/* * QEMU TCG support -- s390x vector floating point instruction support * * Copyright (C) 2019 Red Hat Inc * * Authors: * David Hildenbrand * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "qemu-common.h" #include "cpu.h" #include "s390x-internal.h" #include "vec.h" #include "tcg_s390x.h" #include "tcg/tcg-gvec-desc.h" #include "exec/exec-all.h" #include "exec/helper-proto.h" #include "fpu/softfloat.h" #define VIC_INVALID 0x1 #define VIC_DIVBYZERO 0x2 #define VIC_OVERFLOW 0x3 #define VIC_UNDERFLOW 0x4 #define VIC_INEXACT 0x5 /* returns the VEX. If the VEX is 0, there is no trap */ static uint8_t check_ieee_exc(CPUS390XState *env, uint8_t enr, bool XxC, uint8_t *vec_exc) { uint8_t vece_exc = 0, trap_exc; unsigned qemu_exc; /* Retrieve and clear the softfloat exceptions */ qemu_exc = env->fpu_status.float_exception_flags; if (qemu_exc == 0) { return 0; } env->fpu_status.float_exception_flags = 0; vece_exc = s390_softfloat_exc_to_ieee(qemu_exc); /* Add them to the vector-wide s390x exception bits */ *vec_exc |= vece_exc; /* Check for traps and construct the VXC */ trap_exc = vece_exc & env->fpc >> 24; if (trap_exc) { if (trap_exc & S390_IEEE_MASK_INVALID) { return enr << 4 | VIC_INVALID; } else if (trap_exc & S390_IEEE_MASK_DIVBYZERO) { return enr << 4 | VIC_DIVBYZERO; } else if (trap_exc & S390_IEEE_MASK_OVERFLOW) { return enr << 4 | VIC_OVERFLOW; } else if (trap_exc & S390_IEEE_MASK_UNDERFLOW) { return enr << 4 | VIC_UNDERFLOW; } else if (!XxC) { g_assert(trap_exc & S390_IEEE_MASK_INEXACT); /* inexact has lowest priority on traps */ return enr << 4 | VIC_INEXACT; } } return 0; } static void handle_ieee_exc(CPUS390XState *env, uint8_t vxc, uint8_t vec_exc, uintptr_t retaddr) { if (vxc) { /* on traps, the fpc flags are not updated, instruction is suppressed */ tcg_s390_vector_exception(env, vxc, retaddr); } if (vec_exc) { /* indicate exceptions for all elements combined */ env->fpc |= vec_exc << 16; } } static float32 s390_vec_read_float32(const S390Vector *v, uint8_t enr) { return make_float32(s390_vec_read_element32(v, enr)); } static float64 s390_vec_read_float64(const S390Vector *v, uint8_t enr) { return make_float64(s390_vec_read_element64(v, enr)); } static float128 s390_vec_read_float128(const S390Vector *v) { return make_float128(s390_vec_read_element64(v, 0), s390_vec_read_element64(v, 1)); } static void s390_vec_write_float32(S390Vector *v, uint8_t enr, float32 data) { return s390_vec_write_element32(v, enr, data); } static void s390_vec_write_float64(S390Vector *v, uint8_t enr, float64 data) { return s390_vec_write_element64(v, enr, data); } static void s390_vec_write_float128(S390Vector *v, float128 data) { s390_vec_write_element64(v, 0, data.high); s390_vec_write_element64(v, 1, data.low); } typedef float32 (*vop32_2_fn)(float32 a, float_status *s); static void vop32_2(S390Vector *v1, const S390Vector *v2, CPUS390XState *env, bool s, bool XxC, uint8_t erm, vop32_2_fn fn, uintptr_t retaddr) { uint8_t vxc, vec_exc = 0; S390Vector tmp = {}; int i, old_mode; old_mode = s390_swap_bfp_rounding_mode(env, erm); for (i = 0; i < 4; i++) { const float32 a = s390_vec_read_float32(v2, i); s390_vec_write_float32(&tmp, i, fn(a, &env->fpu_status)); vxc = check_ieee_exc(env, i, XxC, &vec_exc); if (s || vxc) { break; } } s390_restore_bfp_rounding_mode(env, old_mode); handle_ieee_exc(env, vxc, vec_exc, retaddr); *v1 = tmp; } typedef float64 (*vop64_2_fn)(float64 a, float_status *s); static void