/* * QEMU e1000 emulation * * Software developer's manual: * http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf * * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc. * Copyright (c) 2008 Qumranet * Based on work done by: * Copyright (c) 2007 Dan Aloni * Copyright (c) 2004 Antony T Curtis * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "hw/hw.h" #include "hw/pci/pci.h" #include "net/net.h" #include "net/checksum.h" #include "sysemu/sysemu.h" #include "sysemu/dma.h" #include "qemu/iov.h" #include "qemu/range.h" #include "e1000x_common.h" #include "trace.h" static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; /* #define E1000_DEBUG */ #ifdef E1000_DEBUG enum { DEBUG_GENERAL, DEBUG_IO, DEBUG_MMIO, DEBUG_INTERRUPT, DEBUG_RX, DEBUG_TX, DEBUG_MDIC, DEBUG_EEPROM, DEBUG_UNKNOWN, DEBUG_TXSUM, DEBUG_TXERR, DEBUG_RXERR, DEBUG_RXFILTER, DEBUG_PHY, DEBUG_NOTYET, }; #define DBGBIT(x) (1<= 10.6 * Others never tested */ typedef struct E1000State_st { /*< private >*/ PCIDevice parent_obj; /*< public >*/ NICState *nic; NICConf conf; MemoryRegion mmio; MemoryRegion io; uint32_t mac_reg[0x8000]; uint16_t phy_reg[0x20]; uint16_t eeprom_data[64]; uint32_t rxbuf_size; uint32_t rxbuf_min_shift; struct e1000_tx { unsigned char header[256]; unsigned char vlan_header[4]; /* Fields vlan and data must not be reordered or separated. */ unsigned char vlan[4]; unsigned char data[0x10000]; uint16_t size; unsigned char vlan_needed; unsigned char sum_needed; bool cptse; e1000x_txd_props props; e1000x_txd_props tso_props; uint16_t tso_frames; } tx; struct { uint32_t val_in; /* shifted in from guest driver */ uint16_t bitnum_in; uint16_t bitnum_out; uint16_t reading; uint32_t old_eecd; } eecd_state; QEMUTimer *autoneg_timer; QEMUTimer *mit_timer; /* Mitigation timer. */ bool mit_timer_on; /* Mitigation timer is running. */ bool mit_irq_level; /* Tracks interrupt pin level. */ uint32_t mit_ide; /* Tracks E1000_TXD_CMD_IDE bit. */ QEMUTimer *flush_queue_timer; /* Compatibility flags for migration to/from qemu 1.3.0 and older */ #define E1000_FLAG_AUTONEG_BIT 0 #define E1000_FLAG_MIT_BIT 1 #define E1000_FLAG_MAC_BIT 2 #define E1000_FLAG_TSO_BIT 3 #define E1000_FLAG_AUTONEG (1 << E1000_FLAG_AUTONEG_BIT) #define E1000_FLAG_MIT (1 << E1000_FLAG_MIT_BIT) #define E1000_FLAG_MAC (1 << E1000_FLAG_MAC_BIT) #define E1000_FLAG_TSO (1 << E1000_FLAG_TSO_BIT) uint32_t compat_flags; bool received_tx_tso; bool use_tso_for_migration; e1000x_txd_props mig_props; } E1000State; #define chkflag(x) (s->compat_flags & E1000_FLAG_##x) typedef struct E1000BaseClass { PCIDeviceClass parent_class; uint16_t phy_id2; } E1000BaseClass; #define TYPE_E1000_BASE "e1000-base" #define E1000(obj) \ OBJECT_CHECK(E1000State, (obj), TYPE_E1000_BASE) #define E1000_DEVICE_CLASS(klass) \ OBJECT_CLASS_CHECK(E1000BaseClass, (klass), TYPE_E1000_BASE) #define E1000_DEVICE_GET_CLASS(obj) \ OBJECT_GET_CLASS(E1000BaseClass, (obj), TYPE_E1000_BASE) static void e1000_link_up(E1000State *s) { e1000x_update_regs_on_link_up(s->mac_reg, s->phy_reg); /* E1000_STATUS_LU is tested by e1000_can_receive() */ qemu_flush_queued_packets(qemu_get_queue(s->nic)); } static void e1000_autoneg_done(E1000State *s) { e1000x_update_regs_on_autoneg_done(s->mac_reg, s->phy_reg); /* E1000_STATUS_LU is tested by e1000_can_receive() */ qemu_flush_queued_packets(qemu_get_queue(s->nic)); } static bool have_autoneg(E1000State *s) { return chkflag(AUTONEG) && (s->phy_reg[PHY_CTRL] & MII_CR_AUTO_NEG_EN); } static void set_phy_ctrl(E1000State *s, int index, uint16_t val) { /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */ s->phy_reg[PHY_CTRL] = val & ~(0x3f | MII_CR_RESET | MII_CR_RESTART_AUTO_NEG); /* * QEMU 1.3 does not support link auto-negotiation emulation, so if we * migrate during auto negotiation, after migration the link will be * down. */ if (have_autoneg(s) && (val & MII_CR_RESTART_AUTO_NEG)) { e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer); } } static void (*phyreg_writeops[])(E1000State *, int, uint16_t) = { [PHY_CTRL] = set_phy_ctrl, }; enum { NPHYWRITEOPS = ARRAY_SIZE(phyreg_writeops) }; enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W }; static const char phy_regcap[0x20] = { [PHY_STATUS] = PHY_R, [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW, [PHY_ID1] = PHY_R, [M88E1000_PHY_SPEC_CTRL] = PHY_RW, [PHY_CTRL] = PHY_RW, [PHY_1000T_CTRL] = PHY_RW, [PHY_LP_ABILITY] = PHY_R, [PHY_1000T_STATUS] = PHY_R, [PHY_AUTONEG_ADV] = PHY_RW, [M88E1000_RX_ERR_CNTR] = PHY_R, [PHY_ID2] = PHY_R, [M88E1000_PHY_SPEC_STATUS] = PHY_R, [PHY_AUTONEG_EXP] = PHY_R, }; /* PHY_ID2 