/* * defines common to all virtual CPUs * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #ifndef CPU_ALL_H #define CPU_ALL_H #include "exec/cpu-common.h" #include "exec/memory.h" #include "qemu/thread.h" #include "hw/core/cpu.h" #include "qemu/rcu.h" #define EXCP_INTERRUPT 0x10000 /* async interruption */ #define EXCP_HLT 0x10001 /* hlt instruction reached */ #define EXCP_DEBUG 0x10002 /* cpu stopped after a breakpoint or singlestep */ #define EXCP_HALTED 0x10003 /* cpu is halted (waiting for external event) */ #define EXCP_YIELD 0x10004 /* cpu wants to yield timeslice to another */ #define EXCP_ATOMIC 0x10005 /* stop-the-world and emulate atomic */ /* some important defines: * * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and * otherwise little endian. * * TARGET_WORDS_BIGENDIAN : same for target cpu */ #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) #define BSWAP_NEEDED #endif #ifdef BSWAP_NEEDED static inline uint16_t tswap16(uint16_t s) { return bswap16(s); } static inline uint32_t tswap32(uint32_t s) { return bswap32(s); } static inline uint64_t tswap64(uint64_t s) { return bswap64(s); } static inline void tswap16s(uint16_t *s) { *s = bswap16(*s); } static inline void tswap32s(uint32_t *s) { *s = bswap32(*s); } static inline void tswap64s(uint64_t *s) { *s = bswap64(*s); } #else static inline uint16_t tswap16(uint16_t s) { return s; } static inline uint32_t tswap32(uint32_t s) { return s; } static inline uint64_t tswap64(uint64_t s) { return s; } static inline void tswap16s(uint16_t *s) { } static inline void tswap32s(uint32_t *s) { } static inline void tswap64s(uint64_t *s) { } #endif #if TARGET_LONG_SIZE == 4 #define tswapl(s) tswap32(s) #define tswapls(s) tswap32s((uint32_t *)(s)) #define bswaptls(s) bswap32s(s) #else #define tswapl(s) tswap64(s) #define tswapls(s) tswap64s((uint64_t *)(s)) #define bswaptls(s) bswap64s(s) #endif /* Target-endianness CPU memory access functions. These fit into the * {ld,st}{type}{sign}{size}{endian}_p naming scheme described in bswap.h. */ #if defined(TARGET_WORDS_BIGENDIAN) #define lduw_p(p) lduw_be_p(p) #define ldsw_p(p) ldsw_be_p(p) #define ldl_p(p) ldl_be_p(p) #define ldq_p(p) ldq_be_p(p) #define stw_p(p, v) stw_be_p(p, v) #define stl_p(p, v) stl_be_p(p, v) #define stq_p(p, v) stq_be_p(p, v) #define ldn_p(p, sz) ldn_be_p(p, sz) #define stn_p(p, sz, v) stn_be_p(p, sz, v) #else #define lduw_p(p) lduw_le_p(p) #define ldsw_p(p) ldsw_le_p(p) #define ldl_p(p) ldl_le_p(p) #define ldq_p(p) ldq_le_p(p) #define stw_p(p, v) stw_le_p(p, v) #define stl_p(p, v) stl_le_p(p, v) #define stq_p(p, v) stq_le_p(p, v) #define ldn_p(p, sz) ldn_le_p(p, sz) #define stn_p(p, sz, v) stn_le_p(p, sz, v) #endif /* MMU memory access macros */ #if defined(CONFIG_USER_ONLY) #include "exec/user/abitypes.h" /* On some host systems the guest address space is reserved on the host. * This allows the guest address space to be offset to a convenient location. */ extern uintptr_t guest_base; extern bool have_guest_base; extern unsigned long reserved_va; /* * Limit the guest addresses as best we can. * * When not using -R reserved_va, we cannot really limit the guest * to less address space than the host. For 32-bit guests, this * acts as a sanity check that we're not giving the guest an address * that it cannot even represent. For 64-bit guests... the address * might not be what the real kernel would give, but it is at least * representable in the guest. * * TODO: Improve address allocation to avoid this