/* * Copyright (C) 2021, Mahmoud Mandour * * License: GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include #include #include #include QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION; static enum qemu_plugin_mem_rw rw = QEMU_PLUGIN_MEM_RW; static GHashTable *miss_ht; static GMutex mtx; static GRand *rng; static int limit; static bool sys; static uint64_t dmem_accesses; static uint64_t dmisses; static uint64_t imem_accesses; static uint64_t imisses; enum EvictionPolicy { LRU, FIFO, RAND, }; enum EvictionPolicy policy; /* * A CacheSet is a set of cache blocks. A memory block that maps to a set can be * put in any of the blocks inside the set. The number of block per set is * called the associativity (assoc). * * Each block contains the the stored tag and a valid bit. Since this is not * a functional simulator, the data itself is not stored. We only identify * whether a block is in the cache or not by searching for its tag. * * In order to search for memory data in the cache, the set identifier and tag * are extracted from the address and the set is probed to see whether a tag * match occur. * * An address is logically divided into three portions: The block offset, * the set number, and the tag. * * The set number is used to identify the set in which the block may exist. * The tag is compared against all the tags of a set to search for a match. If a * match is found, then the access is a hit. * * The CacheSet also contains bookkeaping information about eviction details. */ typedef struct { uint64_t tag; bool valid; } CacheBlock; typedef struct { CacheBlock *blocks; uint64_t *lru_priorities; uint64_t lru_gen_counter; GQueue *fifo_queue; } CacheSet; typedef struct { CacheSet *sets; int num_sets; int cachesize; int assoc; int blksize_shift; uint64_t set_mask; uint64_t tag_mask; } Cache; typedef struct { char *disas_str; const char *symbol; uint64_t addr; uint64_t dmisses; uint64_t imisses; } InsnData; void (*update_hit)(Cache *cache, int set, int blk); void (*update_miss)(Cache *cache, int set, int blk); void (*metadata_init)(Cache *cache); void (*metadata_destroy)(Cache *cache); Cache *dcache, *icache; static int pow_of_two(int num) { g_assert((num & (num - 1)) == 0); int ret = 0; while (num /= 2) { ret++; } return ret; } /* * LRU evection policy: For each set, a generation counter is maintained * alongside a priority array. * * On each set access, the generation counter is incremented. * * On a cache hit: The hit-block is assigned the current generation counter, * indicating that it is the most recently used block. * * On a cache miss: The block with the least priority is searched and replaced * with the newly-cached block, of which the priority is set to the current * generation number. */ static void lru_priorities_init(Cache *cache) { int i; for (i = 0; i < cache->num_sets; i++) { cache->sets[i].lru_priorities = g_new0(uint64_t, cache->assoc); cache->sets[i].lru_gen_counter = 0; } } static void lru_update_blk(Cache *cache, int set_idx, int blk_idx) { CacheSet *set = &cache->sets[set_idx]; set->lru_priorities[blk_idx] = cache->sets[set_idx].lru_gen_counter; set->lru_gen_counter++; } static int lru_get_lru_block(Cache *cache, int set_idx) { int i, min_idx, min_priority; min_priority = cache->sets[set_idx].lru_priorities[0]; min_idx = 0; for (i = 1; i < cache->assoc; i++) { if (cache->sets[set_idx].lru_priorities[i] < min_priority) { min_priority = cache->sets[set_idx].lru_priorities[i]; min_idx = i; } } return min_idx; } static void lru_priorities_destroy(Cache *cache) { int i; for (i = 0; i < cache->num_sets; i++) { g_free(cache->sets[i].lru_priorities); } } /* * FIFO eviction policy: a FIFO queue is maintained for each CacheSet that * stores accesses to the cache. * * On a compulsory miss: The block index is enqueued to the fifo_queue to * indicate that it's the latest cached block. * * On a conflict miss: The first-in block is removed from the cache and the new * block is put in its place and enqueued to the FIFO queue. */ static void fifo_init(Cache *cache) { int i; for (i = 0; i < cache->num_sets; i++) { cache->sets[i].fifo_queue = g_queue_new(); } } static int fifo_get_first_block(Cache *cache, int set) { GQueue *q = cache->sets[set].fifo_queue; return GPOINTER_TO_INT(g_queue_pop_tail(q)); } static void fifo_update_on_miss(Cache *cache, int set, int blk_idx) { GQueue *q = cache->sets[set].fifo_queue; g_queue_push_head(q, GINT_TO_POINTER(blk_idx)); } static void fifo_destroy(Cache *cache) { int i; for (i = 0; i < cache->num_sets; i++) { g_queue_free(cache->sets[i].fifo_queue); } } static inline uint64_t extract_tag(Cache *cache, uint64_t addr) { return addr & cache->tag_mask; } static inline uint64_t extract_set(Cache *cache, uint64_t addr) { return (addr & cache->set_mask) >> cache->blksize_shift; } static const char *cache_config_error(int blksize, int assoc, int cachesize) { if (cachesize % blksize != 0) { return "cache size must be divisible by block size"; } else if (cachesize % (blksize * assoc) != 0) { return "cache size must be divisible by set size (assoc * block size)"; } else { return NULL; } } static bool bad_cache_params(int blksize, int assoc, int cachesize) { return (cachesize % blksize) != 0 || (cachesize % (blksize * assoc) != 0); } static Cache *cache_init(int blksize, int assoc, int cachesize) { if (bad_cache_params(blksize, assoc, cachesize)) { return NULL; } Cache *cache; int i; uint64_t blk_mask; cache = g_new(Cache, 1); cache->assoc = assoc; cache->cachesize = cachesize; cache->num_sets = cachesize / (blksize * assoc); cache->sets = g_new(CacheSet, cache->num_sets); cache->blksize_shift = pow_of_two(blksize); for (i = 0; i < cache->num_sets; i++) { cache->sets[i].blocks = g_new0(CacheBlock, assoc); } blk_mask = blksize - 1; cache->set_mask = ((cache->num_sets - 1) << cache->blksize_shift); cache->tag_mask = ~(cache->set_mask | blk_mask); if (metadata_init) { metadata_init(cache); } return cache; } static int get_invalid_block(Cache *cache, uint64_t set) { int i; for (i = 0; i < cache->assoc; i++) { if (!cache->sets[set].blocks[i].valid) { return i; } } return -1; } static int get_replaced_block(Cache *cache, int set) { switch (policy) { case RAND: return g_rand_int_range(rng, 0, cache->assoc); case LRU: return lru_get_lru_block(cache, set); case FIFO: return fifo_get_first_block(cache, set); default: g_assert_not_reached(); } } static int in_cache(Cache *cache, uint64_t addr) { int i; uint64_t tag, set; tag = extract_tag(cache, addr); set = extract_set(cache, addr); for (i = 0; i < cache->assoc; i++) { if (cache->sets[set].blocks[i].tag == tag && cache->sets[set].blocks[i].valid) { return i; } } return -1; } /** * access_cache(): Simulate a cache access * @cache: The cache under simulation * @addr: The address of the requested memory location * * Returns true if the requsted data is hit in the cache and false when missed. * The cache is updated on miss for the next access. */ static bool access_cache(Cache *cache, uint64_t addr) { int hit_blk, replaced_blk; uint64_t tag, set; tag = extract_tag(cache, addr); set = extract_set(cache, addr); hit_blk = in_cache(cache, addr); if (hit_blk != -1) { if (update_hit) { update_hit(cache, set, hit_blk); } return