/* * QEMU Ultrasparc Sabre PCI host (PBM) * * Copyright (c) 2006 Fabrice Bellard * Copyright (c) 2012,2013 Artyom Tarasenko * Copyright (c) 2018 Mark Cave-Ayland * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "hw/sysbus.h" #include "hw/pci/pci.h" #include "hw/pci/pci_host.h" #include "hw/qdev-properties.h" #include "hw/pci/pci_bridge.h" #include "hw/pci/pci_bus.h" #include "hw/irq.h" #include "hw/pci-bridge/simba.h" #include "hw/pci-host/sabre.h" #include "exec/address-spaces.h" #include "qemu/log.h" #include "qemu/module.h" #include "sysemu/runstate.h" #include "trace.h" /* * Chipset docs: * PBM: "UltraSPARC IIi User's Manual", * http://www.sun.com/processors/manuals/805-0087.pdf */ #define PBM_PCI_IMR_MASK 0x7fffffff #define PBM_PCI_IMR_ENABLED 0x80000000 #define POR (1U << 31) #define SOFT_POR (1U << 30) #define SOFT_XIR (1U << 29) #define BTN_POR (1U << 28) #define BTN_XIR (1U << 27) #define RESET_MASK 0xf8000000 #define RESET_WCMASK 0x98000000 #define RESET_WMASK 0x60000000 #define NO_IRQ_REQUEST (MAX_IVEC + 1) static inline void sabre_set_request(SabreState *s, unsigned int irq_num) { trace_sabre_set_request(irq_num); s->irq_request = irq_num; qemu_set_irq(s->ivec_irqs[irq_num], 1); } static inline void sabre_check_irqs(SabreState *s) { unsigned int i; /* Previous request is not acknowledged, resubmit */ if (s->irq_request != NO_IRQ_REQUEST) { sabre_set_request(s, s->irq_request); return; } /* no request pending */ if (s->pci_irq_in == 0ULL) { return; } for (i = 0; i < 32; i++) { if (s->pci_irq_in & (1ULL << i)) { if (s->pci_irq_map[i >> 2] & PBM_PCI_IMR_ENABLED) { sabre_set_request(s, i); return; } } } for (i = 32; i < 64; i++) { if (s->pci_irq_in & (1ULL << i)) { if (s->obio_irq_map[i - 32] & PBM_PCI_IMR_ENABLED) { sabre_set_request(s, i); break; } } } } static inline void sabre_clear_request(SabreState *s, unsigned int irq_num) { trace_sabre_clear_request(irq_num); qemu_set_irq(s->ivec_irqs[irq_num], 0); s->irq_request = NO_IRQ_REQUEST; } static AddressSpace *sabre_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn) { IOMMUState *is = opaque; return &is->iommu_as; } static void sabre_config_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { SabreState *s = opaque; trace_sabre_config_write(addr, val); switch (addr & 0xffff) { case 0x30 ... 0x4f: /* DMA error registers */ /* XXX: not implemented yet */ break; case 0xc00 ... 0xc3f: /* PCI interrupt control */ if (addr & 4) { unsigned int ino = (addr & 0x3f) >> 3; s->pci_irq_map[ino] &= PBM_PCI_IMR_MASK; s->pci_irq_map[ino] |= val & ~PBM_PCI_IMR_MASK; if ((s->irq_request == ino) && !(val & ~PBM_PCI_IMR_MASK)) { sabre_clear_request(s, ino); } sabre_check_irqs(s); } break; case 0x1000 ... 0x107f: /* OBIO interrupt control */ if (addr & 4) { unsigned int ino = ((addr & 0xff) >> 3); s->obio_irq_map[ino] &= PBM_PCI_IMR_MASK; s->obio_irq_map[ino] |= val & ~PBM_PCI_IMR_MASK; if ((s->irq_request == (ino | 0x20)) && !(val & ~PBM_PCI_IMR_MASK)) { sabre_clear_request(s, ino | 0x20); } sabre_check_irqs(s); } break; case 0x1400 ... 0x14ff: /* PCI interrupt clear */ if (addr & 4) { unsigned int ino = (addr & 0xff) >> 5; if ((s->irq_request / 4) == ino) { sabre_clear_request(s, s->irq_request); sabre_check_irqs(s); } } break; case 0x1800 ... 