/* * QEMU Hypervisor.framework support for Apple Silicon * Copyright 2020 Alexander Graf * Copyright 2020 Google LLC * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include "qemu/osdep.h" #include "qemu-common.h" #include "qemu/error-report.h" #include "sysemu/runstate.h" #include "sysemu/hvf.h" #include "sysemu/hvf_int.h" #include "sysemu/hw_accel.h" #include "hvf_arm.h" #include #include "exec/address-spaces.h" #include "hw/irq.h" #include "qemu/main-loop.h" #include "sysemu/cpus.h" #include "arm-powerctl.h" #include "target/arm/cpu.h" #include "target/arm/internals.h" #include "trace/trace-target_arm_hvf.h" #include "migration/vmstate.h" #define HVF_SYSREG(crn, crm, op0, op1, op2) \ ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) #define PL1_WRITE_MASK 0x4 #define SYSREG(op0, op1, crn, crm, op2) \ ((op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (crm << 1)) #define SYSREG_MASK SYSREG(0x3, 0x7, 0xf, 0xf, 0x7) #define SYSREG_OSLAR_EL1 SYSREG(2, 0, 1, 0, 4) #define SYSREG_OSLSR_EL1 SYSREG(2, 0, 1, 1, 4) #define SYSREG_OSDLR_EL1 SYSREG(2, 0, 1, 3, 4) #define SYSREG_CNTPCT_EL0 SYSREG(3, 3, 14, 0, 1) #define SYSREG_PMCR_EL0 SYSREG(3, 3, 9, 12, 0) #define SYSREG_PMUSERENR_EL0 SYSREG(3, 3, 9, 14, 0) #define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1) #define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2) #define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2) #define SYSREG_PMOVSCLR_EL0 SYSREG(3, 3, 9, 12, 3) #define SYSREG_PMSWINC_EL0 SYSREG(3, 3, 9, 12, 4) #define SYSREG_PMSELR_EL0 SYSREG(3, 3, 9, 12, 5) #define SYSREG_PMCEID0_EL0 SYSREG(3, 3, 9, 12, 6) #define SYSREG_PMCEID1_EL0 SYSREG(3, 3, 9, 12, 7) #define SYSREG_PMCCNTR_EL0 SYSREG(3, 3, 9, 13, 0) #define SYSREG_PMCCFILTR_EL0 SYSREG(3, 3, 14, 15, 7) #define WFX_IS_WFE (1 << 0) #define TMR_CTL_ENABLE (1 << 0) #define TMR_CTL_IMASK (1 << 1) #define TMR_CTL_ISTATUS (1 << 2) static void hvf_wfi(CPUState *cpu); typedef struct HVFVTimer { /* Vtimer value during migration and paused state */ uint64_t vtimer_val; } HVFVTimer; static HVFVTimer vtimer; typedef struct ARMHostCPUFeatures { ARMISARegisters isar; uint64_t features; uint64_t midr; uint32_t reset_sctlr; const char *dtb_compatible; } ARMHostCPUFeatures; static ARMHostCPUFeatures arm_host_cpu_features; struct hvf_reg_match { int reg; uint64_t offset; }; static const struct hvf_reg_match hvf_reg_match[] = { { HV_REG_X0, offsetof(CPUARMState, xregs[0]) }, { HV_REG_X1, offsetof(CPUARMState, xregs[1]) }, { HV_REG_X2, offsetof(CPUARMState, xregs[2]) }, { HV_REG_X3, offsetof(CPUARMState, xregs[3]) }, { HV_REG_X4, offsetof(CPUARMState, xregs[4]) }, { HV_REG_X5, offsetof(CPUARMState, xregs[5]) }, { HV_REG_X6, offsetof(CPUARMState, xregs[6]) }, { HV_REG_X7, offsetof(CPUARMState, xregs[7]) }, { HV_REG_X8, offsetof(CPUARMState, xregs[8]) }, { HV_REG_X9, offsetof(CPUARMState, xregs[9]) }, { HV_REG_X10, offsetof(CPUARMState, xregs[10]) }, { HV_REG_X11, offsetof(CPUARMState, xregs[11]) }, { HV_REG_X12, offsetof(CPUARMState, xregs[12]) }, { HV_REG_X13, offsetof(CPUARMState, xregs[13]) }, { HV_REG_X14, offsetof(CPUARMState, xregs[14]) }, { HV_REG_X15, offsetof(CPUARMState, xregs[15]) }, { HV_REG_X16, offsetof(CPUARMState, xregs[16]) }, { HV_REG_X17, offsetof(CPUARMState, xregs[17]) }, { HV_REG_X18, offsetof(CPUARMState, xregs[18]) }, { HV_REG_X19, offsetof(CPUARMState, xregs[19]) }, { HV_REG_X20, offsetof(CPUARMState, xregs[20]) }, { HV_REG_X21, offsetof(CPUARMState, xregs[21]) }, { HV_REG_X22, offsetof(CPUARMState, xregs[22]) }, { HV_REG_X23, offsetof(CPUARMState, xregs[23]) }, { HV_REG_X24, offsetof(CPUARMState, xregs[24]) }, { HV_REG_X25, offsetof(CPUARMState, xregs[25]) }, { HV_REG_X26, offsetof(CPUARMState, xregs[26]) }, { HV_REG_X27, offsetof(CPUARMState, xregs[27]) }, { HV_REG_X28, offsetof(CPUARMState, xregs[28]) }, { HV_REG_X29, offsetof(CPUARMState, xregs[29]) }, { HV_REG_X30, offsetof(CPUARMState, xregs[30]) }, { HV_REG_PC, offsetof(CPUARMState, pc) }, }; static const struct hvf_reg_match