/* * qemu user cpu loop * * Copyright (c) 2003-2008 Fabrice Bellard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include "qemu/osdep.h" #include "qemu-common.h" #include "qemu.h" #include "user-internals.h" #include "cpu_loop-common.h" #include "signal-common.h" #include "elf.h" #include "internal.h" #include "fpu_helper.h" # ifdef TARGET_ABI_MIPSO32 # define MIPS_SYSCALL_NUMBER_UNUSED -1 static const int8_t mips_syscall_args[] = { #include "syscall-args-o32.c.inc" }; # endif /* O32 */ /* Break codes */ enum { BRK_OVERFLOW = 6, BRK_DIVZERO = 7 }; static int do_break(CPUMIPSState *env, target_siginfo_t *info, unsigned int code) { int ret = -1; switch (code) { case BRK_OVERFLOW: case BRK_DIVZERO: info->si_signo = TARGET_SIGFPE; info->si_errno = 0; info->si_code = (code == BRK_OVERFLOW) ? FPE_INTOVF : FPE_INTDIV; queue_signal(env, info->si_signo, QEMU_SI_FAULT, &*info); ret = 0; break; default: info->si_signo = TARGET_SIGTRAP; info->si_errno = 0; queue_signal(env, info->si_signo, QEMU_SI_FAULT, &*info); ret = 0; break; } return ret; } void cpu_loop(CPUMIPSState *env) { CPUState *cs = env_cpu(env); target_siginfo_t info; int trapnr; abi_long ret; # ifdef TARGET_ABI_MIPSO32 unsigned int syscall_num; # endif for(;;) { cpu_exec_start(cs); trapnr = cpu_exec(cs); cpu_exec_end(cs); process_queued_cpu_work(cs); switch(trapnr) { case EXCP_SYSCALL: env->active_tc.PC += 4; # ifdef TARGET_ABI_MIPSO32 syscall_num = env->active_tc.gpr[2] - 4000; if (syscall_num >= sizeof(mips_syscall_args)) { /* syscall_num is larger that any defined for MIPS O32 */ ret = -TARGET_ENOSYS; } else if (mips_syscall_args[syscall_num] == MIPS_SYSCALL_NUMBER_UNUSED) { /* syscall_num belongs to the range not defined for MIPS O32 */ ret = -TARGET_ENOSYS; } else { /* syscall_num is valid */ int nb_args; abi_ulong sp_reg; abi_ulong arg5 = 0, arg6 = 0, arg7 = 0, arg8 = 0; nb_args = mips_syscall_args[syscall_num]; sp_reg = env->active_tc.gpr[29]; switch (nb_args) { /* these arguments are taken from the stack */ case 8: if ((ret = get_user_ual(arg8, sp_reg + 28)) != 0) { goto done_syscall; } /* fall through */ case 7: if ((ret = get_user_ual(arg7, sp_reg + 24)) != 0) { goto done_syscall; } /* fall through */ case 6: if ((ret = get_user_ual(arg6, sp_reg + 20)) != 0) { goto done_syscall; } /* fall through */ case 5: if ((ret = get_user_ual(arg5, sp_reg + 16)) != 0) { goto done_syscall; } /* fall through */ default: break; } ret = do_syscall(env, env->active_tc.gpr[2], env->active_tc.gpr[4], env->active_tc.gpr[5], env->active_tc.gpr[6], env->active_tc.gpr[7], arg5, arg6, arg7, arg8); } done_syscall: # else ret = do_syscall(env, env->active_tc.gpr[2], env->active_tc.gpr[4], env->active_tc.gpr[5], env->active_tc.gpr[6], env->active_tc.gpr[7], env->active_tc.gpr[8], env->active_tc.gpr[9], env->active_tc.gpr[10], env->active_tc.gpr[11]); # endif /* O32 */ if (ret == -TARGET_ERESTARTSYS) { env->active_tc.PC -= 4; break; } if (ret == -TARGET_QEMU_ESIGRETURN) { /* Returning from a successful sigreturn syscall. Avoid clobbering register state. */ break; } if ((abi_ulong)ret >= (abi_ulong)-1133) { env->active_tc.gpr[7] = 1; /* error flag */ ret = -ret; } else { env->active_tc.gpr[7] = 0; /* error flag */ } env->active_tc.gpr[2] = ret; break; case EXCP_TLBL: case EXCP_TLBS: case EXCP_AdEL: case EXCP_AdES: info.si_signo = TARGET_SIGSEGV; info.si_errno = 