0x1860: /* OBIO interrupt clear */ if (addr & 4) { unsigned int ino = ((addr & 0xff) >> 3) | 0x20; if (s->irq_request == ino) { sabre_clear_request(s, ino); sabre_check_irqs(s); } } break; case 0x2000 ... 0x202f: /* PCI control */ s->pci_control[(addr & 0x3f) >> 2] = val; break; case 0xf020 ... 0xf027: /* Reset control */ if (addr & 4) { val &= RESET_MASK; s->reset_control &= ~(val & RESET_WCMASK); s->reset_control |= val & RESET_WMASK; if (val & SOFT_POR) { s->nr_resets = 0; qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); } else if (val & SOFT_XIR) { qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); } } break; case 0x5000 ... 0x51cf: /* PIO/DMA diagnostics */ case 0xa400 ... 0xa67f: /* IOMMU diagnostics */ case 0xa800 ... 0xa80f: /* Interrupt diagnostics */ case 0xf000 ... 0xf01f: /* FFB config, memory control */ /* we don't care */ default: break; } } static uint64_t sabre_config_read(void *opaque, hwaddr addr, unsigned size) { SabreState *s = opaque; uint32_t val; switch (addr & 0xffff) { case 0x30 ... 0x4f: /* DMA error registers */ val = 0; /* XXX: not implemented yet */ break; case 0xc00 ... 0xc3f: /* PCI interrupt control */ if (addr & 4) { val = s->pci_irq_map[(addr & 0x3f) >> 3]; } else { val = 0; } break; case 0x1000 ... 0x107f: /* OBIO interrupt control */ if (addr & 4) { val = s->obio_irq_map[(addr & 0xff) >> 3]; } else { val = 0; } break; case 0x1080 ... 0x108f: /* PCI bus error */ if (addr & 4) { val = s->pci_err_irq_map[(addr & 0xf) >> 3]; } else { val = 0; } break; case 0x2000 ... 0x202f: /* PCI control */ val = s->pci_control[(addr & 0x3f) >> 2]; break; case 0xf020 ... 0xf027: /* Reset control */ if (addr & 4) { val = s->reset_control; } else { val = 0; } break; case 0x5000 ... 0x51cf: /* PIO/DMA diagnostics */ case 0xa400 ... 0xa67f: /* IOMMU diagnostics */ case 0xa800 ... 0xa80f: /* Interrupt diagnostics */ case 0xf000 ... 0xf01f: /* FFB config, memory control */ /* we don't care */ default: val = 0; break; } trace_sabre_config_read(addr, val); return val; } static const MemoryRegionOps sabre_config_ops = { .read = sabre_config_read, .write = sabre_config_write, .endianness = DEVICE_BIG_ENDIAN, }; static void sabre_pci_config_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { SabreState *s = opaque; PCIHostState *phb = PCI_HOST_BRIDGE(s); trace_sabre_pci_config_write(addr, val); pci_data_write(phb->bus, addr, val, size); } static uint64_t sabre_pci_config_read(void *opaque, hwaddr addr, unsigned size) { uint32_t ret; SabreState *s = opaque; PCIHostState *phb = PCI_HOST_BRIDGE(s); ret = pci_data_read(phb->bus, addr, size); trace_sabre_pci_config_read(addr, ret); return ret; } /* The sabre host has an IRQ line for each IRQ line of each slot. */ static int pci_sabre_map_irq(PCIDevice *pci_dev, int irq_num) { /* Return the irq as swizzled by the PBM */ return irq_num; } static int pci_simbaA_map_irq(PCIDevice *pci_dev, int irq_num) { /* The on-board devices have fixed (legacy) OBIO intnos */ switch (PCI_SLOT(pci_dev->devfn)) { case 1: /* Onboard NIC */ return OBIO_NIC_IRQ; case 3: /* Onboard IDE */ return OBIO_HDD_IRQ; default: /* Normal intno, fall through */ break; } return ((PCI_SLOT(pci_dev->devfn) << 2) + irq_num) & 0x1f; } static int