true; } replaced_blk = get_invalid_block(cache, set); if (replaced_blk == -1) { replaced_blk = get_replaced_block(cache, set); } if (update_miss) { update_miss(cache, set, replaced_blk); } cache->sets[set].blocks[replaced_blk].tag = tag; cache->sets[set].blocks[replaced_blk].valid = true; return false; } static void vcpu_mem_access(unsigned int vcpu_index, qemu_plugin_meminfo_t info, uint64_t vaddr, void *userdata) { uint64_t effective_addr; struct qemu_plugin_hwaddr *hwaddr; InsnData *insn; hwaddr = qemu_plugin_get_hwaddr(info, vaddr); if (hwaddr && qemu_plugin_hwaddr_is_io(hwaddr)) { return; } effective_addr = hwaddr ? qemu_plugin_hwaddr_phys_addr(hwaddr) : vaddr; g_mutex_lock(&mtx); if (!access_cache(dcache, effective_addr)) { insn = (InsnData *) userdata; insn->dmisses++; dmisses++; } dmem_accesses++; g_mutex_unlock(&mtx); } static void vcpu_insn_exec(unsigned int vcpu_index, void *userdata) { uint64_t insn_addr; InsnData *insn; g_mutex_lock(&mtx); insn_addr = ((InsnData *) userdata)->addr; if (!access_cache(icache, insn_addr)) { insn = (InsnData *) userdata; insn->imisses++; imisses++; } imem_accesses++; g_mutex_unlock(&mtx); } static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb) { size_t n_insns; size_t i; InsnData *data; n_insns = qemu_plugin_tb_n_insns(tb); for (i = 0; i < n_insns; i++) { struct qemu_plugin_insn *insn = qemu_plugin_tb_get_insn(tb, i); uint64_t effective_addr; if (sys) { effective_addr = (uint64_t) qemu_plugin_insn_haddr(insn); } else { effective_addr = (uint64_t) qemu_plugin_insn_vaddr(insn); } /* * Instructions might get translated multiple times, we do not create * new entries for those instructions. Instead, we fetch the same * entry from the hash table and register it for the callback again. */ g_mutex_lock(&mtx); data = g_hash_table_lookup(miss_ht, GUINT_TO_POINTER(effective_addr)); if (data == NULL) { data = g_new0(InsnData, 1); data->disas_str = qemu_plugin_insn_disas(insn); data->symbol = qemu_plugin_insn_symbol(insn); data->addr = effective_addr; g_hash_table_insert(miss_ht, GUINT_TO_POINTER(effective_addr), (gpointer) data); } g_mutex_unlock(&mtx); qemu_plugin_register_vcpu_mem_cb(insn, vcpu_mem_access, QEMU_PLUGIN_CB_NO_REGS, rw, data); qemu_plugin_register_vcpu_insn_exec_cb(insn, vcpu_insn_exec, QEMU_PLUGIN_CB_NO_REGS, data); } } static void insn_free(gpointer data) { InsnData *insn = (InsnData *) data; g_free(insn->disas_str); g_free(insn); } static void cache_free(Cache *cache) { for (int i = 0; i < cache->num_sets; i++) { g_free(cache->sets[i].blocks); } if (metadata_destroy) { metadata_destroy(cache); } g_free(cache->sets); g_free(cache); } static int dcmp(gconstpointer a, gconstpointer b) { InsnData *insn_a = (InsnData *) a; InsnData *insn_b = (InsnData *) b; return insn_a->dmisses < insn_b->dmisses ? 1 : -1; } static int icmp(gconstpointer a, gconstpointer b) { InsnData *insn_a = (InsnData *) a; InsnData *insn_b = (InsnData *) b; return insn_a->imisses < insn_b->imisses ? 1 : -1; } static void log_stats(void) { g_autoptr(GString) rep = g_string_new(""); g_string_append_printf(rep, "Data accesses: %lu, Misses: %lu\nMiss rate: %lf%%\n\n", dmem_accesses, dmisses, ((double) dmisses / (double) dmem_accesses) * 100.0); g_string_append_printf(rep, "Instruction accesses: %lu, Misses: %lu\nMiss rate: %lf%%\n\n", imem_accesses, imisses, ((double) imisses / (double) imem_accesses) * 100.0); qemu_plugin_outs(rep->str); } static void log_top_insns(void) { int i; GList *curr, *miss_insns; InsnData *insn; miss_insns = g_hash_table_get_values(miss_ht); miss_insns = g_list_sort(miss_insns, dcmp); g_autoptr(GString) rep = g_string_new(""); g_string_append_printf(rep, "%s", "address, data misses, instruction\n"); for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) { insn = (InsnData *) curr->data; g_string_append_printf(rep, "0x%" PRIx64, insn->addr); if (insn->symbol) { g_string_append_printf(rep, " (%s)", insn->symbol); } g_string_append_printf(rep, ", %ld, %s\n", insn->dmisses, insn->disas_str); } miss_insns = g_list_sort(miss_insns, icmp); g_string_append_printf(rep, "%s", "\naddress, fetch misses, instruction\n"); for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) { insn = (InsnData *) curr->data; g_string_append_printf(rep, "0x%" PRIx64, insn->addr); if (insn->symbol) { g_string_append_printf(rep, " (%s)", insn->symbol); } g_string_append_printf(rep, ", %ld, %s\n", insn->imisses, insn->disas_str); } qemu_plugin_outs(rep->str); g_list_free(miss_insns); } static void plugin_exit(qemu_plugin_id_t id, void *p) { log_stats(); log_top_insns(); cache_free(dcache); cache_free(icache); g_hash_table_destroy(miss_ht); } static void policy_init(void) { switch (policy) { case LRU: update_hit = lru_update_blk; update_miss = lru_update_blk; metadata_init = lru_priorities_init; metadata_destroy = lru_priorities_destroy; break; case FIFO: update_miss = fifo_update_on_miss; metadata_init = fifo_init; metadata_destroy = fifo_destroy; break; case RAND: rng = g_rand_new(); break; default: g_assert_not_reached(); } } QEMU_PLUGIN_EXPORT int qemu_plugin_install(qemu_plugin_id_t id, const qemu_info_t *info, int argc, char **argv) { int i; int iassoc, iblksize, icachesize; int dassoc, dblksize, dcachesize; limit = 32; sys = info->system_emulation; dassoc = 8; dblksize = 64; dcachesize = dblksize * dassoc * 32; iassoc = 8; iblksize = 64; icachesize = iblksize * iassoc * 32; policy = LRU; for (i = 0; i < argc; i++) { char *opt = argv[i]; if (g_str_has_prefix(opt, "iblksize=")) { iblksize = g_ascii_strtoll(opt + 9, NULL, 10); } else if (g_str_has_prefix(opt, "iassoc=")) { iassoc = g_ascii_strtoll(opt + 7, NULL, 10); } else if (g_str_has_prefix(opt, "icachesize=")) { icachesize = g_ascii_strtoll(opt + 11, NULL, 10); } else if (g_str_has_prefix(opt, "dblksize=")) { dblksize = g_ascii_strtoll(opt + 9, NULL, 10); } else if (g_str_has_prefix(opt, "dassoc=")) { dassoc = g_ascii_strtoll(opt + 7, NULL, 10); } else if (g_str_has_prefix(opt, "dcachesize=")) { dcachesize = g_ascii_strtoll(opt + 11, NULL, 10); } else if (g_str_has_prefix(opt, "limit=")) { limit = g_ascii_strtoll(opt + 6, NULL, 10); } else if (g_str_has_prefix(opt, "evict=")) { gchar *p = opt + 6; if (g_strcmp0(p, "rand") == 0) { policy = RAND; } else if (g_strcmp0(p, "lru") == 0) { policy = LRU; } else if (g_strcmp0(p, "fifo") == 0) { policy = FIFO; } else { fprintf(stderr, "invalid eviction policy: %s\n", opt); return -1; } } else { fprintf(stderr, "option parsing failed: %s\n", opt); return -1; } } policy_init(); dcache = cache_init(dblksize, dassoc, dcachesize); if (!dcache) { const char *err = cache_config_error(dblksize, dassoc, dcachesize); fprintf(stderr, "dcache cannot be constructed from given parameters\n"); fprintf(stderr, "%s\n", err); return -1; } icache = cache_init(iblksize, iassoc, icachesize); if (!icache) { const char *err = cache_config_error(iblksize, iassoc, icachesize); fprintf(stderr, "icache cannot be constructed from given parameters\n"); fprintf(stderr, "%s\n", err); return -1; } qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans); qemu_plugin_register_atexit_cb(id, plugin_exit, NULL); miss_ht = g_hash_table_new_full(NULL, g_direct_equal, NULL, insn_free); return 0; }