/* * i386 helpers (without register variable usage) * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qapi/qapi-events-run-state.h" #include "cpu.h" #include "exec/exec-all.h" #include "sysemu/runstate.h" #include "kvm/kvm_i386.h" #ifndef CONFIG_USER_ONLY #include "sysemu/hw_accel.h" #include "monitor/monitor.h" #endif #include "qemu/log.h" void cpu_sync_bndcs_hflags(CPUX86State *env) { uint32_t hflags = env->hflags; uint32_t hflags2 = env->hflags2; uint32_t bndcsr; if ((hflags & HF_CPL_MASK) == 3) { bndcsr = env->bndcs_regs.cfgu; } else { bndcsr = env->msr_bndcfgs; } if ((env->cr[4] & CR4_OSXSAVE_MASK) && (env->xcr0 & XSTATE_BNDCSR_MASK) && (bndcsr & BNDCFG_ENABLE)) { hflags |= HF_MPX_EN_MASK; } else { hflags &= ~HF_MPX_EN_MASK; } if (bndcsr & BNDCFG_BNDPRESERVE) { hflags2 |= HF2_MPX_PR_MASK; } else { hflags2 &= ~HF2_MPX_PR_MASK; } env->hflags = hflags; env->hflags2 = hflags2; } static void cpu_x86_version(CPUX86State *env, int *family, int *model) { int cpuver = env->cpuid_version; if (family == NULL || model == NULL) { return; } *family = (cpuver >> 8) & 0x0f; *model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f); } /* Broadcast MCA signal for processor version 06H_EH and above */ int cpu_x86_support_mca_broadcast(CPUX86State *env) { int family = 0; int model = 0; cpu_x86_version(env, &family, &model); if ((family == 6 && model >= 14) || family > 6) { return 1; } return 0; } /***********************************************************/ /* x86 mmu */ /* XXX: add PGE support */ void x86_cpu_set_a20(X86CPU *cpu, int a20_state) { CPUX86State *env = &cpu->env; a20_state = (a20_state != 0); if (a20_state != ((env->a20_mask >> 20) & 1)) { CPUState *cs = CPU(cpu); qemu_log_mask(CPU_LOG_MMU, "A20 update: a20=%d\n", a20_state); /* if the cpu is currently executing code, we must unlink it and all the potentially executing TB */ cpu_interrupt(cs, CPU_INTERRUPT_EXITTB); /* when a20 is changed, all the MMU mappings are invalid, so we must flush everything */ tlb_flush(cs); env->a20_mask = ~(1 << 20) | (a20_state << 20); } } void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0) { X86CPU *cpu = env_archcpu(env); int pe_state; qemu_log_mask(CPU_LOG_MMU, "CR0 update: CR0=0x%08x\n", new_cr0); if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) != (env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) { tlb_flush(CPU(cpu)); } #ifdef TARGET_X86_64 if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) && (env->efer & MSR_EFER_LME)) { /* enter in long mode */ /* XXX: generate an exception */ if (!(env->cr[4] & CR4_PAE_MASK)) return; env->efer |= MSR_EFER_LMA; env->hflags |= HF_LMA_MASK; } else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) && (env->efer & MSR_EFER_LMA)) { /* exit long mode */ env->efer &= ~MSR_EFER_LMA; env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK); env->eip &= 0xffffffff; } #endif env->cr[0] = new_cr0 | CR0_ET_MASK; /* update PE flag in hidden flags */ pe_state = (env->cr[0] & CR0_PE_MASK); env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT); /* ensure that ADDSEG is always set in real mode */ env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT); /* update FPU flags */ env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) | ((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)); } /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in the PDPT */ void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3) { env->cr[3] = new_cr3; if (env->cr[0] & CR0_PG_MASK) { qemu_log_mask(CPU_LOG_MMU, "CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3); tlb_flush(env_cpu(env)); } } void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4) { uint32_t hflags; #if defined(DEBUG_MMU) printf("CR4 update: %08x -> %08x\n", (uint32_t)env->cr[4], new_cr4); #endif if ((new_cr4 ^ env->cr[4]) & (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK | CR4_SMEP_MASK | CR4_SMAP_MASK | CR4_LA57_MASK)) { tlb_flush(env_cpu(env)); } /* Clear bits we're going to recompute. */ hflags = env->hflags & ~(HF_OSFXSR_MASK | HF_SMAP_MASK | HF_UMIP_MASK); /* SSE handling */ if (!