hvf_fpreg_match[] = { { HV_SIMD_FP_REG_Q0, offsetof(CPUARMState, vfp.zregs[0]) }, { HV_SIMD_FP_REG_Q1, offsetof(CPUARMState, vfp.zregs[1]) }, { HV_SIMD_FP_REG_Q2, offsetof(CPUARMState, vfp.zregs[2]) }, { HV_SIMD_FP_REG_Q3, offsetof(CPUARMState, vfp.zregs[3]) }, { HV_SIMD_FP_REG_Q4, offsetof(CPUARMState, vfp.zregs[4]) }, { HV_SIMD_FP_REG_Q5, offsetof(CPUARMState, vfp.zregs[5]) }, { HV_SIMD_FP_REG_Q6, offsetof(CPUARMState, vfp.zregs[6]) }, { HV_SIMD_FP_REG_Q7, offsetof(CPUARMState, vfp.zregs[7]) }, { HV_SIMD_FP_REG_Q8, offsetof(CPUARMState, vfp.zregs[8]) }, { HV_SIMD_FP_REG_Q9, offsetof(CPUARMState, vfp.zregs[9]) }, { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) }, { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) }, { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) }, { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) }, { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) }, { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) }, { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) }, { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) }, { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) }, { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) }, { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) }, { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) }, { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) }, { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) }, { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) }, { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) }, { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) }, { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) }, { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) }, { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) }, { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) }, { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) }, }; struct hvf_sreg_match { int reg; uint32_t key; uint32_t cp_idx; }; static struct hvf_sreg_match hvf_sreg_match[] = { { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 4) }, { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 5) }, { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 6) }, { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 7) }, { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 4) }, { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 5) }, { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 6) }, { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 7) }, { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 4) }, { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 5) }, { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 6) }, { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 7) }, { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 4) }, { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 5) }, { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 6) }, { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 7) }, { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 4) }, { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 5) }, { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 6) }, { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 7) }, { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 4) }, { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 5) }, { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 6) }, { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 7) }, { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 4) }, { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 5) }, { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 6) }, { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 7) }, { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 4) }, { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 5) }, { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 6) }, { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 7) }, { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 4) }, { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 5) }, { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 6) }, { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 7) }, { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 4) }, { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 5) }, { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 6) }, { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 7) }, { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 4) }, { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 5) }, { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 6) }, { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 7) }, { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 4) }, { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 5) }, { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 