vop64_2(S390Vector *v1, const S390Vector *v2, CPUS390XState *env, bool s, bool XxC, uint8_t erm, vop64_2_fn fn, uintptr_t retaddr) { uint8_t vxc, vec_exc = 0; S390Vector tmp = {}; int i, old_mode; old_mode = s390_swap_bfp_rounding_mode(env, erm); for (i = 0; i < 2; i++) { const float64 a = s390_vec_read_float64(v2, i); s390_vec_write_float64(&tmp, i, fn(a, &env->fpu_status)); vxc = check_ieee_exc(env, i, XxC, &vec_exc); if (s || vxc) { break; } } s390_restore_bfp_rounding_mode(env, old_mode); handle_ieee_exc(env, vxc, vec_exc, retaddr); *v1 = tmp; } typedef float128 (*vop128_2_fn)(float128 a, float_status *s); static void vop128_2(S390Vector *v1, const S390Vector *v2, CPUS390XState *env, bool s, bool XxC, uint8_t erm, vop128_2_fn fn, uintptr_t retaddr) { const float128 a = s390_vec_read_float128(v2); uint8_t vxc, vec_exc = 0; S390Vector tmp = {}; int old_mode; old_mode = s390_swap_bfp_rounding_mode(env, erm); s390_vec_write_float128(&tmp, fn(a, &env->fpu_status)); vxc = check_ieee_exc(env, 0, XxC, &vec_exc); s390_restore_bfp_rounding_mode(env, old_mode); handle_ieee_exc(env, vxc, vec_exc, retaddr); *v1 = tmp; } static float64 vcdg64(float64 a, float_status *s) { return int64_to_float64(a, s); } static float64 vcdlg64(float64 a, float_status *s) { return uint64_to_float64(a, s); } static float64 vcgd64(float64 a, float_status *s) { const float64 tmp = float64_to_int64(a, s); return float64_is_any_nan(a) ? INT64_MIN : tmp; } static float64 vclgd64(float64 a, float_status *s) { const float64 tmp = float64_to_uint64(a, s); return float64_is_any_nan(a) ? 0 : tmp; } #define DEF_GVEC_VOP2_FN(NAME, FN, BITS) \ void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, CPUS390XState *env, \ uint32_t desc) \ { \ const uint8_t erm = extract32(simd_data(desc), 4, 4); \ const bool se = extract32(simd_data(desc), 3, 1); \ const bool XxC = extract32(simd_data(desc), 2, 1); \ \ vop##BITS##_2(v1, v2, env, se, XxC, erm, FN, GETPC()); \ } #define DEF_GVEC_VOP2_64(NAME) \ DEF_GVEC_VOP2_FN(NAME, NAME##64, 64) #define DEF_GVEC_VOP2(NAME, OP) \ DEF_GVEC_VOP2_FN(NAME, float32_##OP, 32) \ DEF_GVEC_VOP2_FN(NAME, float64_##OP, 64) \ DEF_GVEC_VOP2_FN(NAME, float128_##OP, 128) DEF_GVEC_VOP2_64(vcdg) DEF_GVEC_VOP2_64(vcdlg) DEF_GVEC_VOP2_64(vcgd) DEF_GVEC_VOP2_64(vclgd) DEF_GVEC_VOP2(vfi, round_to_int) DEF_GVEC_VOP2(vfsq, sqrt) typedef float32 (*vop32_3_fn)(float32 a, float32 b, float_status *s); static void vop32_3(S390Vector *v1, const S390Vector *v2, const S390Vector *v3, CPUS390XState *env, bool s, vop32_3_fn fn, uintptr_t retaddr) { uint8_t vxc, vec_exc = 0; S390Vector tmp = {}; int i; for (i = 0; i < 4; i++) { const float32 a = s390_vec_read_float32(v2, i); const float32 b = s390_vec_read_float32(v3, i); s390_vec_write_float32(&tmp, i, fn(a, b, &env->fpu_status)); vxc = check_ieee_exc(env, i, false, &vec_exc); if (s || vxc) { break; } } handle_ieee_exc(env, vxc, vec_exc, retaddr); *v1 = tmp; } typedef float64 (*vop64_3_fn)(float64 a, float64 b, float_status *s); static void vop64_3(S390Vector *v1, const S390Vector *v2, const S390Vector *v3, CPUS390XState *env, bool s, vop64_3_fn fn, uintptr_t retaddr) { uint8_t vxc, vec_exc = 0; S390Vector tmp = {}; int i; for (i = 0; i < 2; i++) { const float64 a = s390_vec_read_float64(v2, i); const float64 b = s390_vec_read_float64(v3, i); s390_vec_write_float64(&tmp, i, fn(a, b, &env->fpu_status)); vxc = check_ieee_exc(env, i, false, &vec_exc); if (s || vxc) { break; } } handle_ieee_exc(env, vxc, vec_exc, retaddr); *v1 = tmp; } typedef float128 (*vop128_3_fn)(float128 a, float128 b, float_status *s); static void vop128_3(S390Vector *v1, const S390Vector *v2, const S390Vector *v3, CPUS390XState *env, bool s, vop128_3_fn fn, uintptr_t retaddr) { const float128 a = s390_vec_read_float128(v2); const float128 b = s390_vec_read_float128(v3); uint8_t vxc, vec_exc = 0; S390Vector tmp = {}; s390_vec_write_float128(&tmp, fn(a, b, &env->fpu_status)); vxc = check_ieee_exc(env, 0, false, &vec_exc); handle_ieee_exc(env, vxc, vec_exc, retaddr); *v1 = tmp; } #define DEF_GVEC_VOP3_B(NAME, OP, BITS) \ void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, const void *v3, \ CPUS390XState *env, uint32_t desc) \ { \ const bool se = extract32(simd_data(desc), 3, 1); \ \ vop##BITS##_3(v1, v2, v3, env, se, float##BITS##_##OP, GETPC()); \ } #define DEF_GVEC_VOP3(NAME, OP) \ DEF_GVEC_VOP3_B(NAME, OP, 32) \ DEF_GVEC_VOP3_B(NAME, OP, 64) \ DEF_GVEC_VOP3_B(NAME, OP, 128) DEF_GVEC_VOP3(vfa, add) DEF_GVEC_VOP3(vfs, sub) DEF_GVEC_VOP3(vfd, div) DEF_GVEC_VOP3(vfm, mul) static int wfc32(const S390Vector *v1, const S390Vector *v2, CPUS390XState *env, bool signal, uintptr_t retaddr) { /* only the zero-indexed elements are compared */ const float32 a = s390_vec_read_float32(v1, 0); const float32 b = s390_vec_read_float32(v2, 0); uint8_t vxc, vec_exc = 0; int cmp; if (signal) { cmp = float32_compare(a, b, &env->fpu_status); } else { cmp = float32_compare_quiet(a, b, &env->fpu_status); } vxc = check_ieee_exc(env, 0, false, &vec_exc); handle_ieee_exc(env, vxc, vec_exc, retaddr); return float_comp_to_cc(env, cmp); } static int wfc64(const S390Vector *v1, const S390Vector *v2, CPUS390XState *env, bool signal, uintptr_t retaddr) { /* only the zero-indexed elements are compared */ const float64 a = s390_vec_read_float64(v1, 0); const float64 b = s390_vec_read_float64(v2, 0); uint8_t vxc, vec_exc = 0; int cmp; if (signal) { cmp = float64_compare(a, b, &env->fpu_status); } else { cmp = float64_compare_quiet(a, b, &env->fpu_status); } vxc = check_ieee_exc(env, 0, false, &vec_exc); handle_ieee_exc(env, vxc, vec_exc, retaddr); return float_comp_to_cc(env, cmp); } static int wfc128(const S390Vector *v1, const S390Vector *v2, CPUS390XState *env, bool signal, uintptr_t retaddr) { /* only the zero-indexed elements are compared */ const float128 a = s390_vec_read_float128(v1); const float128 b = s390_vec_read_float128(v2); uint8_t vxc, vec_exc = 0; int cmp; if (signal) { cmp = float128_compare(a, b, &env->fpu_status); } else { cmp = float128_compare_quiet(a, b, &env->fpu_status); } vxc = check_ieee_exc(env, 0, false, &vec_exc); handle_ieee_exc(env, vxc, vec_exc, retaddr); return float_comp_to_cc(env, cmp); } #define DEF_GVEC_WFC_B(NAME, SIGNAL, BITS) \ void HELPER(gvec_##NAME##BITS)(const void *v1, const void *v2, \ CPUS390XState *env, uint32_t desc) \ { \ env->cc_op = wfc##BITS(v1, v2, env, SIGNAL, GETPC()); \ } #define DEF_GVEC_WFC(NAME, SIGNAL) \ DEF_GVEC_WFC_B(NAME, SIGNAL, 32) \ DEF_GVEC_WFC_B(NAME, SIGNAL, 64) \ DEF_GVEC_WFC_B(NAME, SIGNAL, 128) DEF_GVEC_WFC(wfc, false) DEF_GVEC_WFC(wfk, true) typedef bool (*vfc32_fn)(float32 a, float32 b, float_status *status); static int vfc32(S390Vector *v1, const S390Vector *v2, const S390Vector *v3, CPUS390XState *env, bool s, vfc32_fn fn, uintptr_t retaddr) { uint8_t vxc, vec_exc = 0; S390Vector tmp = {}; int match = 0; int i; for (i = 0; i < 4; i++) { const float32 a = s390_vec_read_float32(v2, i); const float32 b = s390_vec_read_float32(v3, i); /* swap the order of the parameters, so we can use existing functions */ if (fn(b, a, &env->fpu_status)) { match++; s390_vec_write_element32(&tmp, i, -1u); } vxc = check_ieee_exc(env, i, false, &vec_exc); if (s || vxc) { break; } } handle_ieee_exc(env, vxc, vec_exc, retaddr); *v1 = tmp; if (match) { return s || match == 4 ? 