problem, and to * avoid setting bits at the top of guest addresses that might need * to be used for tags. */ #define GUEST_ADDR_MAX_ \ ((MIN_CONST(TARGET_VIRT_ADDR_SPACE_BITS, TARGET_ABI_BITS) <= 32) ? \ UINT32_MAX : ~0ul) #define GUEST_ADDR_MAX (reserved_va ? reserved_va - 1 : GUEST_ADDR_MAX_) #else #include "exec/hwaddr.h" #define SUFFIX #define ARG1 as #define ARG1_DECL AddressSpace *as #define TARGET_ENDIANNESS #include "exec/memory_ldst.h.inc" #define SUFFIX _cached_slow #define ARG1 cache #define ARG1_DECL MemoryRegionCache *cache #define TARGET_ENDIANNESS #include "exec/memory_ldst.h.inc" static inline void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val) { address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); } #define SUFFIX #define ARG1 as #define ARG1_DECL AddressSpace *as #define TARGET_ENDIANNESS #include "exec/memory_ldst_phys.h.inc" /* Inline fast path for direct RAM access. */ #define ENDIANNESS #include "exec/memory_ldst_cached.h.inc" #define SUFFIX _cached #define ARG1 cache #define ARG1_DECL MemoryRegionCache *cache #define TARGET_ENDIANNESS #include "exec/memory_ldst_phys.h.inc" #endif /* page related stuff */ #ifdef TARGET_PAGE_BITS_VARY typedef struct { bool decided; int bits; target_long mask; } TargetPageBits; #if defined(CONFIG_ATTRIBUTE_ALIAS) || !defined(IN_EXEC_VARY) extern const TargetPageBits target_page; #else extern TargetPageBits target_page; #endif #ifdef CONFIG_DEBUG_TCG #define TARGET_PAGE_BITS ({ assert(target_page.decided); target_page.bits; }) #define TARGET_PAGE_MASK ({ assert(target_page.decided); target_page.mask; }) #else #define TARGET_PAGE_BITS target_page.bits #define TARGET_PAGE_MASK target_page.mask #endif #define TARGET_PAGE_SIZE (-(int)TARGET_PAGE_MASK) #else #define TARGET_PAGE_BITS_MIN TARGET_PAGE_BITS #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS) #define TARGET_PAGE_MASK ((target_long)-1 << TARGET_PAGE_BITS) #endif #define TARGET_PAGE_ALIGN(addr) ROUND_UP((addr), TARGET_PAGE_SIZE) /* Using intptr_t ensures that qemu_*_page_mask is sign-extended even * when intptr_t is 32-bit and we are aligning a long long. */ extern uintptr_t qemu_host_page_size; extern intptr_t qemu_host_page_mask; #define HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_host_page_size) #define REAL_HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_real_host_page_size) /* same as PROT_xxx */ #define PAGE_READ 0x0001 #define PAGE_WRITE 0x0002 #define PAGE_EXEC 0x0004 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC) #define PAGE_VALID 0x0008 /* * Original state of the write flag (used when tracking self-modifying code) */ #define PAGE_WRITE_ORG 0x0010 /* * Invalidate the TLB entry immediately, helpful for s390x * Low-Address-Protection. Used with PAGE_WRITE in tlb_set_page_with_attrs() */ #define PAGE_WRITE_INV 0x0020 /* For use with page_set_flags: page is being replaced; target_data cleared. */ #define PAGE_RESET 0x0040 /* For linux-user, indicates that the page is MAP_ANON. */ #define PAGE_ANON 0x0080 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) /* FIXME: Code that sets/uses this is broken and needs to go away. */ #define PAGE_RESERVED 0x0100 #endif /* Target-specific bits that will be used via page_get_flags(). */ #define PAGE_TARGET_1 0x0080 #define PAGE_TARGET_2 0x0200 #if defined(CONFIG_USER_ONLY) void page_dump(FILE *f); typedef int (*walk_memory_regions_fn)(void *, target_ulong, target_ulong, unsigned long); int walk_memory_regions(void *, walk_memory_regions_fn); int