(env->features[FEAT_1_EDX] & CPUID_SSE)) { new_cr4 &= ~CR4_OSFXSR_MASK; } if (new_cr4 & CR4_OSFXSR_MASK) { hflags |= HF_OSFXSR_MASK; } if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_SMAP)) { new_cr4 &= ~CR4_SMAP_MASK; } if (new_cr4 & CR4_SMAP_MASK) { hflags |= HF_SMAP_MASK; } if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_UMIP)) { new_cr4 &= ~CR4_UMIP_MASK; } if (new_cr4 & CR4_UMIP_MASK) { hflags |= HF_UMIP_MASK; } if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKU)) { new_cr4 &= ~CR4_PKE_MASK; } if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKS)) { new_cr4 &= ~CR4_PKS_MASK; } env->cr[4] = new_cr4; env->hflags = hflags; cpu_sync_bndcs_hflags(env); } #if !defined(CONFIG_USER_ONLY) hwaddr x86_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, MemTxAttrs *attrs) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; target_ulong pde_addr, pte_addr; uint64_t pte; int32_t a20_mask; uint32_t page_offset; int page_size; *attrs = cpu_get_mem_attrs(env); a20_mask = x86_get_a20_mask(env); if (!(env->cr[0] & CR0_PG_MASK)) { pte = addr & a20_mask; page_size = 4096; } else if (env->cr[4] & CR4_PAE_MASK) { target_ulong pdpe_addr; uint64_t pde, pdpe; #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { bool la57 = env->cr[4] & CR4_LA57_MASK; uint64_t pml5e_addr, pml5e; uint64_t pml4e_addr, pml4e; int32_t sext; /* test virtual address sign extension */ sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47; if (sext != 0 && sext != -1) { return -1; } if (la57) { pml5e_addr = ((env->cr[3] & ~0xfff) + (((addr >> 48) & 0x1ff) << 3)) & a20_mask; pml5e = x86_ldq_phys(cs, pml5e_addr); if (!(pml5e & PG_PRESENT_MASK)) { return -1; } } else { pml5e = env->cr[3]; } pml4e_addr = ((pml5e & PG_ADDRESS_MASK) + (((addr >> 39) & 0x1ff) << 3)) & a20_mask; pml4e = x86_ldq_phys(cs, pml4e_addr); if (!(pml4e & PG_PRESENT_MASK)) { return -1; } pdpe_addr = ((pml4e & PG_ADDRESS_MASK) + (((addr >> 30) & 0x1ff) << 3)) & a20_mask; pdpe = x86_ldq_phys(cs, pdpe_addr); if (!(pdpe & PG_PRESENT_MASK)) { return -1; } if (pdpe & PG_PSE_MASK) { page_size = 1024 * 1024 * 1024; pte = pdpe; goto out; } } else #endif { pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) & a20_mask; pdpe = x86_ldq_phys(cs, pdpe_addr); if (!(pdpe & PG_PRESENT_MASK)) return -1; } pde_addr = ((pdpe & PG_ADDRESS_MASK) + (((addr >> 21) & 0x1ff) << 3)) & a20_mask; pde = x86_ldq_phys(cs, pde_addr); if (!(pde & PG_PRESENT_MASK)) { return -1; } if (pde & PG_PSE_MASK) { /* 2 MB page */ page_size = 2048 * 1024; pte = pde; } else { /* 4 KB page */ pte_addr = ((pde & PG_ADDRESS_MASK) + (((addr >> 12) & 0x1ff) << 3)) & a20_mask; page_size = 4096; pte = x86_ldq_phys(cs, pte_addr); } if (!(pte & PG_PRESENT_MASK)) { return -1; } } else { uint32_t pde; /* page directory entry */ pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & a20_mask; pde = x86_ldl_phys(cs, pde_addr); if (!(pde & PG_PRESENT_MASK)) return -1; if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) { pte = pde | ((pde & 0x1fe000LL) << (32 - 13)); page_size = 4096 * 1024; } else { /* page directory entry */ pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & a20_mask; pte = x86_ldl_phys(cs, pte_addr); if (!(pte & PG_PRESENT_MASK)) { return -1; } page_size = 4096; } pte = pte & a20_mask; } #ifdef TARGET_X86_64 out: #endif pte &= PG_ADDRESS_MASK & ~(page_size - 1); page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1); return pte | page_offset; } typedef struct MCEInjectionParams { Monitor *mon; int bank; uint64_t status; uint64_t mcg_status; uint64_t addr; uint64_t misc; int flags; } MCEInjectionParams; static void emit_guest_memory_failure(MemoryFailureAction action, bool ar, bool recursive) { MemoryFailureFlags mff = {.action_required = ar, .recursive = recursive}; qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_GUEST, action, &mff); } static void do_inject_x86_mce(CPUState *cs, run_on_cpu_data data) { MCEInjectionParams *params = data.host_ptr; X86CPU *cpu = X86_CPU(cs); CPUX86State *cenv = &cpu->env; uint64_t *banks = cenv->mce_banks + 4 * params->bank; g_autofree char *msg = NULL; bool need_reset = false; bool recursive; bool ar = !!