6) }, { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 7) }, { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 4) }, { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 5) }, { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 6) }, { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 7) }, { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 4) }, { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 5) }, { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 6) }, { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 7) }, { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 4) }, { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 5) }, { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 6) }, { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 7) }, { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 4) }, { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 5) }, { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 6) }, { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 7) }, #ifdef SYNC_NO_RAW_REGS /* * The registers below are manually synced on init because they are * marked as NO_RAW. We still list them to make number space sync easier. */ { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) }, { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) }, { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) }, { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) }, #endif { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 2) }, { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) }, { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) }, { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) }, { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) }, #ifdef SYNC_NO_MMFR0 /* We keep the hardware MMFR0 around. HW limits are there anyway */ { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) }, #endif { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) }, { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) }, { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) }, { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) }, { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) }, { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) }, { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) }, { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) }, { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) }, { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) }, { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) }, { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) }, { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) }, { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) }, { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) }, { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) }, { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) }, { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) }, { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) }, { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) }, { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) }, { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) }, { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) }, { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) }, { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) }, { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) }, { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) }, { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) }, { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) }, { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) }, { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) }, { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) }, { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) }, { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) }, { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) }, { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) }, { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) }, { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) }, }; int hvf_get_registers(CPUState *cpu) { ARMCPU *arm_cpu = ARM_CPU(cpu); CPUARMState *env = &arm_cpu->env; hv_return_t ret; uint64_t val; hv_simd_fp_uchar16_t fpval; int i; for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) { ret = hv_vcpu_get_reg(cpu->hvf->fd, hvf_reg_match[i].reg, &val); *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val; assert_hvf_ok(ret); } for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) { ret = hv_vcpu_get_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg, &fpval); memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval)); assert_hvf_ok(ret); } val = 0; ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPCR, &val); assert_hvf_ok(ret); vfp_set_fpcr(env, val); val = 0; ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPSR, &val); assert_hvf_ok(ret); vfp_set_fpsr(env, val); ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_CPSR, &val); assert_hvf_ok(ret); pstate_write(env, val); for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) { if (hvf_sreg_match[i].cp_idx == -1) { continue; } ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, &val); assert_hvf_ok(ret); arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val; } assert(write_list_to_cpustate(arm_cpu)); aarch64_restore_sp(env, arm_current_el(env)); return 0; } int hvf_put_registers(CPUState *cpu) { ARMCPU *arm_cpu = ARM_CPU(cpu); CPUARMState *env = &arm_cpu->env; hv_return_t ret; uint64_t val; hv_simd_fp_uchar16_t fpval; int i; for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) { val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset); ret = hv_vcpu_set_reg(cpu->hvf->fd, hvf_reg_match[i].reg, val); assert_hvf_ok(ret); } for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) { memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval)); ret = hv_vcpu_set_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg, fpval); assert_hvf_ok(ret); } ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPCR, vfp_get_fpcr(env)); assert_hvf_ok(ret); ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPSR, vfp_get_fpsr(env)); assert_hvf_ok(ret); ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_CPSR, pstate_read(env)); assert_hvf_ok(ret); aarch64_save_sp(env, arm_current_el(env)); assert(write_cpustate_to_list(arm_cpu, false)); for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) { if (hvf_sreg_match[i].cp_idx == -1) { continue; } val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx]; ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, val); assert_hvf_ok(ret); } ret = hv_vcpu_set_vtimer_offset(cpu->hvf->fd, hvf_state->vtimer_offset); assert_hvf_ok(ret); return 0; } static void flush_cpu_state(CPUState *cpu) { if (cpu->vcpu_dirty) { hvf_put_registers(cpu); cpu->vcpu_dirty = false; } } static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val) { hv_return_t r; flush_cpu_state(cpu); if (rt < 31) { r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_X0 + rt, val); assert_hvf_ok(r); } } static uint64_t hvf_get_reg(CPUState *cpu, int rt) { uint64_t val = 0; hv_return_t r; flush_cpu_state(cpu); if (rt < 31) { r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_X0 + rt, &val); assert_hvf_ok(r); } return val; } static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf) { ARMISARegisters host_isar = {}; const struct isar_regs { int reg; uint64_t *val; } regs[] = { { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 }, { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 }, { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 }, { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 }, { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 }, { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 }, { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 }, { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 }, { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 }, }; hv_vcpu_t fd; hv_return_t r = HV_SUCCESS; hv_vcpu_exit_t *exit; int i; ahcf->dtb_compatible = "arm,arm-v8"; ahcf->features = (1ULL << ARM_FEATURE_V8) | (1ULL << ARM_FEATURE_NEON) | (1ULL << ARM_FEATURE_AARCH64) | (1ULL << ARM_FEATURE_PMU) | (1ULL << ARM_FEATURE_GENERIC_TIMER); /* We set up a small vcpu to extract host registers */ if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) { return false; } for (i = 0; i < ARRAY_SIZE(regs); i++) { r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val); } r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr); r |= hv_vcpu_destroy(fd); ahcf->isar = host_isar; /* * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1 * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97 */ ahcf->reset_sctlr = 0x30100180; /* * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility, * let's disable it on boot and then allow guest software to turn it on by * setting it to 0. */ ahcf->reset_sctlr |= 0x00800000; /* Make sure we don't advertise AArch32 support for EL0/EL1 */ if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) { return false; } return r == HV_SUCCESS; } void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu) { if (!arm_host_cpu_features.dtb_compatible) { if (!hvf_enabled() || !