reg]) { DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]); } #ifdef DEBUG_MMU dump_mmu(env); #endif return; } case 0x54: // I-MMU data in { unsigned int i; // Try finding an invalid entry for (i = 0; i < 64; i++) { if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) { env->itlb_tag[i] = env->immuregs[6]; env->itlb_tte[i] = val; return; } } // Try finding an unlocked entry for (i = 0; i < 64; i++) { if ((env->itlb_tte[i] & 0x40) == 0) { env->itlb_tag[i] = env->immuregs[6]; env->itlb_tte[i] = val; return; } } // error state? return; } case 0x55: // I-MMU data access { unsigned int i = (addr >> 3) & 0x3f; env->itlb_tag[i] = env->immuregs[6]; env->itlb_tte[i] = val; return; } case 0x57: // I-MMU demap // XXX return; case 0x58: // D-MMU regs { int reg = (addr >> 3) & 0xf; uint64_t oldreg; oldreg = env->dmmuregs[reg]; switch(reg) { case 0: // RO case 4: return; case 3: // SFSR if ((val & 1) == 0) { val = 0; // Clear SFSR, Fault address env->dmmuregs[4] = 0; } env->dmmuregs[reg] = val; break; case 1: // Primary context case 2: // Secondary context case 5: // TSB access case 6: // Tag access case 7: // Virtual Watchpoint case 8: // Physical Watchpoint default: break; } env->dmmuregs[reg] = val; if (oldreg != env->dmmuregs[reg]) { DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]); } #ifdef DEBUG_MMU dump_mmu(env); #endif return; } case 0x5c: // D-MMU data in { unsigned int i; // Try finding an invalid entry for (i = 0; i < 64; i++) { if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) { env->dtlb_tag[i] = env->dmmuregs[6]; env->dtlb_tte[i] = val; return; } } // Try finding an unlocked entry for (i = 0; i < 64; i++) { if ((env->dtlb_tte[i] & 0x40) == 0) { env->dtlb_tag[i] = env->dmmuregs[6]; env->dtlb_tte[i] = val; return; } } // error state? return; } case 0x5d: // D-MMU data access { unsigned int i = (addr >> 3) & 0x3f; env->dtlb_tag[i] = env->dmmuregs[6]; env->dtlb_tte[i] = val; return; } case 0x5f: // D-MMU demap case 0x49: // Interrupt data receive // XXX return; case 0x51: // I-MMU 8k TSB pointer, RO case 0x52: // I-MMU 64k TSB pointer, RO case 0x56: // I-MMU tag read, RO case 0x59: // D-MMU 8k TSB pointer, RO case 0x5a: // D-MMU 64k TSB pointer, RO case 0x5b: // D-MMU data pointer, RO case 0x5e: // D-MMU tag read, RO case 0x48: // Interrupt dispatch, RO case 0x7f: // Incoming interrupt vector, RO case 0x82: // Primary no-fault, RO case 0x83: // Secondary no-fault, RO case 0x8a: // Primary no-fault LE, RO case 0x8b: // Secondary no-fault LE, RO default: do_unassigned_access(addr, 1, 0, 1); return; } } #endif /* CONFIG_USER_ONLY */ void helper_ldf_asi(target_ulong addr, int asi, int size, int rd) { unsigned int i; target_ulong val; switch (asi) { case 0xf0: // Block load primary case 0xf1: // Block load secondary case 0xf8: // Block load primary LE case 0xf9: // Block load secondary LE if (rd & 7) { raise_exception(TT_ILL_INSN); return; } if (addr & 0x3f) { raise_exception(TT_UNALIGNED); return; } for (i = 0; i < 16; i++) { *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4, 0); addr += 4; } return; default: break; } val = helper_ld_asi(addr, asi, size, 0); switch(size) { default: case 4: *((uint32_t *)&FT0) = val; break; case 8: *((int64_t *)&DT0) = val; break; #if defined(CONFIG_USER_ONLY) case 16: // XXX break; #endif } } void helper_stf_asi(target_ulong addr, int asi, int size, int rd) { unsigned int i; target_ulong val = 0; switch (asi) { case 0xf0: // Block store primary case 0xf1: // Block store secondary case 0xf8: // Block store primary LE