page_get_flags(target_ulong address); void page_set_flags(target_ulong start, target_ulong end, int flags); int page_check_range(target_ulong start, target_ulong len, int flags); /** * page_alloc_target_data(address, size) * @address: guest virtual address * @size: size of data to allocate * * Allocate @size bytes of out-of-band data to associate with the * guest page at @address. If the page is not mapped, NULL will * be returned. If there is existing data associated with @address, * no new memory will be allocated. * * The memory will be freed when the guest page is deallocated, * e.g. with the munmap system call. */ void *page_alloc_target_data(target_ulong address, size_t size); /** * page_get_target_data(address) * @address: guest virtual address * * Return any out-of-bound memory assocated with the guest page * at @address, as per page_alloc_target_data. */ void *page_get_target_data(target_ulong address); #endif CPUArchState *cpu_copy(CPUArchState *env); /* Flags for use in ENV->INTERRUPT_PENDING. The numbers assigned here are non-sequential in order to preserve binary compatibility with the vmstate dump. Bit 0 (0x0001) was previously used for CPU_INTERRUPT_EXIT, and is cleared when loading the vmstate dump. */ /* External hardware interrupt pending. This is typically used for interrupts from devices. */ #define CPU_INTERRUPT_HARD 0x0002 /* Exit the current TB. This is typically used when some system-level device makes some change to the memory mapping. E.g. the a20 line change. */ #define CPU_INTERRUPT_EXITTB 0x0004 /* Halt the CPU. */ #define CPU_INTERRUPT_HALT 0x0020 /* Debug event pending. */ #define CPU_INTERRUPT_DEBUG 0x0080 /* Reset signal. */ #define CPU_INTERRUPT_RESET 0x0400 /* Several target-specific external hardware interrupts. Each target/cpu.h should define proper names based on these defines. */ #define CPU_INTERRUPT_TGT_EXT_0 0x0008 #define CPU_INTERRUPT_TGT_EXT_1 0x0010 #define CPU_INTERRUPT_TGT_EXT_2 0x0040 #define CPU_INTERRUPT_TGT_EXT_3 0x0200 #define CPU_INTERRUPT_TGT_EXT_4 0x1000 /* Several target-specific internal interrupts. These differ from the preceding target-specific interrupts in that they are intended to originate from within the cpu itself, typically in response to some instruction being executed. These, therefore, are not masked while single-stepping within the debugger. */ #define CPU_INTERRUPT_TGT_INT_0 0x0100 #define CPU_INTERRUPT_TGT_INT_1 0x0800 #define CPU_INTERRUPT_TGT_INT_2 0x2000 /* First unused bit: 0x4000. */ /* The set of all bits that should be masked when single-stepping. */ #define CPU_INTERRUPT_SSTEP_MASK \ (CPU_INTERRUPT_HARD \ | CPU_INTERRUPT_TGT_EXT_0 \ | CPU_INTERRUPT_TGT_EXT_1 \ | CPU_INTERRUPT_TGT_EXT_2 \ | CPU_INTERRUPT_TGT_EXT_3 \ | CPU_INTERRUPT_TGT_EXT_4) #ifdef CONFIG_USER_ONLY /* * Allow some level of source compatibility with softmmu. We do not * support any of the more exotic features, so only invalid pages may * be signaled by probe_access_flags(). */ #define TLB_INVALID_MASK (1 << (TARGET_PAGE_BITS_MIN - 1)) #define TLB_MMIO 0 #define TLB_WATCHPOINT 0 #else /* * Flags stored in the low bits of the TLB virtual address. * These are defined so that fast path ram access is all zeros. * The flags all must be between TARGET_PAGE_BITS and * maximum address alignment bit. * * Use TARGET_PAGE_BITS_MIN so that these bits are constant * when TARGET_PAGE_BITS_VARY is in effect. */ /* Zero if TLB entry is valid. */ #define TLB_INVALID_MASK (1 << (TARGET_PAGE_BITS_MIN - 1)) /* Set if TLB entry references a clean RAM page. The iotlb entry will contain the page physical address. */ #define TLB_NOTDIRTY (1 << (TARGET_PAGE_BITS_MIN - 2)) /* Set if TLB entry is an IO callback. */ #define TLB_MMIO (1 << (TARGET_PAGE_BITS_MIN - 3)) /* Set if TLB entry contains a watchpoint. */ #define TLB_WATCHPOINT (1 << (TARGET_PAGE_BITS_MIN - 4)) /* Set if TLB entry requires byte swap. */ #define TLB_BSWAP (1 << (TARGET_PAGE_BITS_MIN - 5)) /* Set if TLB entry writes ignored. */ #define TLB_DISCARD_WRITE (1 << (TARGET_PAGE_BITS_MIN - 6)) /* Use this mask to check interception with an alignment mask * in a TCG backend. */ #define TLB_FLAGS_MASK \ (TLB_INVALID_MASK | TLB_NOTDIRTY | TLB_MMIO \ | TLB_WATCHPOINT | TLB_BSWAP | TLB_DISCARD_WRITE) /** * tlb_hit_page: return true if page aligned @addr is a hit against the * TLB entry @tlb_addr * * @addr: virtual address to test (must be page aligned) * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value) */ static inline bool tlb_hit_page(target_ulong tlb_addr, target_ulong addr) { return addr == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK)); } /** * tlb_hit: return true if @addr is a hit against the TLB entry @tlb_addr * * @addr: virtual address to test (need not be page aligned) * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value) */ static inline bool tlb_hit(target_ulong tlb_addr, target_ulong addr) { return tlb_hit_page(tlb_addr, addr & TARGET_PAGE_MASK); } #ifdef CONFIG_TCG /* accel/tcg/cpu-exec.c */ void dump_drift_info(void); /* accel/tcg/translate-all.c */ void dump_exec_info(void); void dump_opcount_info(void); #endif /* CONFIG_TCG */ #endif /* !CONFIG_USER_ONLY */ #ifdef CONFIG_TCG /* accel/tcg/cpu-exec.c */ int cpu_exec(CPUState *cpu); void tcg_exec_realizefn(CPUState *cpu, Error **errp); void tcg_exec_unrealizefn(CPUState *cpu); #endif /* CONFIG_TCG */ /* Returns: 0 on success, -1 on error */ int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, void *ptr, target_ulong len, bool is_write); /** * cpu_set_cpustate_pointers(cpu) * @cpu: The cpu object * * Set the generic pointers in CPUState into the outer object. */ static inline void cpu_set_cpustate_pointers(ArchCPU *cpu) { cpu->parent_obj.env_ptr = &cpu->env; cpu->parent_obj.icount_decr_ptr = &cpu->neg.icount_decr; } /** * env_archcpu(env) * @env: The architecture environment * * Return the ArchCPU associated with the environment. */ static inline ArchCPU *env_archcpu(CPUArchState *env) { return container_of(env, ArchCPU, env); } /** * env_cpu(env) * @env: The architecture environment * * Return the CPUState associated with the environment. */ static inline CPUState *env_cpu(CPUArchState *env) { return &env_archcpu(env)->parent_obj; } /** * env_neg(env) * @env: The architecture environment * * Return the CPUNegativeOffsetState associated with the environment. */ static inline CPUNegativeOffsetState *env_neg(CPUArchState *env) { ArchCPU *arch_cpu = container_of(env, ArchCPU, env); return &arch_cpu->neg; } /** * cpu_neg(cpu) * @cpu: The generic CPUState * * Return the CPUNegativeOffsetState associated with the cpu. */ static inline CPUNegativeOffsetState *cpu_neg(CPUState *cpu) { ArchCPU *arch_cpu = container_of(cpu, ArchCPU, parent_obj); return &arch_cpu->neg; } /** * env_tlb(env) * @env: The architecture environment * * Return the CPUTLB state associated with the environment. */ static inline CPUTLB *env_tlb(CPUArchState *env) { return &env_neg(env)->tlb; } #endif /* CPU_ALL_H */