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) { /* * We can't report this error yet, so flag that we need to * in arm_cpu_realizefn(). */ cpu->host_cpu_probe_failed = true; return; } } cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; cpu->isar = arm_host_cpu_features.isar; cpu->env.features = arm_host_cpu_features.features; cpu->midr = arm_host_cpu_features.midr; cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr; } void hvf_arch_vcpu_destroy(CPUState *cpu) { } int hvf_arch_init_vcpu(CPUState *cpu) { ARMCPU *arm_cpu = ARM_CPU(cpu); CPUARMState *env = &arm_cpu->env; uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match); uint32_t sregs_cnt = 0; uint64_t pfr; hv_return_t ret; int i; env->aarch64 = 1; asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz)); /* Allocate enough space for our sysreg sync */ arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes, sregs_match_len); arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values, sregs_match_len); arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t, arm_cpu->cpreg_vmstate_indexes, sregs_match_len); arm_cpu->cpreg_vmstate_values = g_renew(uint64_t, arm_cpu->cpreg_vmstate_values, sregs_match_len); memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t)); /* Populate cp list for all known sysregs */ for (i = 0; i < sregs_match_len; i++) { const ARMCPRegInfo *ri; uint32_t key = hvf_sreg_match[i].key; ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key); if (ri) { assert(!(ri->type & ARM_CP_NO_RAW)); hvf_sreg_match[i].cp_idx = sregs_cnt; arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key); } else { hvf_sreg_match[i].cp_idx = -1; } } arm_cpu->cpreg_array_len = sregs_cnt; arm_cpu->cpreg_vmstate_array_len = sregs_cnt; assert(write_cpustate_to_list(arm_cpu, false)); /* Set CP_NO_RAW system registers on init */ ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MIDR_EL1, arm_cpu->midr); assert_hvf_ok(ret); ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MPIDR_EL1, arm_cpu->mp_affinity); assert_hvf_ok(ret); ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr); assert_hvf_ok(ret); pfr |= env->gicv3state ? (1 << 24) : 0; ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr); assert_hvf_ok(ret); /* We're limited to underlying hardware caps, override internal versions */ ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64MMFR0_EL1, &arm_cpu->isar.id_aa64mmfr0); assert_hvf_ok(ret); return 0; } void hvf_kick_vcpu_thread(CPUState *cpu) { cpus_kick_thread(cpu); hv_vcpus_exit(&cpu->hvf->fd, 1); } static void hvf_raise_exception(CPUState *cpu, uint32_t excp, uint32_t syndrome) { ARMCPU *arm_cpu = ARM_CPU(cpu); CPUARMState *env = &arm_cpu->env; cpu->exception_index = excp; env->exception.target_el = 1; env->exception.syndrome = syndrome; arm_cpu_do_interrupt(cpu); } static void hvf_psci_cpu_off(ARMCPU *arm_cpu) { int32_t ret = arm_set_cpu_off(arm_cpu->mp_affinity); assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS); } /* * Handle a PSCI call. * * Returns 0 on success * -1 when the PSCI call is unknown, */ static bool hvf_handle_psci_call(CPUState *cpu) { ARMCPU *arm_cpu = ARM_CPU(cpu); CPUARMState *env = &arm_cpu->env; uint64_t param[4] = { env->xregs[0], env->xregs[1], env->xregs[2], env->xregs[3] }; uint64_t context_id, mpidr; bool target_aarch64 = true; CPUState *target_cpu_state; ARMCPU *target_cpu; target_ulong entry; int target_el = 1; int32_t ret = 0; trace_hvf_psci_call(param[0], param[1], param[2], param[3], arm_cpu->mp_affinity); switch (param[0]) { case QEMU_PSCI_0_2_FN_PSCI_VERSION: ret = QEMU_PSCI_0_2_RET_VERSION_0_2; break; case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE: ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */ break; case QEMU_PSCI_0_2_FN_AFFINITY_INFO: case QEMU_PSCI_0_2_FN64_AFFINITY_INFO: mpidr = param[1]; switch (param[2]) { case 0: target_cpu_state = arm_get_cpu_by_id(mpidr); if (!target_cpu_state) { ret = QEMU_PSCI_RET_INVALID_PARAMS; break; } target_cpu = ARM_CPU(target_cpu_state); ret = target_cpu->power_state; break; default: /* Everything above affinity level 0 is always on. */ ret = 0; } break; case QEMU_PSCI_0_2_FN_SYSTEM_RESET: qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); /* * QEMU reset and shutdown are async requests, but PSCI * mandates that we never return from the reset/shutdown * call, so power the CPU off now so it doesn't execute * anything further. */ hvf_psci_cpu_off(arm_cpu); break; case QEMU_PSCI_0_2_FN_SYSTEM_OFF: qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); hvf_psci_cpu_off(arm_cpu); break; case QEMU_PSCI_0_1_FN_CPU_ON: case QEMU_PSCI_0_2_FN_CPU_ON: case QEMU_PSCI_0_2_FN64_CPU_ON: mpidr = param[1]; entry = param[2]; context_id = param[3]; ret = arm_set_cpu_on(mpidr, entry, context_id, target_el, target_aarch64); break; case QEMU_PSCI_0_1_FN_CPU_OFF: case QEMU_PSCI_0_2_FN_CPU_OFF: hvf_psci_cpu_off(arm_cpu); break; case QEMU_PSCI_0_1_FN_CPU_SUSPEND: case QEMU_PSCI_0_2_FN_CPU_SUSPEND: case QEMU_PSCI_0_2_FN64_CPU_SUSPEND: /* Affinity levels are not supported in QEMU */ if (param[1] & 0xfffe0000) { ret = QEMU_PSCI_RET_INVALID_PARAMS; break; } /* Powerdown is not supported, we always go into WFI */ env->xregs[0] = 0; hvf_wfi(cpu); break; case QEMU_PSCI_0_1_FN_MIGRATE: case QEMU_PSCI_0_2_FN_MIGRATE: ret = QEMU_PSCI_RET_NOT_SUPPORTED; break; default: return false; } env->xregs[0] = ret; return true; } static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint32_t rt) { ARMCPU *arm_cpu = ARM_CPU(cpu); CPUARMState *env = &arm_cpu->env; uint64_t val = 0; switch (reg) { case SYSREG_CNTPCT_EL0: val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(arm_cpu); break; case SYSREG_PMCR_EL0: val = env->cp15.c9_pmcr; break; case SYSREG_PMCCNTR_EL0: pmu_op_start(env); val = env->cp15.c15_ccnt; pmu_op_finish(env); break; case SYSREG_PMCNTENCLR_EL0: val = env->cp15.c9_pmcnten; break; case SYSREG_PMOVSCLR_EL0: val = env->cp15.c9_pmovsr; break; case SYSREG_PMSELR_EL0: val = env->cp15.c9_pmselr; break; case SYSREG_PMINTENCLR_EL1: val = env->cp15.c9_pminten; break; case SYSREG_PMCCFILTR_EL0: val = env->cp15.pmccfiltr_el0; break; case SYSREG_PMCNTENSET_EL0: val = env->cp15.c9_pmcnten; break; case SYSREG_PMUSERENR_EL0: val = env->cp15.c9_pmuserenr; break; case SYSREG_PMCEID0_EL0: case SYSREG_PMCEID1_EL0: /* We can't really count anything yet, declare all events invalid */ val = 0; break; case SYSREG_OSLSR_EL1: val = env->cp15.oslsr_el1; break; case SYSREG_OSDLR_EL1: /* Dummy register */ break; default: cpu_synchronize_state(cpu); trace_hvf_unhandled_sysreg_read(env->pc, reg, (reg >> 20) & 0x3, (reg >> 14) & 0x7, (reg >> 10) & 0xf, (reg >> 1) & 0xf, (reg >> 17) & 0x7); hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized()); return 1; } trace_hvf_sysreg_read(reg, (reg >> 20) & 0x3, (reg >> 14) & 0x7, (reg >> 10) & 0xf, (reg >> 1) & 0xf, (reg >> 17) & 0x7, val); hvf_set_reg(cpu, rt, val); return 0; } static void pmu_update_irq(CPUARMState *env) { ARMCPU *cpu = env_archcpu(env); qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); } static bool pmu_event_supported(uint16_t number) { return false; } /* Returns true if the counter (pass 31 for PMCCNTR) should count events using * the current EL, security state, and register configuration. */ static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) { uint64_t filter; bool enabled, filtered = true; int el = arm_current_el(env); enabled = (env->cp15.c9_pmcr & PMCRE) && (env->cp15.c9_pmcnten & (1 << counter)); if (counter == 31) { filter = env->cp15.pmccfiltr_el0; } else { filter = env->cp15.c14_pmevtyper[counter]; } if (el == 0) { filtered = filter & PMXEVTYPER_U; } else if (el == 1) { filtered = filter & PMXEVTYPER_P; } if (counter != 31) { /* * If not checking PMCCNTR, ensure the counter is setup to an event we * support */ uint16_t event = filter & PMXEVTYPER_EVTCOUNT; if (!pmu_event_supported(event)) { return false; } } return enabled && !filtered; } static void pmswinc_write(CPUARMState *env, uint64_t value) { unsigned int i; for (i = 0; i < pmu_num_counters(env); i++) { /* Increment a counter's count iff: */ if ((value & (1 << i)) && /* counter's bit is set */ /* counter is enabled and not filtered */ pmu_counter_enabled(env, i) && /* counter is SW_INCR */ (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { /* * Detect if this write causes an overflow since we can't predict * PMSWINC overflows like we can for other events */ uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { env->cp15.c9_pmovsr |= (1 << i); pmu_update_irq(env); } env->cp15.c14_pmevcntr[i] = new_pmswinc; } } } static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val) { ARMCPU *arm_cpu = ARM_CPU(cpu); CPUARMState *env = &arm_cpu->env; trace_hvf_sysreg_write(reg, (reg >> 20) & 0x3, (reg >> 14) & 0x7, (reg >> 10) & 0xf, (reg >> 1) & 0xf, (reg >> 17) & 0x7, val); switch (reg) { case SYSREG_PMCCNTR_EL0: pmu_op_start(env); env->cp15.c15_ccnt = val; pmu_op_finish(env); break; case SYSREG_PMCR_EL0: pmu_op_start(env); if (val & PMCRC) { /* The counter has been reset */ env->cp15.c15_ccnt = 0; } if (val & PMCRP) { unsigned int i; for (i = 0; i < pmu_num_counters(env); i++) { env->cp15.c14_pmevcntr[i] = 0; } } env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; env->cp15.c9_pmcr |= (val & PMCR_WRITEABLE_MASK); pmu_op_finish(env); break; case SYSREG_PMUSERENR_EL0: env->cp15.c9_pmuserenr = val & 0xf; break; case SYSREG_PMCNTENSET_EL0: env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env)); break; case SYSREG_PMCNTENCLR_EL0: env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env)); break; case SYSREG_PMINTENCLR_EL1: pmu_op_start(env); env->cp15.c9_pminten |= val; pmu_op_finish(env); break; case SYSREG_PMOVSCLR_EL0: pmu_op_start(env); env->cp15.c9_pmovsr &= ~val; pmu_op_finish(env); break; case SYSREG_PMSWINC_EL0: pmu_op_start(env); pmswinc_write(env, val); pmu_op_finish(env); break; case SYSREG_PMSELR_EL0: env->cp15.c9_pmselr = val & 0x1f; break; case SYSREG_PMCCFILTR_EL0: pmu_op_start(env); env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0; pmu_op_finish(env); break; case SYSREG_OSLAR_EL1: env->cp15.oslsr_el1 = val & 1; break; case SYSREG_OSDLR_EL1: /* Dummy register */ break; default: cpu_synchronize_state(cpu); trace_hvf_unhandled_sysreg_write(env->pc, reg, (reg >> 20) & 0x3, (reg >> 14) & 0x7, (reg >> 10) & 0xf, (reg >> 1) & 0xf, (reg >> 17) & 0x7); hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized()); return 1; } return 0; } static int hvf_inject_interrupts(CPUState *cpu) { if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) { trace_hvf_inject_fiq(); hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_FIQ, true); } if (cpu->interrupt_request & CPU_INTERRUPT_HARD) { trace_hvf_inject_irq(); hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_IRQ, true); } return 0; } static uint64_t hvf_vtimer_val_raw(void) { /* * mach_absolute_time() returns the vtimer value without the VM * offset that we define. Add our own offset on top. */ return mach_absolute_time() - hvf_state->vtimer_offset; } static uint64_t hvf_vtimer_val(void) { if (!runstate_is_running()) { /* VM is paused, the vtimer value is in vtimer.vtimer_val */ return vtimer.vtimer_val; } return hvf_vtimer_val_raw(); } static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts) { /* * Use pselect to sleep so that other threads can IPI us while we're * sleeping. */ qatomic_mb_set(&cpu->thread_kicked, false); qemu_mutex_unlock_iothread(); pselect(0, 0, 0, 0, ts, &cpu->hvf->unblock_ipi_mask); qemu_mutex_lock_iothread(); } static void hvf_wfi(CPUState *cpu) { ARMCPU *arm_cpu = ARM_CPU(cpu); struct timespec ts; hv_return_t r; uint64_t ctl; uint64_t cval; int64_t ticks_to_sleep; uint64_t seconds; uint64_t nanos; uint32_t cntfrq; if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) { /* Interrupt pending, no need to wait */ return; } r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl); assert_hvf_ok(r); if (!(ctl & 1) || (ctl & 2)) { /* Timer disabled or masked, just wait for an IPI. */ hvf_wait_for_ipi(cpu, NULL); return; } r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval); assert_hvf_ok(r); ticks_to_sleep = cval - hvf_vtimer_val(); if (ticks_to_sleep < 0) { return; } cntfrq = gt_cntfrq_period_ns(arm_cpu); seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND); ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq); nanos = ticks_to_sleep * cntfrq; /* * Don't sleep for less than the time a context switch would take, * so that we can satisfy fast timer requests on the same CPU. * Measurements on M1 show the sweet spot to be ~2ms. */ if (!seconds && nanos < (2 * SCALE_MS)) { return; } ts = (struct timespec) { seconds, nanos }; hvf_wait_for_ipi(cpu, &ts); } static void hvf_sync_vtimer(CPUState *cpu) { ARMCPU *arm_cpu = ARM_CPU(cpu); hv_return_t r; uint64_t ctl; bool irq_state; if (!cpu->hvf->vtimer_masked) { /* We will get notified on vtimer changes by hvf, nothing to do */ return; } r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl); assert_hvf_ok(r); irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) == (TMR_CTL_ENABLE | TMR_CTL_ISTATUS); qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state); if (!irq_state) { /* Timer no longer asserting, we can unmask it */ hv_vcpu_set_vtimer_mask(cpu->hvf->fd, false); cpu->hvf->vtimer_masked = false; } } int hvf_vcpu_exec(CPUState *cpu) { ARMCPU *arm_cpu = ARM_CPU(cpu); CPUARMState *env = &arm_cpu->env; hv_vcpu_exit_t *hvf_exit = cpu->hvf->exit; hv_return_t r; bool advance_pc = false; if (hvf_inject_interrupts(cpu)) { return EXCP_INTERRUPT; } if (cpu->halted) { return EXCP_HLT; } flush_cpu_state(cpu); qemu_mutex_unlock_iothread(); assert_hvf_ok(hv_vcpu_run(cpu->hvf->fd)); /* handle VMEXIT */ uint64_t exit_reason = hvf_exit->reason; uint64_t syndrome = hvf_exit->exception.syndrome; uint32_t ec = syn_get_ec(syndrome); qemu_mutex_lock_iothread(); switch (exit_reason) { case HV_EXIT_REASON_EXCEPTION: /* This is the main one, handle below. */ break; case HV_EXIT_REASON_VTIMER_ACTIVATED: qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1); cpu->hvf->vtimer_masked = true; return 0; case HV_EXIT_REASON_CANCELED: /* we got kicked, no exit to process */ return 0; default: assert(0); } hvf_sync_vtimer(cpu); switch (ec) { case EC_DATAABORT: { bool isv = syndrome & ARM_EL_ISV; bool iswrite = (syndrome >> 6) & 1; bool s1ptw = (syndrome >> 7) & 1; uint32_t sas = (syndrome >> 22) & 3; uint32_t len = 1 << sas; uint32_t srt = (syndrome >> 16) & 0x1f; uint32_t cm = (syndrome >> 8) & 0x1; uint64_t val = 0; trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address, hvf_exit->exception.physical_address, isv, iswrite, s1ptw, len, srt); if (cm) { /* We don't cache MMIO regions */ advance_pc = true; break; } assert(isv); if (iswrite) { val = hvf_get_reg(cpu, srt); address_space_write(&address_space_memory, hvf_exit->exception.physical_address, MEMTXATTRS_UNSPECIFIED, &val, len); } else { address_space_read(&address_space_memory, hvf_exit->exception.physical_address, MEMTXATTRS_UNSPECIFIED, &val, len); hvf_set_reg(cpu, srt, val); } advance_pc = true; break; } case EC_SYSTEMREGISTERTRAP: { bool isread = (syndrome >> 0) & 1; uint32_t rt = (syndrome >> 5) & 0x1f; uint32_t reg = syndrome & SYSREG_MASK; uint64_t val; int ret = 0; if (isread) { ret = hvf_sysreg_read(cpu, reg, rt); } else { val = hvf_get_reg(cpu, rt); ret = hvf_sysreg_write(cpu, reg, val); } advance_pc = !ret; break; } case EC_WFX_TRAP: advance_pc = true; if (!(syndrome & WFX_IS_WFE)) { hvf_wfi(cpu); } break; case EC_AA64_HVC: cpu_synchronize_state(cpu); if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) { if (!hvf_handle_psci_call(cpu)) { trace_hvf_unknown_hvc(env->xregs[0]); /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */ env->xregs[0] = -1; } } else { trace_hvf_unknown_hvc(env->xregs[0]); hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized()); } break; case EC_AA64_SMC: cpu_synchronize_state(cpu); if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) { advance_pc = true; if (!hvf_handle_psci_call(cpu)) { trace_hvf_unknown_smc(env->xregs[0]); /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */ env->xregs[0] = -1; } } else { trace_hvf_unknown_smc(env->xregs[0]); hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized()); } break; default: cpu_synchronize_state(cpu); trace_hvf_exit(syndrome, ec, env->pc); error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec); } if (advance_pc) { uint64_t pc; flush_cpu_state(cpu); r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_PC, &pc); assert_hvf_ok(r); pc += 4; r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_PC, pc); assert_hvf_ok(r); } return 0; } static const VMStateDescription vmstate_hvf_vtimer = { .name = "hvf-vtimer", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT64(vtimer_val, HVFVTimer), VMSTATE_END_OF_LIST() }, }; static void hvf_vm_state_change(void *opaque, bool running, RunState state) { HVFVTimer *s = opaque; if (running) { /* Update vtimer offset on all CPUs */ hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val; cpu_synchronize_all_states(); } else { /* Remember vtimer value on every pause */ s->vtimer_val = hvf_vtimer_val_raw(); } } int hvf_arch_init(void) { hvf_state->vtimer_offset = mach_absolute_time(); vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer); qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer); return 0; }