/* * Intel XScale PXA Programmable Interrupt Controller. * * Copyright (c) 2006 Openedhand Ltd. * Copyright (c) 2006 Thorsten Zitterell * Written by Andrzej Zaborowski <balrog@zabor.org> * * This code is licenced under the GPL. */ #include "vl.h" #define ICIP 0x00 /* Interrupt Controller IRQ Pending register */ #define ICMR 0x04 /* Interrupt Controller Mask register */ #define ICLR 0x08 /* Interrupt Controller Level register */ #define ICFP 0x0c /* Interrupt Controller FIQ Pending register */ #define ICPR 0x10 /* Interrupt Controller Pending register */ #define ICCR 0x14 /* Interrupt Controller Control register */ #define ICHP 0x18 /* Interrupt Controller Highest Priority register */ #define IPR0 0x1c /* Interrupt Controller Priority register 0 */ #define IPR31 0x98 /* Interrupt Controller Priority register 31 */ #define ICIP2 0x9c /* Interrupt Controller IRQ Pending register 2 */ #define ICMR2 0xa0 /* Interrupt Controller Mask register 2 */ #define ICLR2 0xa4 /* Interrupt Controller Level register 2 */ #define ICFP2 0xa8 /* Interrupt Controller FIQ Pending register 2 */ #define ICPR2 0xac /* Interrupt Controller Pending register 2 */ #define IPR32 0xb0 /* Interrupt Controller Priority register 32 */ #define IPR39 0xcc /* Interrupt Controller Priority register 39 */ #define PXA2XX_PIC_SRCS 40 struct pxa2xx_pic_state_s { target_phys_addr_t base; CPUState *cpu_env; uint32_t int_enabled[2]; uint32_t int_pending[2]; uint32_t is_fiq[2]; uint32_t int_idle; uint32_t priority[PXA2XX_PIC_SRCS]; }; static void pxa2xx_pic_update(void *opaque) { uint32_t mask[2]; struct pxa2xx_pic_state_s *s = (struct pxa2xx_pic_state_s *) opaque; if (s->cpu_env->halted) { mask[0] = s->int_pending[0] & (s->int_enabled[0] | s->int_idle); mask[1] = s->int_pending[1] & (s->int_enabled[1] | s->int_idle); if (mask[0] || mask[1]) cpu_interrupt(s->cpu_env, CPU_INTERRUPT_EXITTB); } mask[0] = s->int_pending[0] & s->int_enabled[0]; mask[1] = s->int_pending[1] & s->int_enabled[1]; if ((mask[0] & s->is_fiq[0]) || (mask[1] & s->is_fiq[1])) cpu_interrupt(s->cpu_env, CPU_INTERRUPT_FIQ); else cpu_reset_interrupt(s->cpu_env, CPU_INTERRUPT_FIQ); if ((mask[0] & ~s->is_fiq[0]) || (mask[1] & ~s->is_fiq[1])) cpu_interrupt(s->cpu_env, CPU_INTERRUPT_HARD); else cpu_reset_interrupt(s->cpu_env, CPU_INTERRUPT_HARD); } /* Note: Here level means state of the signal on a pin, not * IRQ/FIQ distinction as in PXA Developer Manual. */ static void pxa2xx_pic_set_irq(void *opaque, int irq, int level) { struct pxa2xx_pic_state_s *s = (struct pxa2xx_pic_state_s *) opaque; int int_set = (irq >= 32); irq &= 31; if (level) s->int_pending[int_set] |= 1 << irq; else s->int_pending[int_set] &= ~(1 << irq); pxa2xx_pic_update(opaque); } static inline uint32_t pxa2xx_pic_highest(struct pxa2xx_pic_state_s *s) { int i, int_set, irq; uint32_t bit, mask[2]; uint32_t ichp = 0x003f003f; /* Both IDs invalid */ mask[0] = s->int_pending[0] & s->int_enabled[0]; mask[1] = s->int_pending[1] & s->int_enabled[1]; for (i = PXA2XX_PIC_SRCS - 1; i >= 0; i --) { irq = s->priority[i] & 0x3f; if ((s->priority[i] & (1 << 31)) && irq < PXA2XX_PIC_SRCS) { /* Source peripheral ID is valid. */ bit = 1 << (irq & 31); int_set = (irq >= 32); if (mask[int_set] & bit & s->is_fiq[int_set]) { /* FIQ asserted */ ichp &= 0xffff0000; ichp |= (1 << 15) | irq; } if (mask[int_set] & bit & ~s->is_fiq[int_set]) { /* IRQ asserted */ ichp &= 0x0000ffff; ichp |= (1 << 31) | (irq << 16); } } } return ichp; } static uint32_t pxa2xx_pic_mem_read(void *opaque, target_phys_addr_t offset) { struct pxa2xx_pic_state_s *s = (struct pxa2xx_pic_state_s *) opaque; offset -= s->base; switch (offset) { case ICIP: /* IRQ Pending register */ return s->int_pending[0] & ~s->is_fiq[0] & s->int_enabled[0]; case ICIP2: /* IRQ Pending register 2 */ return