0 : 1; } return 3; } typedef bool (*vfc64_fn)(float64 a, float64 b, float_status *status); static int vfc64(S390Vector *v1, const S390Vector *v2, const S390Vector *v3, CPUS390XState *env, bool s, vfc64_fn fn, uintptr_t retaddr) { uint8_t vxc, vec_exc = 0; S390Vector tmp = {}; int match = 0; int i; for (i = 0; i < 2; i++) { const float64 a = s390_vec_read_float64(v2, i); const float64 b = s390_vec_read_float64(v3, i); /* swap the order of the parameters, so we can use existing functions */ if (fn(b, a, &env->fpu_status)) { match++; s390_vec_write_element64(&tmp, i, -1ull); } vxc = check_ieee_exc(env, i, false, &vec_exc); if (s || vxc) { break; } } handle_ieee_exc(env, vxc, vec_exc, retaddr); *v1 = tmp; if (match) { return s || match == 2 ? 0 : 1; } return 3; } typedef bool (*vfc128_fn)(float128 a, float128 b, float_status *status); static int vfc128(S390Vector *v1, const S390Vector *v2, const S390Vector *v3, CPUS390XState *env, bool s, vfc128_fn fn, uintptr_t retaddr) { const float128 a = s390_vec_read_float128(v2); const float128 b = s390_vec_read_float128(v3); uint8_t vxc, vec_exc = 0; S390Vector tmp = {}; bool match = false; /* swap the order of the parameters, so we can use existing functions */ if (fn(b, a, &env->fpu_status)) { match = true; s390_vec_write_element64(&tmp, 0, -1ull); s390_vec_write_element64(&tmp, 1, -1ull); } vxc = check_ieee_exc(env, 0, false, &vec_exc); handle_ieee_exc(env, vxc, vec_exc, retaddr); *v1 = tmp; return match ? 0 : 3; } #define DEF_GVEC_VFC_B(NAME, OP, BITS) \ void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, const void *v3, \ CPUS390XState *env, uint32_t desc) \ { \ const bool se = extract32(simd_data(desc), 3, 1); \ const bool sq = extract32(simd_data(desc), 2, 1); \ vfc##BITS##_fn fn = sq ? float##BITS##_##OP : float##BITS##_##OP##_quiet; \ \ vfc##BITS(v1, v2, v3, env, se, fn, GETPC()); \ } \ \ void HELPER(gvec_##NAME##BITS##_cc)(void *v1, const void *v2, const void *v3, \ CPUS390XState *env, uint32_t desc) \ { \ const bool se = extract32(simd_data(desc), 3, 1); \ const bool sq = extract32(simd_data(desc), 2, 1); \ vfc##BITS##_fn fn = sq ? float##BITS##_##OP : float##BITS##_##OP##_quiet; \ \ env->cc_op = vfc##BITS(v1, v2, v3, env, se, fn, GETPC()); \ } #define DEF_GVEC_VFC(NAME, OP) \ DEF_GVEC_VFC_B(NAME, OP, 32) \ DEF_GVEC_VFC_B(NAME, OP, 64) \ DEF_GVEC_VFC_B(NAME, OP, 128) \ DEF_GVEC_VFC(vfce, eq) DEF_GVEC_VFC(vfch, lt) DEF_GVEC_VFC(vfche, le) void HELPER(gvec_vfll32)(void *v1, const void *v2, CPUS390XState *env, uint32_t desc) { const bool s = extract32(simd_data(desc), 3, 1); uint8_t vxc, vec_exc = 0; S390Vector tmp = {}; int i; for (i = 0; i < 2; i++) { /* load from even element */ const float32 a = s390_vec_read_element32(v2, i * 2); const uint64_t ret = float32_to_float64(a, &env->fpu_status); s390_vec_write_element64(&tmp, i, ret); /* indicate the source element */ vxc = check_ieee_exc(env, i * 2, false, &vec_exc); if (s || vxc) { break; } } handle_ieee_exc(env, vxc, vec_exc, GETPC()); *(S390Vector *)v1 = tmp; } void HELPER(gvec_vfll64)(void *v1, const