(params->status & MCI_STATUS_AR); cpu_synchronize_state(cs); recursive = !!(cenv->mcg_status & MCG_STATUS_MCIP); /* * If there is an MCE exception being processed, ignore this SRAO MCE * unless unconditional injection was requested. */ if (!(params->flags & MCE_INJECT_UNCOND_AO) && !ar && recursive) { emit_guest_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, ar, recursive); return; } if (params->status & MCI_STATUS_UC) { /* * if MSR_MCG_CTL is not all 1s, the uncorrected error * reporting is disabled */ if ((cenv->mcg_cap & MCG_CTL_P) && cenv->mcg_ctl != ~(uint64_t)0) { monitor_printf(params->mon, "CPU %d: Uncorrected error reporting disabled\n", cs->cpu_index); return; } /* * if MSR_MCi_CTL is not all 1s, the uncorrected error * reporting is disabled for the bank */ if (banks[0] != ~(uint64_t)0) { monitor_printf(params->mon, "CPU %d: Uncorrected error reporting disabled for" " bank %d\n", cs->cpu_index, params->bank); return; } if (!(cenv->cr[4] & CR4_MCE_MASK)) { need_reset = true; msg = g_strdup_printf("CPU %d: MCE capability is not enabled, " "raising triple fault", cs->cpu_index); } else if (recursive) { need_reset = true; msg = g_strdup_printf("CPU %d: Previous MCE still in progress, " "raising triple fault", cs->cpu_index); } if (need_reset) { emit_guest_memory_failure(MEMORY_FAILURE_ACTION_RESET, ar, recursive); monitor_printf(params->mon, "%s", msg); qemu_log_mask(CPU_LOG_RESET, "%s\n", msg); qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); return; } if (banks[1] & MCI_STATUS_VAL) { params->status |= MCI_STATUS_OVER; } banks[2] = params->addr; banks[3] = params->misc; cenv->mcg_status = params->mcg_status; banks[1] = params->status; cpu_interrupt(cs, CPU_INTERRUPT_MCE); } else if (!(banks[1] & MCI_STATUS_VAL) || !(banks[1] & MCI_STATUS_UC)) { if (banks[1] & MCI_STATUS_VAL) { params->status |= MCI_STATUS_OVER; } banks[2] = params->addr; banks[3] = params->misc; banks[1] = params->status; } else { banks[1] |= MCI_STATUS_OVER; } emit_guest_memory_failure(MEMORY_FAILURE_ACTION_INJECT, ar, recursive); } void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank, uint64_t status, uint64_t mcg_status, uint64_t addr, uint64_t misc, int flags) { CPUState *cs = CPU(cpu); CPUX86State *cenv = &cpu->env; MCEInjectionParams params = { .mon = mon, .bank = bank, .status = status, .mcg_status = mcg_status, .addr = addr, .misc = misc, .flags = flags, }; unsigned bank_num = cenv->mcg_cap & 0xff; if (!cenv->mcg_cap) { monitor_printf(mon, "MCE injection not supported\n"); return; } if (bank >= bank_num) { monitor_printf(mon, "Invalid MCE bank number\n"); return; } if (!(status & MCI_STATUS_VAL)) { monitor_printf(mon, "Invalid MCE status code\n"); return; } if ((flags & MCE_INJECT_BROADCAST) && !cpu_x86_support_mca_broadcast(cenv)) { monitor_printf(mon, "Guest CPU does not support MCA broadcast\n"); return; } run_on_cpu(cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(¶ms)); if (flags & MCE_INJECT_BROADCAST) { CPUState *other_cs; params.bank = 1; params.status = MCI_STATUS_VAL | MCI_STATUS_UC; params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV; params.addr = 0; params.misc = 0; CPU_FOREACH(other_cs) { if (other_cs == cs) { continue; } run_on_cpu(other_cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(¶ms)); } } } void cpu_report_tpr_access(CPUX86State *env, TPRAccess access) { X86CPU *cpu = env_archcpu(env); CPUState *cs = env_cpu(env); if (kvm_enabled() || whpx_enabled() || nvmm_enabled()) { env->tpr_access_type = access; cpu_interrupt(cs, CPU_INTERRUPT_TPR); } else if (tcg_enabled()) { cpu_restore_state(cs, cs->mem_io_pc, false); apic_handle_tpr_access_report(cpu->apic_state, env->eip, access); } } #endif /* !CONFIG_USER_ONLY */ int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector, target_ulong *base, unsigned int *limit, unsigned int *flags) { CPUState *cs = env_cpu(env); SegmentCache *dt; target_ulong ptr; uint32_t e1, e2; int index; if (selector & 0x4) dt = &env->ldt; else dt = &env->gdt; index = selector & ~7; ptr = dt->base + index; if ((index + 7) > dt->limit || cpu_memory_rw_debug(cs, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0 || cpu_memory_rw_debug(cs, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0) return 0; *base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000)); *limit = (e1 & 0xffff) | (e2 & 0x000f0000); if (e2 & DESC_G_MASK) *limit = (*limit << 12) | 0xfff; *flags = e2; return 1; } #if !defined(CONFIG_USER_ONLY) void do_cpu_init(X86CPU *cpu) { CPUState *cs = CPU(cpu); CPUX86State *env = &cpu->env; CPUX86State *save = g_new(CPUX86State, 1); int sipi = cs->interrupt_request & CPU_INTERRUPT_SIPI; *save = *env; cpu_reset(cs); cs->interrupt_request = sipi; memcpy(&env->start_init_save, &save->start_init_save, offsetof(CPUX86State, end_init_save) - offsetof(CPUX86State, start_init_save)); g_free(save); if (kvm_enabled()) { kvm_arch_do_init_vcpu(cpu); } apic_init_reset(cpu->apic_state); } void do_cpu_sipi(X86CPU *cpu) { apic_sipi(cpu->apic_state); } #else void do_cpu_init(X86CPU *cpu) { } void do_cpu_sipi(X86CPU *cpu) { } #endif #ifndef CONFIG_USER_ONLY void cpu_load_efer(CPUX86State *env, uint64_t val) { env->efer = val; env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK); if (env->efer & MSR_EFER_LMA) { env->hflags |= HF_LMA_MASK; } if (env->efer & MSR_EFER_SVME) { env->hflags |= HF_SVME_MASK; } } uint8_t x86_ldub_phys(CPUState *cs, hwaddr addr) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; MemTxAttrs attrs = cpu_get_mem_attrs(env); AddressSpace *as = cpu_addressspace(cs, attrs); return address_space_ldub(as, addr, attrs, NULL); } uint32_t x86_lduw_phys(CPUState *cs, hwaddr addr) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; MemTxAttrs attrs = cpu_get_mem_attrs(env); AddressSpace *as = cpu_addressspace(cs, attrs); return address_space_lduw(as, addr, attrs, NULL); } uint32_t x86_ldl_phys(CPUState *cs, hwaddr addr) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; MemTxAttrs attrs = cpu_get_mem_attrs(env); AddressSpace *as = cpu_addressspace(cs, attrs); return address_space_ldl(as, addr, attrs, NULL); } uint64_t x86_ldq_phys(CPUState *cs, hwaddr addr) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; MemTxAttrs attrs = cpu_get_mem_attrs(env); AddressSpace *as = cpu_addressspace(cs, attrs); return address_space_ldq(as, addr, attrs, NULL); } void x86_stb_phys(CPUState *cs, hwaddr addr, uint8_t val) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; MemTxAttrs attrs = cpu_get_mem_attrs(env); AddressSpace *as = cpu_addressspace(cs, attrs); address_space_stb(as, addr, val, attrs, NULL); } void x86_stl_phys_notdirty(CPUState *cs, hwaddr addr, uint32_t val) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; MemTxAttrs attrs = cpu_get_mem_attrs(env); AddressSpace *as = cpu_addressspace(cs, attrs); address_space_stl_notdirty(as, addr, val, attrs, NULL); } void x86_stw_phys(CPUState *cs, hwaddr addr, uint32_t val) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; MemTxAttrs attrs = cpu_get_mem_attrs(env); AddressSpace *as = cpu_addressspace(cs, attrs); address_space_stw(as, addr, val, attrs, NULL); } void x86_stl_phys(CPUState *cs, hwaddr addr, uint32_t val) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; MemTxAttrs attrs = cpu_get_mem_attrs(env); AddressSpace *as = cpu_addressspace(cs, attrs); address_space_stl(as, addr, val, attrs, NULL); } void x86_stq_phys(CPUState *cs, hwaddr addr, uint64_t val) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; MemTxAttrs attrs = cpu_get_mem_attrs(env); AddressSpace *as = cpu_addressspace(cs, attrs); address_space_stq(as, addr, val, attrs, NULL); } #endif