s->int_pending[1] & ~s->is_fiq[1] & s->int_enabled[1]; case ICMR: /* Mask register */ return s->int_enabled[0]; case ICMR2: /* Mask register 2 */ return s->int_enabled[1]; case ICLR: /* Level register */ return s->is_fiq[0]; case ICLR2: /* Level register 2 */ return s->is_fiq[1]; case ICCR: /* Idle mask */ return (s->int_idle == 0); case ICFP: /* FIQ Pending register */ return s->int_pending[0] & s->is_fiq[0] & s->int_enabled[0]; case ICFP2: /* FIQ Pending register 2 */ return s->int_pending[1] & s->is_fiq[1] & s->int_enabled[1]; case ICPR: /* Pending register */ return s->int_pending[0]; case ICPR2: /* Pending register 2 */ return s->int_pending[1]; case IPR0 ... IPR31: return s->priority[0 + ((offset - IPR0 ) >> 2)]; case IPR32 ... IPR39: return s->priority[32 + ((offset - IPR32) >> 2)]; case ICHP: /* Highest Priority register */ return pxa2xx_pic_highest(s); default: printf("%s: Bad register offset " REG_FMT "\n", __FUNCTION__, offset); return 0; } } static void pxa2xx_pic_mem_write(void *opaque, target_phys_addr_t offset, uint32_t value) { struct pxa2xx_pic_state_s *s = (struct pxa2xx_pic_state_s *) opaque; offset -= s->base; switch (offset) { case ICMR: /* Mask register */ s->int_enabled[0] = value; break; case ICMR2: /* Mask register 2 */ s->int_enabled[1] = value; break; case ICLR: /* Level register */ s->is_fiq[0] = value; break; case ICLR2: /* Level register 2 */ s->is_fiq[1] = value; break; case ICCR: /* Idle mask */ s->int_idle = (value & 1) ? 0 : ~0; break; case IPR0 ... IPR31: s->priority[0 + ((offset - IPR0 ) >> 2)] = value & 0x8000003f; break; case IPR32 ... IPR39: s->priority[32 + ((offset - IPR32) >> 2)] = value & 0x8000003f; break; default: printf("%s: Bad register offset " REG_FMT "\n", __FUNCTION__, offset); return; } pxa2xx_pic_update(opaque); } /* Interrupt Controller Coprocessor Space Register Mapping */ static const int pxa2xx_cp_reg_map[0x10] = { [0x0 ... 0xf] = -1, [0x0] = ICIP, [0x1] = ICMR, [0x2] = ICLR, [0x3] = ICFP, [0x4] = ICPR, [0x5] = ICHP, [0x6] = ICIP2, [0x7] = ICMR2, [0x8] = ICLR2, [0x9] = ICFP2, [0xa] = ICPR2, }; static uint32_t pxa2xx_pic_cp_read(void *opaque, int op2, int reg, int crm) { struct pxa2xx_pic_state_s *s = (struct pxa2xx_pic_state_s *) opaque; target_phys_addr_t offset; if (pxa2xx_cp_reg_map[reg] == -1) { printf("%s: Bad register 0x%x\n", __FUNCTION__, reg); return 0; } offset = s->base + pxa2xx_cp_reg_map[reg]; return pxa2xx_pic_mem_read(opaque, offset); } static void pxa2xx_pic_cp_write(void *opaque, int op2, int reg, int crm, uint32_t value) { struct pxa2xx_pic_state_s *s = (struct pxa2xx_pic_state_s *) opaque; target_phys_addr_t offset; if (pxa2xx_cp_reg_map[reg] == -1) { printf("%s: Bad register 0x%x\n", __FUNCTION__, reg); return; } offset = s->base + pxa2xx_cp_reg_map[reg]; pxa2xx_pic_mem_write(opaque, offset, value); } static CPUReadMemoryFunc *pxa2xx_pic_readfn[] = { pxa2xx_pic_mem_read, pxa2xx_pic_mem_read, pxa2xx_pic_mem_read, }; static CPUWriteMemoryFunc *pxa2xx_pic_writefn[] = { pxa2xx_pic_mem_write, pxa2xx_pic_mem_write, pxa2xx_pic_mem_write, }; qemu_irq *pxa2xx_pic_init(target_phys_addr_t base, CPUState *env) { struct pxa2xx_pic_state_s *s; int iomemtype; qemu_irq *qi; s = (struct pxa2xx_pic_state_s *) qemu_mallocz(sizeof(struct pxa2xx_pic_state_s)); if (!s) return NULL; s->cpu_env = env; s->base = base; s->int_pending[0] = 0; s->int_pending[1] = 0; s->int_enabled[0] = 0; s->int_enabled[1] = 0; s->is_fiq[0] = 0; s->is_fiq[1] = 0; qi = qemu_allocate_irqs(pxa2xx_pic_set_irq, s, PXA2XX_PIC_SRCS); /* Enable IC memory-mapped registers access. */ iomemtype = cpu_register_io_memory(0, pxa2xx_pic_readfn, pxa2xx_pic_writefn, s); cpu_register_physical_memory(base, 0x000fffff, iomemtype); /* Enable IC coprocessor access. */ cpu_arm_set_cp_io(env, 6, pxa2xx_pic_cp_read, pxa2xx_pic_cp_write, s); return qi; }