0; /* XXX: check env->error_code */ info.si_code = TARGET_SEGV_MAPERR; info._sifields._sigfault._addr = env->CP0_BadVAddr; queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); break; case EXCP_CpU: case EXCP_RI: info.si_signo = TARGET_SIGILL; info.si_errno = 0; info.si_code = 0; queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); break; case EXCP_INTERRUPT: /* just indicate that signals should be handled asap */ break; case EXCP_DEBUG: info.si_signo = TARGET_SIGTRAP; info.si_errno = 0; info.si_code = TARGET_TRAP_BRKPT; queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); break; case EXCP_DSPDIS: info.si_signo = TARGET_SIGILL; info.si_errno = 0; info.si_code = TARGET_ILL_ILLOPC; queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); break; case EXCP_FPE: info.si_signo = TARGET_SIGFPE; info.si_errno = 0; info.si_code = TARGET_FPE_FLTUNK; if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) { info.si_code = TARGET_FPE_FLTINV; } else if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_DIV0) { info.si_code = TARGET_FPE_FLTDIV; } else if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_OVERFLOW) { info.si_code = TARGET_FPE_FLTOVF; } else if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_UNDERFLOW) { info.si_code = TARGET_FPE_FLTUND; } else if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INEXACT) { info.si_code = TARGET_FPE_FLTRES; } queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); break; /* The code below was inspired by the MIPS Linux kernel trap * handling code in arch/mips/kernel/traps.c. */ case EXCP_BREAK: { abi_ulong trap_instr; unsigned int code; if (env->hflags & MIPS_HFLAG_M16) { if (env->insn_flags & ASE_MICROMIPS) { /* microMIPS mode */ ret = get_user_u16(trap_instr, env->active_tc.PC); if (ret != 0) { goto error; } if ((trap_instr >> 10) == 0x11) { /* 16-bit instruction */ code = trap_instr & 0xf; } else { /* 32-bit instruction */ abi_ulong instr_lo; ret = get_user_u16(instr_lo, env->active_tc.PC + 2); if (ret != 0) { goto error; } trap_instr = (trap_instr << 16) | instr_lo; code = ((trap_instr >> 6) & ((1 << 20) - 1)); /* Unfortunately, microMIPS also suffers from the old assembler bug... */ if (code >= (1 << 10)) { code >>= 10; } } } else { /* MIPS16e mode */ ret = get_user_u16(trap_instr, env->active_tc.PC); if (ret != 0) { goto error; } code = (trap_instr >> 6) & 0x3f; } } else { ret = get_user_u32(trap_instr, env->active_tc.PC); if (ret != 0) { goto error; } /* As described in the original Linux kernel code, the * below checks on 'code' are to work around an old * assembly bug. */ code = ((trap_instr >> 6) & ((1 << 20) - 1)); if (code >= (1 << 10)) { code >>= 10; } } if (do_break(env, &info, code) != 0) { goto error; } } break; case EXCP_TRAP: { abi_ulong trap_instr; unsigned int code = 0; if (env->hflags & MIPS_HFLAG_M16) { /* microMIPS mode */ abi_ulong instr[2]; ret = get_user_u16(instr[0], env->active_tc.PC) || get_user_u16(instr[1], env->active_tc.PC + 2); trap_instr = (instr[0] << 16) | instr[1]; } else { ret = get_user_u32(trap_instr, env->active_tc.PC); } if (ret != 0) { goto error; } /* The immediate versions don't provide a code. */ if (!