case 0xf9: // Block store secondary LE if (rd & 7) { raise_exception(TT_ILL_INSN); return; } if (addr & 0x3f) { raise_exception(TT_UNALIGNED); return; } for (i = 0; i < 16; i++) { val = *(uint32_t *)&env->fpr[rd++]; helper_st_asi(addr, val, asi & 0x8f, 4); addr += 4; } return; default: break; } switch(size) { default: case 4: val = *((uint32_t *)&FT0); break; case 8: val = *((int64_t *)&DT0); break; #if defined(CONFIG_USER_ONLY) case 16: // XXX break; #endif } helper_st_asi(addr, val, asi, size); } target_ulong helper_cas_asi(target_ulong addr, target_ulong val1, target_ulong val2, uint32_t asi) { target_ulong ret; val1 &= 0xffffffffUL; ret = helper_ld_asi(addr, asi, 4, 0); ret &= 0xffffffffUL; if (val1 == ret) helper_st_asi(addr, val2 & 0xffffffffUL, asi, 4); return ret; } target_ulong helper_casx_asi(target_ulong addr, target_ulong val1, target_ulong val2, uint32_t asi) { target_ulong ret; ret = helper_ld_asi(addr, asi, 8, 0); if (val1 == ret) helper_st_asi(addr, val2, asi, 8); return ret; } #endif /* TARGET_SPARC64 */ #ifndef TARGET_SPARC64 void helper_rett(void) { unsigned int cwp; if (env->psret == 1) raise_exception(TT_ILL_INSN); env->psret = 1; cwp = (env->cwp + 1) & (NWINDOWS - 1); if (env->wim & (1 << cwp)) { raise_exception(TT_WIN_UNF); } set_cwp(cwp); env->psrs = env->psrps; } #endif uint64_t helper_pack64(target_ulong high, target_ulong low) { return ((uint64_t)high << 32) | (uint64_t)(low & 0xffffffff); } void helper_ldfsr(void) { int rnd_mode; PUT_FSR32(env, *((uint32_t *) &FT0)); switch (env->fsr & FSR_RD_MASK) { case FSR_RD_NEAREST: rnd_mode = float_round_nearest_even; break; default: case FSR_RD_ZERO: rnd_mode = float_round_to_zero; break; case FSR_RD_POS: rnd_mode = float_round_up; break; case FSR_RD_NEG: rnd_mode = float_round_down; break; } set_float_rounding_mode(rnd_mode, &env->fp_status); } void helper_stfsr(void) { *((uint32_t *) &FT0) = GET_FSR32(env); } void helper_debug(void) { env->exception_index = EXCP_DEBUG; cpu_loop_exit(); } #ifndef TARGET_SPARC64 void helper_wrpsr(target_ulong new_psr) { if ((new_psr & PSR_CWP) >= NWINDOWS) raise_exception(TT_ILL_INSN); else PUT_PSR(env, new_psr); } target_ulong helper_rdpsr(void) { return GET_PSR(env); } #else target_ulong helper_rdccr(void) { return GET_CCR(env); } void helper_wrccr(target_ulong new_ccr) { PUT_CCR(env, new_ccr); } // CWP handling is reversed in V9, but we still use the V8 register // order. target_ulong helper_rdcwp(void) { return GET_CWP64(env); } void helper_wrcwp(target_ulong new_cwp) { PUT_CWP64(env, new_cwp); } // This function uses non-native bit order #define GET_FIELD(X, FROM, TO) \ ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1)) // This function uses the order in the manuals, i.e. bit 0 is 2^0 #define GET_FIELD_SP(X, FROM, TO) \ GET_FIELD(X, 63 - (TO), 63 - (FROM)) target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize) { return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) | (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) | (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) | (GET_FIELD_SP(pixel_addr, 56, 59) << 13) | (GET_FIELD_SP(pixel_addr, 35, 38) << 9) | (GET_FIELD_SP(pixel_addr, 13, 16) << 5) | (((pixel_addr >> 55) & 1) << 4) | (GET_FIELD_SP(pixel_addr, 33, 34) << 2) | GET_FIELD_SP(pixel_addr, 11, 12); } target_ulong helper_alignaddr(target_ulong addr, target_ulong offset) { uint64_t tmp; tmp = addr + offset; env->gsr &= ~7ULL; env->gsr |= tmp & 7ULL; return tmp & ~7ULL; } target_ulong helper_popc(target_ulong val) { return