void *v2, CPUS390XState *env, uint32_t desc) { /* load from even element */ const float128 ret = float64_to_float128(s390_vec_read_float64(v2, 0), &env->fpu_status); uint8_t vxc, vec_exc = 0; vxc = check_ieee_exc(env, 0, false, &vec_exc); handle_ieee_exc(env, vxc, vec_exc, GETPC()); s390_vec_write_float128(v1, ret); } void HELPER(gvec_vflr64)(void *v1, const void *v2, CPUS390XState *env, uint32_t desc) { const uint8_t erm = extract32(simd_data(desc), 4, 4); const bool s = extract32(simd_data(desc), 3, 1); const bool XxC = extract32(simd_data(desc), 2, 1); uint8_t vxc, vec_exc = 0; S390Vector tmp = {}; int i, old_mode; old_mode = s390_swap_bfp_rounding_mode(env, erm); for (i = 0; i < 2; i++) { float64 a = s390_vec_read_element64(v2, i); uint32_t ret = float64_to_float32(a, &env->fpu_status); /* place at even element */ s390_vec_write_element32(&tmp, i * 2, ret); /* indicate the source element */ vxc = check_ieee_exc(env, i, XxC, &vec_exc); if (s || vxc) { break; } } s390_restore_bfp_rounding_mode(env, old_mode); handle_ieee_exc(env, vxc, vec_exc, GETPC()); *(S390Vector *)v1 = tmp; } void HELPER(gvec_vflr128)(void *v1, const void *v2, CPUS390XState *env, uint32_t desc) { const uint8_t erm = extract32(simd_data(desc), 4, 4); const bool XxC = extract32(simd_data(desc), 2, 1); uint8_t vxc, vec_exc = 0; int old_mode; float64 ret; old_mode = s390_swap_bfp_rounding_mode(env, erm); ret = float128_to_float64(s390_vec_read_float128(v2), &env->fpu_status); vxc = check_ieee_exc(env, 0, XxC, &vec_exc); s390_restore_bfp_rounding_mode(env, old_mode); handle_ieee_exc(env, vxc, vec_exc, GETPC()); /* place at even element, odd element is unpredictable */ s390_vec_write_float64(v1, 0, ret); } static void vfma32(S390Vector *v1, const S390Vector *v2, const S390Vector *v3, const S390Vector *v4, CPUS390XState *env, bool s, int flags, uintptr_t retaddr) { uint8_t vxc, vec_exc = 0; S390Vector tmp = {}; int i; for (i = 0; i < 4; i++) { const float32 a = s390_vec_read_float32(v2, i); const float32 b = s390_vec_read_float32(v3, i); const float32 c = s390_vec_read_float32(v4, i); float32 ret = float32_muladd(a, b, c, flags, &env->fpu_status); s390_vec_write_float32(&tmp, i, ret); vxc = check_ieee_exc(env, i, false, &vec_exc); if (s || vxc) { break; } } handle_ieee_exc(env, vxc, vec_exc, retaddr); *v1 = tmp; } static void vfma64(S390Vector *v1, const S390Vector *v2, const S390Vector *v3, const S390Vector *v4, CPUS390XState *env, bool s, int flags, uintptr_t retaddr) { uint8_t vxc, vec_exc = 0; S390Vector tmp = {}; int i; for (i = 0; i < 2; i++) { const float64 a = s390_vec_read_float64(v2, i); const float64 b = s390_vec_read_float64(v3, i); const float64 c = s390_vec_read_float64(v4, i); const float64 ret = float64_muladd(a, b, c, flags, &env->fpu_status); s390_vec_write_float64(&tmp, i, ret); vxc = check_ieee_exc(env, i, false, &vec_exc); if (s || vxc) { break; } } handle_ieee_exc(env, vxc, vec_exc, retaddr); *v1 = tmp; } static void vfma128(S390Vector *v1, const S390Vector *v2, const S390Vector *v3, const S390Vector *v4, CPUS390XState *env, bool s, int flags, uintptr_t retaddr) { const float128 a = s390_vec_read_float128(v2); const float128 b = s390_vec_read_float128(v3); const float128 c = s390_vec_read_float128(v4); uint8_t vxc, vec_exc = 0; float128 ret; ret = float128_muladd(a, b, c, flags, &env->fpu_status); vxc = check_ieee_exc(env, 0, false, &vec_exc); handle_ieee_exc(env, vxc, vec_exc, retaddr); s390_vec_write_float128(v1, ret); } #define