pci_simbaB_map_irq(PCIDevice *pci_dev, int irq_num) { return (0x10 + (PCI_SLOT(pci_dev->devfn) << 2) + irq_num) & 0x1f; } static void pci_sabre_set_irq(void *opaque, int irq_num, int level) { SabreState *s = opaque; trace_sabre_pci_set_irq(irq_num, level); /* PCI IRQ map onto the first 32 INO. */ if (irq_num < 32) { if (level) { s->pci_irq_in |= 1ULL << irq_num; if (s->pci_irq_map[irq_num >> 2] & PBM_PCI_IMR_ENABLED) { sabre_set_request(s, irq_num); } } else { s->pci_irq_in &= ~(1ULL << irq_num); } } else { /* OBIO IRQ map onto the next 32 INO. */ if (level) { trace_sabre_pci_set_obio_irq(irq_num, level); s->pci_irq_in |= 1ULL << irq_num; if ((s->irq_request == NO_IRQ_REQUEST) && (s->obio_irq_map[irq_num - 32] & PBM_PCI_IMR_ENABLED)) { sabre_set_request(s, irq_num); } } else { s->pci_irq_in &= ~(1ULL << irq_num); } } } static void sabre_reset(DeviceState *d) { SabreState *s = SABRE_DEVICE(d); PCIDevice *pci_dev; unsigned int i; uint16_t cmd; for (i = 0; i < 8; i++) { s->pci_irq_map[i] &= PBM_PCI_IMR_MASK; } for (i = 0; i < 32; i++) { s->obio_irq_map[i] &= PBM_PCI_IMR_MASK; } s->irq_request = NO_IRQ_REQUEST; s->pci_irq_in = 0ULL; if (s->nr_resets++ == 0) { /* Power on reset */ s->reset_control = POR; } /* As this is the busA PCI bridge which contains the on-board devices * attached to the ebus, ensure that we initially allow IO transactions * so that we get the early serial console until OpenBIOS can properly * configure the PCI bridge itself */ pci_dev = PCI_DEVICE(s->bridgeA); cmd = pci_get_word(pci_dev->config + PCI_COMMAND); pci_set_word(pci_dev->config + PCI_COMMAND, cmd | PCI_COMMAND_IO); pci_bridge_update_mappings(PCI_BRIDGE(pci_dev)); } static const MemoryRegionOps pci_config_ops = { .read = sabre_pci_config_read, .write = sabre_pci_config_write, .endianness = DEVICE_LITTLE_ENDIAN, }; static void sabre_realize(DeviceState *dev, Error **errp) { SabreState *s = SABRE_DEVICE(dev); PCIHostState *phb = PCI_HOST_BRIDGE(dev); SysBusDevice *sbd = SYS_BUS_DEVICE(s); PCIDevice *pci_dev; /* sabre_config */ sysbus_mmio_map(sbd, 0, s->special_base); /* PCI configuration space */ sysbus_mmio_map(sbd, 1, s->special_base + 0x1000000ULL); /* pci_ioport */ sysbus_mmio_map(sbd, 2, s->special_base + 0x2000000ULL); memory_region_init(&s->pci_mmio, OBJECT(s), "pci-mmio", 0x100000000ULL); memory_region_add_subregion(get_system_memory(), s->mem_base, &s->pci_mmio); phb->bus = pci_register_root_bus(dev, "pci", pci_sabre_set_irq, pci_sabre_map_irq, s, &s->pci_mmio, &s->pci_ioport, 0, 32, TYPE_PCI_BUS); pci_create_simple(phb->bus, 0, TYPE_SABRE_PCI_DEVICE); /* IOMMU */ memory_region_add_subregion_overlap(&s->sabre_config, 0x200, sysbus_mmio_get_region(SYS_BUS_DEVICE(s->iommu), 0), 1); pci_setup_iommu(phb->bus, sabre_pci_dma_iommu, s->iommu); /* APB secondary busses */ pci_dev = pci_create_multifunction(phb->bus, PCI_DEVFN(1, 0), true, TYPE_SIMBA_PCI_BRIDGE); s->bridgeB = PCI_BRIDGE(pci_dev); pci_bridge_map_irq(s->bridgeB, "pciB", pci_simbaB_map_irq); qdev_init_nofail(&pci_dev->qdev); pci_dev = pci_create_multifunction(phb->bus, PCI_DEVFN(1, 1), true, TYPE_SIMBA_PCI_BRIDGE); s->bridgeA = PCI_BRIDGE(pci_dev); pci_bridge_map_irq(s->bridgeA, "pciA", pci_simbaA_map_irq); qdev_init_nofail(&pci_dev->qdev); } static void sabre_init(Object *obj) { SabreState *s = SABRE_DEVICE(obj); SysBusDevice *sbd = SYS_BUS_DEVICE(obj); unsigned int i; for (i = 0; i < 8; i++) { s->pci_irq_map[i] = (0x1f << 6) | (i << 2); } for (i = 0; i < 2; i++) { s->pci_err_irq_map[i] = (0x1f << 6) | 0x30; } for (i = 0; i < 32; i++) { s->obio_irq_map[i] = ((0x1f << 6) | 0x20) + i; } qdev_init_gpio_in_named(DEVICE(s), pci_sabre_set_irq, "pbm-irq", MAX_IVEC); qdev_init_gpio_out_named(DEVICE(s), s->ivec_irqs, "ivec-irq", MAX_IVEC); s->irq_request = NO_IRQ_REQUEST; s->pci_irq_in = 0ULL; /* IOMMU */ object_property_add_link(obj, "iommu", TYPE_SUN4U_IOMMU, (Object **) &s->iommu, qdev_prop_allow_set_link_before_realize, 0, NULL); /* sabre_config */ memory_region_init_io(&s->sabre_config, OBJECT(s), &sabre_config_ops, s, "sabre-config", 0x10000); /* at region 0 */ sysbus_init_mmio(sbd, &s->sabre_config); memory_region_init_io(&s->pci_config, OBJECT(s), &pci_config_ops, s, "sabre-pci-config", 0x1000000); /* at region 1 */ sysbus_init_mmio(sbd, &s->pci_config); /* pci_ioport */ memory_region_init(&s->pci_ioport, OBJECT(s), "sabre-pci-ioport", 0x1000000); /* at region 2 */ sysbus_init_mmio(sbd, &s->pci_ioport); } static void sabre_pci_realize(PCIDevice *d, Error **errp) { pci_set_word(d->config + PCI_COMMAND, PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); pci_set_word(d->config + PCI_STATUS, PCI_STATUS_FAST_BACK | PCI_STATUS_66MHZ | PCI_STATUS_DEVSEL_MEDIUM); } static void sabre_pci_class_init(ObjectClass *klass, void *data) { PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); DeviceClass *dc = DEVICE_CLASS(klass); k->realize = sabre_pci_realize; k->vendor_id = PCI_VENDOR_ID_SUN; k->device_id = PCI_DEVICE_ID_SUN_SABRE; k->class_id = PCI_CLASS_BRIDGE_HOST; /* * PCI-facing part of the host bridge, not usable without the * host-facing part, which can't be device_add'ed, yet. */ dc->user_creatable = false; } static const TypeInfo sabre_pci_info = { .name = TYPE_SABRE_PCI_DEVICE, .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(SabrePCIState), .class_init = sabre_pci_class_init, .interfaces = (InterfaceInfo[]) { { INTERFACE_CONVENTIONAL_PCI_DEVICE }, { }, }, }; static char *sabre_ofw_unit_address(const SysBusDevice *dev) { SabreState *s = SABRE_DEVICE(dev); return g_strdup_printf("%x,%x", (uint32_t)((s->special_base >> 32) & 0xffffffff), (uint32_t)(s->special_base & 0xffffffff)); } static Property sabre_properties[] = { DEFINE_PROP_UINT64("special-base", SabreState, special_base, 0), DEFINE_PROP_UINT64("mem-base", SabreState, mem_base, 0), DEFINE_PROP_END_OF_LIST(), }; static void sabre_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); SysBusDeviceClass *sbc = SYS_BUS_DEVICE_CLASS(klass); dc->realize = sabre_realize; dc->reset = sabre_reset; dc->props = sabre_properties; set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); dc->fw_name = "pci"; sbc->explicit_ofw_unit_address = sabre_ofw_unit_address; } static const TypeInfo sabre_info = { .name = TYPE_SABRE, .parent = TYPE_PCI_HOST_BRIDGE, .instance_size = sizeof(SabreState), .instance_init = sabre_init, .class_init = sabre_class_init, }; static void sabre_register_types(void) { type_register_static(&sabre_info); type_register_static(&sabre_pci_info); } type_init(sabre_register_types)