ctpop64(val); } static inline uint64_t *get_gregset(uint64_t pstate) { switch (pstate) { default: case 0: return env->bgregs; case PS_AG: return env->agregs; case PS_MG: return env->mgregs; case PS_IG: return env->igregs; } } static inline void change_pstate(uint64_t new_pstate) { uint64_t pstate_regs, new_pstate_regs; uint64_t *src, *dst; pstate_regs = env->pstate & 0xc01; new_pstate_regs = new_pstate & 0xc01; if (new_pstate_regs != pstate_regs) { // Switch global register bank src = get_gregset(new_pstate_regs); dst = get_gregset(pstate_regs); memcpy32(dst, env->gregs); memcpy32(env->gregs, src); } env->pstate = new_pstate; } void helper_wrpstate(target_ulong new_state) { change_pstate(new_state & 0xf3f); } void helper_done(void) { env->tl--; env->tsptr = &env->ts[env->tl]; env->pc = env->tsptr->tpc; env->npc = env->tsptr->tnpc + 4; PUT_CCR(env, env->tsptr->tstate >> 32); env->asi = (env->tsptr->tstate >> 24) & 0xff; change_pstate((env->tsptr->tstate >> 8) & 0xf3f); PUT_CWP64(env, env->tsptr->tstate & 0xff); } void helper_retry(void) { env->tl--; env->tsptr = &env->ts[env->tl]; env->pc = env->tsptr->tpc; env->npc = env->tsptr->tnpc; PUT_CCR(env, env->tsptr->tstate >> 32); env->asi = (env->tsptr->tstate >> 24) & 0xff; change_pstate((env->tsptr->tstate >> 8) & 0xf3f); PUT_CWP64(env, env->tsptr->tstate & 0xff); } #endif void set_cwp(int new_cwp) { /* put the modified wrap registers at their proper location */ if (env->cwp == (NWINDOWS - 1)) memcpy32(env->regbase, env->regbase + NWINDOWS * 16); env->cwp = new_cwp; /* put the wrap registers at their temporary location */ if (new_cwp == (NWINDOWS - 1)) memcpy32(env->regbase + NWINDOWS * 16, env->regbase); env->regwptr = env->regbase + (new_cwp * 16); REGWPTR = env->regwptr; } void cpu_set_cwp(CPUState *env1, int new_cwp) { CPUState *saved_env; #ifdef reg_REGWPTR target_ulong *saved_regwptr; #endif saved_env = env; #ifdef reg_REGWPTR saved_regwptr = REGWPTR; #endif env = env1; set_cwp(new_cwp); env = saved_env; #ifdef reg_REGWPTR REGWPTR = saved_regwptr; #endif } #ifdef TARGET_SPARC64 #ifdef DEBUG_PCALL static const char * const excp_names[0x50] = { [TT_TFAULT] = "Instruction Access Fault", [TT_TMISS] = "Instruction Access MMU Miss", [TT_CODE_ACCESS] = "Instruction Access Error", [TT_ILL_INSN] = "Illegal Instruction", [TT_PRIV_INSN] = "Privileged Instruction", [TT_NFPU_INSN] = "FPU Disabled", [TT_FP_EXCP] = "FPU Exception", [TT_TOVF] = "Tag Overflow", [TT_CLRWIN] = "Clean Windows", [TT_DIV_ZERO] = "Division By Zero", [TT_DFAULT] = "Data Access Fault", [TT_DMISS] = "Data Access MMU Miss", [TT_DATA_ACCESS] = "Data Access Error", [TT_DPROT] = "Data Protection Error", [TT_UNALIGNED] = "Unaligned Memory Access", [TT_PRIV_ACT] = "Privileged Action", [TT_EXTINT | 0x1] = "External Interrupt 1", [TT_EXTINT | 0x2] = "External Interrupt 2", [TT_EXTINT | 0x3] = "External Interrupt 3", [TT_EXTINT | 0x4] = "External Interrupt 4", [TT_EXTINT | 0x5] = "External Interrupt 5", [TT_EXTINT | 0x6] = "External Interrupt 6", [TT_EXTINT | 0x7] = "External Interrupt 7", [TT_EXTINT | 0x8] = "External Interrupt 8", [TT_EXTINT | 0x9] = "External Interrupt 9", [TT_EXTINT | 0xa] = "External Interrupt 10", [TT_EXTINT | 0xb] = "External Interrupt 11", [TT_EXTINT | 0xc] = "External Interrupt 12", [TT_EXTINT | 0xd] = "External Interrupt 13", [TT_EXTINT | 0xe] = "External Interrupt 14", [TT_EXTINT | 0xf] = "External Interrupt 15", }; #endif void do_interrupt(int intno) { #ifdef DEBUG_PCALL if (loglevel & CPU_LOG_INT) { static int count; const char *name; if (intno < 0 || intno >= 0x180 || (intno > 0x4f && intno < 0x80)) name = "Unknown"; else if (intno >= 0x100) name = "Trap Instruction"; else if (intno >= 0xc0) name = "Window Fill"; else if (intno >= 0x80) name = "Window Spill"; else { name = excp_names[intno]; if (!name) name = "Unknown"; } fprintf(logfile, "%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64 " SP=%016" PRIx64 "\n", count, name, intno, env->pc, env->npc, env->regwptr[6]); cpu_dump_state(env, logfile, fprintf, 0); #if 0 { int i; uint8_t *ptr; fprintf(logfile, " code="); ptr = (uint8_t *)env->pc; for(i = 0; i < 16; i++) { fprintf(logfile, " %02x", ldub(ptr + i)); } fprintf(logfile, "\n"); } #endif count++; } #endif #if !defined(CONFIG_USER_ONLY) if (env->tl == MAXTL) { cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index); return; } #endif env->tsptr->tstate = ((uint64_t)GET_CCR(env) << 32) | ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) | GET_CWP64(env); env->tsptr->tpc = env->pc; env->tsptr->tnpc = env->npc; env->tsptr->tt = intno; change_pstate(PS_PEF | PS_PRIV | PS_AG); if (intno == TT_CLRWIN) set_cwp((env->cwp - 1) & (NWINDOWS - 1)); else if ((intno & 0x1c0) == TT_SPILL) set_cwp((env->cwp - env->cansave - 2) & (NWINDOWS - 1)); else if ((intno & 0x1c0) == TT_FILL) set_cwp((env->cwp + 1) & (NWINDOWS - 1)); env->tbr &= ~0x7fffULL; env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5); if (env->tl < MAXTL - 1) { env->tl++; } else { env->pstate |= PS_RED; if (env->tl != MAXTL) env->tl++; } env->tsptr = &env->ts[env->tl]; env->pc = env->tbr; env->npc = env->pc + 4; env->exception_index = 0; } #else #ifdef DEBUG_PCALL static const char * const excp_names[0x80] = { [TT_TFAULT] = "Instruction Access Fault", [TT_ILL_INSN] = "Illegal Instruction", [TT_PRIV_INSN] = "Privileged Instruction", [TT_NFPU_INSN] = "FPU Disabled", [TT_WIN_OVF] = "Window Overflow", [TT_WIN_UNF] = "Window Underflow", [TT_UNALIGNED] = "Unaligned Memory Access", [TT_FP_EXCP] = "FPU Exception", [TT_DFAULT] = "Data Access Fault", [TT_TOVF] = "Tag Overflow", [TT_EXTINT | 0x1] = "External Interrupt 1", [TT_EXTINT | 0x2] = "External Interrupt 2", [TT_EXTINT | 0x3] = "External Interrupt 3", [TT_EXTINT | 0x4] = "External Interrupt 4", [TT_EXTINT | 0x5] = "External Interrupt 5", [TT_EXTINT | 0x6] = "External Interrupt 6", [TT_EXTINT | 0x7] = "External Interrupt 7", [TT_EXTINT | 0x8] = "External Interrupt 8", [TT_EXTINT | 0x9] = "External Interrupt 9", [TT_EXTINT | 0xa] = "External Interrupt 10", [TT_EXTINT | 0xb] = "External Interrupt 11", [TT_EXTINT | 0xc] = "External Interrupt 12", [TT_EXTINT | 0xd] = "External Interrupt 13", [TT_EXTINT | 0xe] = "External Interrupt 14", [TT_EXTINT | 0xf] = "External Interrupt 15", [TT_TOVF] = "Tag Overflow", [TT_CODE_ACCESS] = "Instruction Access Error", [TT_DATA_ACCESS] = "Data Access Error", [TT_DIV_ZERO] = "Division By Zero", [TT_NCP_INSN] = "Coprocessor Disabled", }; #endif void do_interrupt(int intno) { int cwp; #ifdef DEBUG_PCALL if (loglevel & CPU_LOG_INT) { static int count; const char *name; if (intno < 0 || intno >= 0x100) name = "Unknown"; else if (intno >= 0x80) name = "Trap Instruction"; else { name = excp_names[intno]; if (!name) name = "Unknown"; } fprintf(logfile, "%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n", count, name, intno, env->pc, env->npc, env->regwptr[6]); cpu_dump_state(env, logfile, fprintf, 0); #if 0 { int i; uint8_t *ptr; fprintf(logfile, " code="); ptr = (uint8_t *)env->pc; for(i = 0; i < 16; i++) { fprintf(logfile, " %02x", ldub(ptr + i)); } fprintf(logfile, "\n"); } #endif