DEF_GVEC_VFMA_B(NAME, FLAGS, BITS) \ void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, const void *v3, \ const void *v4, CPUS390XState *env, \ uint32_t desc) \ { \ const bool se = extract32(simd_data(desc), 3, 1); \ \ vfma##BITS(v1, v2, v3, v4, env, se, FLAGS, GETPC()); \ } #define DEF_GVEC_VFMA(NAME, FLAGS) \ DEF_GVEC_VFMA_B(NAME, FLAGS, 32) \ DEF_GVEC_VFMA_B(NAME, FLAGS, 64) \ DEF_GVEC_VFMA_B(NAME, FLAGS, 128) DEF_GVEC_VFMA(vfma, 0) DEF_GVEC_VFMA(vfms, float_muladd_negate_c) DEF_GVEC_VFMA(vfnma, float_muladd_negate_result) DEF_GVEC_VFMA(vfnms, float_muladd_negate_c | float_muladd_negate_result) void HELPER(gvec_vftci32)(void *v1, const void *v2, CPUS390XState *env, uint32_t desc) { uint16_t i3 = extract32(simd_data(desc), 4, 12); bool s = extract32(simd_data(desc), 3, 1); int i, match = 0; for (i = 0; i < 4; i++) { float32 a = s390_vec_read_float32(v2, i); if (float32_dcmask(env, a) & i3) { match++; s390_vec_write_element32(v1, i, -1u); } else { s390_vec_write_element32(v1, i, 0); } if (s) { break; } } if (match == 4 || (s && match)) { env->cc_op = 0; } else if (match) { env->cc_op = 1; } else { env->cc_op = 3; } } void HELPER(gvec_vftci64)(void *v1, const void *v2, CPUS390XState *env, uint32_t desc) { const uint16_t i3 = extract32(simd_data(desc), 4, 12); const bool s = extract32(simd_data(desc), 3, 1); int i, match = 0; for (i = 0; i < 2; i++) { const float64 a = s390_vec_read_float64(v2, i); if (float64_dcmask(env, a) & i3) { match++; s390_vec_write_element64(v1, i, -1ull); } else { s390_vec_write_element64(v1, i, 0); } if (s) { break; } } if (match == 2 || (s && match)) { env->cc_op = 0; } else if (match) { env->cc_op = 1; } else { env->cc_op = 3; } } void HELPER(gvec_vftci128)(void *v1, const void *v2, CPUS390XState *env, uint32_t desc) { const float128 a = s390_vec_read_float128(v2); uint16_t i3 = extract32(simd_data(desc), 4, 12); if (float128_dcmask(env, a) & i3) { env->cc_op = 0; s390_vec_write_element64(v1, 0, -1ull); s390_vec_write_element64(v1, 1, -1ull); } else { env->cc_op = 3; s390_vec_write_element64(v1, 0, 0); s390_vec_write_element64(v1, 1, 0); } } typedef enum S390MinMaxType { S390_MINMAX_TYPE_IEEE = 0, S390_MINMAX_TYPE_JAVA, S390_MINMAX_TYPE_C_MACRO, S390_MINMAX_TYPE_CPP, S390_MINMAX_TYPE_F, } S390MinMaxType; typedef enum S390MinMaxRes { S390_MINMAX_RES_MINMAX = 0, S390_MINMAX_RES_A, S390_MINMAX_RES_B, S390_MINMAX_RES_SILENCE_A, S390_MINMAX_RES_SILENCE_B, } S390MinMaxRes; static S390MinMaxRes vfmin_res(uint16_t dcmask_a, uint16_t dcmask_b, S390MinMaxType type, float_status *s) { const bool neg_a = dcmask_a & DCMASK_NEGATIVE; const bool nan_a = dcmask_a & DCMASK_NAN; const bool nan_b = dcmask_b & DCMASK_NAN; g_assert(type > S390_MINMAX_TYPE_IEEE && type <= S390_MINMAX_TYPE_F); if (unlikely((dcmask_a | dcmask_b) & DCMASK_NAN)) { const bool sig_a = dcmask_a & DCMASK_SIGNALING_NAN; const bool sig_b = dcmask_b & DCMASK_SIGNALING_NAN; if ((dcmask_a | dcmask_b) & DCMASK_SIGNALING_NAN) { s->float_exception_flags |= float_flag_invalid; } switch (type) { case S390_MINMAX_TYPE_JAVA: if (sig_a) { return S390_MINMAX_RES_SILENCE_A; } else if (sig_b) { return S390_MINMAX_RES_SILENCE_B; } return nan_a ? S390_MINMAX_RES_A : S390_MINMAX_RES_B; case S390_MINMAX_TYPE_F: return nan_b ? S390_MINMAX_RES_A : S390_MINMAX_RES_B; case S390_MINMAX_TYPE_C_MACRO: s->float_exception_flags |= float_flag_invalid; return S390_MINMAX_RES_B; case S390_MINMAX_TYPE_CPP: s->float_exception_flags |= float_flag_invalid; return S390_MINMAX_RES_A; default: g_assert_not_reached(); } } else if (unlikely(dcmask_a & dcmask_b & DCMASK_ZERO)) { switch (type) { case S390_MINMAX_TYPE_JAVA: return neg_a ? S390_MINMAX_RES_A : S390_MINMAX_RES_B; case S390_MINMAX_TYPE_C_MACRO: return S390_MINMAX_RES_B; case S390_MINMAX_TYPE_F: return !neg_a ? S390_MINMAX_RES_B : S390_MINMAX_RES_A; case S390_MINMAX_TYPE_CPP: return S390_MINMAX_RES_A; default: g_assert_not_reached(); } } return S390_MINMAX_RES_MINMAX; } static S390MinMaxRes vfmax_res(uint16_t dcmask_a, uint16_t dcmask_b, S390MinMaxType type, float_status *s) { g_assert(type > S390_MINMAX_TYPE_IEEE && type <= S390_MINMAX_TYPE_F); if (unlikely((dcmask_a | dcmask_b) & DCMASK_NAN)) { const bool sig_a = dcmask_a & DCMASK_SIGNALING_NAN; const bool sig_b = dcmask_b & DCMASK_SIGNALING_NAN; const bool nan_a = dcmask_a & DCMASK_NAN; const bool nan_b = dcmask_b & DCMASK_NAN; if ((dcmask_a | dcmask_b) & DCMASK_SIGNALING_NAN) { s->float_exception_flags |= float_flag_invalid; } switch (type) { case S390_MINMAX_TYPE_JAVA: if (sig_a) { return S390_MINMAX_RES_SILENCE_A; } else if (sig_b) { return S390_MINMAX_RES_SILENCE_B; } return nan_a ? S390_MINMAX_RES_A : S390_MINMAX_RES_B; case S390_MINMAX_TYPE_F: return nan_b ? S390_MINMAX_RES_A : S390_MINMAX_RES_B; case S390_MINMAX_TYPE_C_MACRO: s->float_exception_flags |= float_flag_invalid; return S390_MINMAX_RES_B; case S390_MINMAX_TYPE_CPP: s->float_exception_flags |= float_flag_invalid; return S390_MINMAX_RES_A; default: g_assert_not_reached(); } } else if (unlikely(dcmask_a & dcmask_b & DCMASK_ZERO)) { const bool neg_a = dcmask_a & DCMASK_NEGATIVE; switch (type) { case S390_MINMAX_TYPE_JAVA: case S390_MINMAX_TYPE_F: return neg_a ? S390_MINMAX_RES_B : S390_MINMAX_RES_A; case S390_MINMAX_TYPE_C_MACRO: return S390_MINMAX_RES_B; case S390_MINMAX_TYPE_CPP: return S390_MINMAX_RES_A; default: g_assert_not_reached(); } } return S390_MINMAX_RES_MINMAX; } static S390MinMaxRes vfminmax_res(uint16_t dcmask_a, uint16_t dcmask_b, S390MinMaxType type, bool is_min, float_status *s) { return is_min ? vfmin_res(dcmask_a, dcmask_b, type, s) : vfmax_res(dcmask_a, dcmask_b, type, s); } static void vfminmax32(S390Vector *v1, const S390Vector *v2, const S390Vector *v3, CPUS390XState *env, S390MinMaxType type, bool is_min, bool is_abs, bool se, uintptr_t retaddr) { float_status *s = &env->fpu_status; uint8_t vxc, vec_exc = 0; S390Vector tmp = {}; int i; for (i = 0; i < 4; i++) { float32 a = s390_vec_read_float32(v2, i); float32 b = s390_vec_read_float32(v3, i); float32 result; if (type != S390_MINMAX_TYPE_IEEE) { S390MinMaxRes res; if (is_abs) { a = float32_abs(a); b = float32_abs(b); } res = vfminmax_res(float32_dcmask(env, a), float32_dcmask(env, b), type, is_min, s); switch (res) { case S390_MINMAX_RES_MINMAX: result = is_min ? float32_min(a, b, s) : float32_max(a, b, s); break; case S390_MINMAX_RES_A: result = a; break; case S390_MINMAX_RES_B: result = b; break; case S390_MINMAX_RES_SILENCE_A: result = float32_silence_nan(a, s); break; case S390_MINMAX_RES_SILENCE_B: result = float32_silence_nan(b, s); break; default: g_assert_not_reached(); } } else if (!is_abs) { result = is_min ? float32_minnum(a, b, &env->fpu_status) : float32_maxnum(a, b, &env->fpu_status); } else { result = is_min ? float32_minnummag(a, b, &env->fpu_status) : float32_maxnummag(a, b, &env->fpu_status); } s390_vec_write_float32(&tmp, i, result); vxc = check_ieee_exc(env, i, false, &vec_exc); if (se || vxc) { break; } } handle_ieee_exc(env, vxc, vec_exc, retaddr); *v1 = tmp; } static void vfminmax64(S390Vector *v1, const S390Vector *v2, const S390Vector *v3, CPUS390XState *env, S390MinMaxType type, bool is_min, bool is_abs, bool se, uintptr_t retaddr) { float_status *s = &env->fpu_status; uint8_t vxc, vec_exc = 0; S390Vector tmp = {}; int i; for (i = 0; i < 2; i++) { float64 a = s390_vec_read_float64(v2, i); float64 b = s390_vec_read_float64(v3, i); float64 result; if (type != S390_MINMAX_TYPE_IEEE) { S390MinMaxRes res; if (is_abs) { a = float64_abs(a); b = float64_abs(b); } res = vfminmax_res(float64_dcmask(env, a), float64_dcmask(env, b), type, is_min, s); switch (res) { case S390_MINMAX_RES_MINMAX: result = is_min ? float64_min(a, b, s) : float64_max(a, b, s); break; case S390_MINMAX_RES_A: result = a; break; case S390_MINMAX_RES_B: result = b; break; case S390_MINMAX_RES_SILENCE_A: result = float64_silence_nan(a, s); break; case S390_MINMAX_RES_SILENCE_B: result = float64_silence_nan(b, s); break; default: g_assert_not_reached(); } } else if (!is_abs) { result = is_min ? float64_minnum(a, b, &env->fpu_status) : float64_maxnum(a, b, &env->fpu_status); } else { result = is_min ? float64_minnummag(a, b, &env->fpu_status) : float64_maxnummag(a, b, &env->fpu_status); } s390_vec_write_float64(&tmp, i, result); vxc = check_ieee_exc(env, i, false, &vec_exc); if (se || vxc) { break; } } handle_ieee_exc(env, vxc, vec_exc, retaddr); *v1 = tmp; } static void vfminmax128(S390Vector *v1, const S390Vector *v2, const S390Vector *v3, CPUS390XState *env, S390MinMaxType type, bool is_min, bool is_abs, bool se, uintptr_t retaddr) { float128 a = s390_vec_read_float128(v2); float128 b = s390_vec_read_float128(v3); float_status *s = &env->fpu_status; uint8_t vxc, vec_exc = 0; float128 result; if (type != S390_MINMAX_TYPE_IEEE) { S390MinMaxRes res; if (is_abs) { a = float128_abs(a); b = float128_abs(b); } res = vfminmax_res(float128_dcmask(env, a), float128_dcmask(env, b), type, is_min, s); switch (res) { case S390_MINMAX_RES_MINMAX: result = is_min ? float128_min(a, b, s) : float128_max(a, b, s); break; case S390_MINMAX_RES_A: result = a; break; case S390_MINMAX_RES_B: result = b; break; case S390_MINMAX_RES_SILENCE_A: result = float128_silence_nan(a, s); break; case S390_MINMAX_RES_SILENCE_B: result = float128_silence_nan(b, s); break; default: g_assert_not_reached(); } } else if (!is_abs) { result = is_min ? float128_minnum(a, b, &env->fpu_status) : float128_maxnum(a, b, &env->fpu_status); } else { result = is_min ? float128_minnummag(a, b, &env->fpu_status) : float128_maxnummag(a, b, &env->fpu_status); } vxc = check_ieee_exc(env, 0, false, &vec_exc); handle_ieee_exc(env, vxc, vec_exc, retaddr); s390_vec_write_float128(v1, result); } #define DEF_GVEC_VFMINMAX_B(NAME, IS_MIN, BITS) \ void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, const void *v3, \ CPUS390XState *env, uint32_t desc) \ { \ const bool se = extract32(simd_data(desc), 3, 1); \ uint8_t type = extract32(simd_data(desc), 4, 4); \ bool is_abs = false; \ \ if (type >= 8) { \ is_abs = true; \ type -= 8; \ } \ \ vfminmax##BITS(v1, v2, v3, env, type, IS_MIN, is_abs, se, GETPC()); \ } #define DEF_GVEC_VFMINMAX(NAME, IS_MIN) \ DEF_GVEC_VFMINMAX_B(NAME, IS_MIN, 32) \ DEF_GVEC_VFMINMAX_B(NAME, IS_MIN, 64) \ DEF_GVEC_VFMINMAX_B(NAME, IS_MIN, 128) DEF_GVEC_VFMINMAX(vfmax, false) DEF_GVEC_VFMINMAX(vfmin, true)