(trap_instr & 0xFC000000)) { if (env->hflags & MIPS_HFLAG_M16) { /* microMIPS mode */ code = ((trap_instr >> 12) & ((1 << 4) - 1)); } else { code = ((trap_instr >> 6) & ((1 << 10) - 1)); } } if (do_break(env, &info, code) != 0) { goto error; } } break; case EXCP_ATOMIC: cpu_exec_step_atomic(cs); break; default: error: EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); abort(); } process_pending_signals(env); } } void target_cpu_copy_regs(CPUArchState *env, struct target_pt_regs *regs) { CPUState *cpu = env_cpu(env); TaskState *ts = cpu->opaque; struct image_info *info = ts->info; int i; struct mode_req { bool single; bool soft; bool fr1; bool frdefault; bool fre; }; static const struct mode_req fpu_reqs[] = { [MIPS_ABI_FP_ANY] = { true, true, true, true, true }, [MIPS_ABI_FP_DOUBLE] = { false, false, false, true, true }, [MIPS_ABI_FP_SINGLE] = { true, false, false, false, false }, [MIPS_ABI_FP_SOFT] = { false, true, false, false, false }, [MIPS_ABI_FP_OLD_64] = { false, false, false, false, false }, [MIPS_ABI_FP_XX] = { false, false, true, true, true }, [MIPS_ABI_FP_64] = { false, false, true, false, false }, [MIPS_ABI_FP_64A] = { false, false, true, false, true } }; /* * Mode requirements when .MIPS.abiflags is not present in the ELF. * Not present means that everything is acceptable except FR1. */ static struct mode_req none_req = { true, true, false, true, true }; struct mode_req prog_req; struct mode_req interp_req; for(i = 0; i < 32; i++) { env->active_tc.gpr[i] = regs->regs[i]; } env->active_tc.PC = regs->cp0_epc & ~(target_ulong)1; if (regs->cp0_epc & 1) { env->hflags |= MIPS_HFLAG_M16; } #ifdef TARGET_ABI_MIPSO32 # define MAX_FP_ABI MIPS_ABI_FP_64A #else # define MAX_FP_ABI MIPS_ABI_FP_SOFT #endif if ((info->fp_abi > MAX_FP_ABI && info->fp_abi != MIPS_ABI_FP_UNKNOWN) || (info->interp_fp_abi > MAX_FP_ABI && info->interp_fp_abi != MIPS_ABI_FP_UNKNOWN)) { fprintf(stderr, "qemu: Unexpected FPU mode\n"); exit(1); } prog_req = (info->fp_abi == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[info->fp_abi]; interp_req = (info->interp_fp_abi == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[info->interp_fp_abi]; prog_req.single &= interp_req.single; prog_req.soft &= interp_req.soft; prog_req.fr1 &= interp_req.fr1; prog_req.frdefault &= interp_req.frdefault; prog_req.fre &= interp_req.fre; bool cpu_has_mips_r2_r6 = env->insn_flags & ISA_MIPS_R2 || env->insn_flags & ISA_MIPS_R6; if (prog_req.fre && !prog_req.frdefault && !prog_req.fr1) { env->CP0_Config5 |= (1 << CP0C5_FRE); if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) { env->hflags |= MIPS_HFLAG_FRE; } } else if ((prog_req.fr1 && prog_req.frdefault) || (prog_req.single && !prog_req.frdefault)) { if ((env->active_fpu.fcr0 & (1 << FCR0_F64) && cpu_has_mips_r2_r6) || prog_req.fr1) { env->CP0_Status |= (1 << CP0St_FR); env->hflags |= MIPS_HFLAG_F64; } } else if (!prog_req.fre && !prog_req.frdefault && !prog_req.fr1 && !prog_req.single && !prog_req.soft) { fprintf(stderr, "qemu: Can't find a matching FPU mode\n"); exit(1); } if (env->insn_flags & ISA_NANOMIPS32) { return; } if (((info->elf_flags & EF_MIPS_NAN2008) != 0) != ((env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) != 0)) { if ((env->active_fpu.fcr31_rw_bitmask & (1 << FCR31_NAN2008)) == 0) { fprintf(stderr, "ELF binary's NaN mode not supported by CPU\n"); exit(1); } if ((info->elf_flags & EF_MIPS_NAN2008) != 0) { env->active_fpu.fcr31 |= (1 << FCR31_NAN2008); } else { env->active_fpu.fcr31 &= ~(1 << FCR31_NAN2008); } restore_snan_bit_mode(env); } }