count++; } #endif #if !defined(CONFIG_USER_ONLY) if (env->psret == 0) { cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index); return; } #endif env->psret = 0; cwp = (env->cwp - 1) & (NWINDOWS - 1); set_cwp(cwp); env->regwptr[9] = env->pc; env->regwptr[10] = env->npc; env->psrps = env->psrs; env->psrs = 1; env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4); env->pc = env->tbr; env->npc = env->pc + 4; env->exception_index = 0; } #endif #if !defined(CONFIG_USER_ONLY) static void do_unaligned_access(target_ulong addr, int is_write, int is_user, void *retaddr); #define MMUSUFFIX _mmu #define ALIGNED_ONLY #ifdef __s390__ # define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL)) #else # define GETPC() (__builtin_return_address(0)) #endif #define SHIFT 0 #include "softmmu_template.h" #define SHIFT 1 #include "softmmu_template.h" #define SHIFT 2 #include "softmmu_template.h" #define SHIFT 3 #include "softmmu_template.h" static void do_unaligned_access(target_ulong addr, int is_write, int is_user, void *retaddr) { #ifdef DEBUG_UNALIGNED printf("Unaligned access to 0x%x from 0x%x\n", addr, env->pc); #endif raise_exception(TT_UNALIGNED); } /* try to fill the TLB and return an exception if error. If retaddr is NULL, it means that the function was called in C code (i.e. not from generated code or from helper.c) */ /* XXX: fix it to restore all registers */ void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr) { TranslationBlock *tb; int ret; unsigned long pc; CPUState *saved_env; /* XXX: hack to restore env in all cases, even if not called from generated code */ saved_env = env; env = cpu_single_env; ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); if (ret) { if (retaddr) { /* now we have a real cpu fault */ pc = (unsigned long)retaddr; tb = tb_find_pc(pc); if (tb) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, pc, (void *)T2); } } cpu_loop_exit(); } env = saved_env; } #endif #ifndef TARGET_SPARC64 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec, int is_asi) { CPUState *saved_env; /* XXX: hack to restore env in all cases, even if not called from generated code */ saved_env = env; env = cpu_single_env; #ifdef DEBUG_UNASSIGNED if (is_asi) printf("Unassigned mem %s access to " TARGET_FMT_plx " asi 0x%02x from " TARGET_FMT_lx "\n", is_exec ? "exec" : is_write ? "write" : "read", addr, is_asi, env->pc); else printf("Unassigned mem %s access to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n", is_exec ? "exec" : is_write ? "write" : "read", addr, env->pc); #endif if (env->mmuregs[3]) /* Fault status register */ env->mmuregs[3] = 1; /* overflow (not read before another fault) */ if (is_asi) env->mmuregs[3] |= 1 << 16; if (env->psrs) env->mmuregs[3] |= 1 << 5; if (is_exec) env->mmuregs[3] |= 1 << 6; if (is_write) env->mmuregs[3] |= 1 << 7; env->mmuregs[3] |= (5 << 2) | 2; env->mmuregs[4] = addr; /* Fault address register */ if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) { if (is_exec) raise_exception(TT_CODE_ACCESS); else raise_exception(TT_DATA_ACCESS); } env = saved_env; } #else void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec, int is_asi) { #ifdef DEBUG_UNASSIGNED CPUState *saved_env; /* XXX: hack to restore env in all cases, even if not called from generated code */ saved_env = env; env = cpu_single_env; printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n", addr, env->pc); env = saved_env; #endif if (is_exec) raise_exception(TT_CODE_ACCESS); else raise_exception(TT_DATA_ACCESS); } #endif