documented in 8254x_GBe_SDM.pdf, pp. 250 */ static const uint16_t phy_reg_init[] = { [PHY_CTRL] = MII_CR_SPEED_SELECT_MSB | MII_CR_FULL_DUPLEX | MII_CR_AUTO_NEG_EN, [PHY_STATUS] = MII_SR_EXTENDED_CAPS | MII_SR_LINK_STATUS | /* link initially up */ MII_SR_AUTONEG_CAPS | /* MII_SR_AUTONEG_COMPLETE: initially NOT completed */ MII_SR_PREAMBLE_SUPPRESS | MII_SR_EXTENDED_STATUS | MII_SR_10T_HD_CAPS | MII_SR_10T_FD_CAPS | MII_SR_100X_HD_CAPS | MII_SR_100X_FD_CAPS, [PHY_ID1] = 0x141, /* [PHY_ID2] configured per DevId, from e1000_reset() */ [PHY_AUTONEG_ADV] = 0xde1, [PHY_LP_ABILITY] = 0x1e0, [PHY_1000T_CTRL] = 0x0e00, [PHY_1000T_STATUS] = 0x3c00, [M88E1000_PHY_SPEC_CTRL] = 0x360, [M88E1000_PHY_SPEC_STATUS] = 0xac00, [M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60, }; static const uint32_t mac_reg_init[] = { [PBA] = 0x00100030, [LEDCTL] = 0x602, [CTRL] = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 | E1000_CTRL_SPD_1000 | E1000_CTRL_SLU, [STATUS] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE | E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK | E1000_STATUS_SPEED_1000 | E1000_STATUS_FD | E1000_STATUS_LU, [MANC] = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN | E1000_MANC_ARP_EN | E1000_MANC_0298_EN | E1000_MANC_RMCP_EN, }; /* Helper function, *curr == 0 means the value is not set */ static inline void mit_update_delay(uint32_t *curr, uint32_t value) { if (value && (*curr == 0 || value < *curr)) { *curr = value; } } static void set_interrupt_cause(E1000State *s, int index, uint32_t val) { PCIDevice *d = PCI_DEVICE(s); uint32_t pending_ints; uint32_t mit_delay; s->mac_reg[ICR] = val; /* * Make sure ICR and ICS registers have the same value. * The spec says that the ICS register is write-only. However in practice, * on real hardware ICS is readable, and for reads it has the same value as * ICR (except that ICS does not have the clear on read behaviour of ICR). * * The VxWorks PRO/1000 driver uses this behaviour. */ s->mac_reg[ICS] = val; pending_ints = (s->mac_reg[IMS] & s->mac_reg[ICR]); if (!s->mit_irq_level && pending_ints) { /* * Here we detect a potential raising edge. We postpone raising the * interrupt line if we are inside the mitigation delay window * (s->mit_timer_on == 1). * We provide a partial implementation of interrupt mitigation, * emulating only RADV, TADV and ITR (lower 16 bits, 1024ns units for * RADV and TADV, 256ns units for ITR). RDTR is only used to enable * RADV; relative timers based on TIDV and RDTR are not implemented. */ if (s->mit_timer_on) { return; } if (chkflag(MIT)) { /* Compute the next mitigation delay according to pending * interrupts and the current values of RADV (provided * RDTR!=0), TADV and ITR. * Then rearm the timer. */ mit_delay = 0; if (s->mit_ide && (pending_ints & (E1000_ICR_TXQE | E1000_ICR_TXDW))) { mit_update_delay(&mit_delay, s->mac_reg[TADV] * 4); } if (s->mac_reg[RDTR] && (pending_ints & E1000_ICS_RXT0)) { mit_update_delay(&mit_delay, s->mac_reg[RADV] * 4); } mit_update_delay(&mit_delay, s->mac_reg[ITR]); /* * According to e1000 SPEC, the Ethernet controller guarantees * a maximum observable interrupt rate of 7813 interrupts/sec. * Thus if mit_delay < 500 then the delay should be set to the * minimum delay possible which is 500. */ mit_delay = (mit_delay < 500) ? 500 : mit_delay; s->mit_timer_on = 1; timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + mit_delay * 256); s->mit_ide = 0; } } s->mit_irq_level = (pending_ints != 0); pci_set_irq(d, s->mit_irq_level); } static void e1000_mit_timer(void *opaque) { E1000State *s = opaque; s->mit_timer_on = 0; /* Call set_interrupt_cause to update the irq level (if necessary). */ set_interrupt_cause(s, 0, s->mac_reg[ICR]); } static void set_ics(E1000State *s, int index, uint32_t val) { DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR], s->mac_reg[IMS]); set_interrupt_cause(s, 0, val | s->mac_reg[ICR]); } static void e1000_autoneg_timer(void *opaque) { E1000State *s = opaque; if (!qemu_get_queue(s->nic)->link_down) { e1000_autoneg_done(s); set_ics(s, 0, E1000_ICS_LSC); /* signal link status change to guest */ } } static void e1000_reset(void *opaque) { E1000State *d = opaque; E1000BaseClass *edc = E1000_DEVICE_GET_CLASS(d); uint8_t *macaddr = d->conf.macaddr.a; timer_del(d->autoneg_timer); timer_del(d->mit_timer); timer_del(d->flush_queue_timer); d->mit_timer_on = 0; d->mit_irq_level = 0; d->mit_ide = 0; memset(d->phy_reg, 0, sizeof d->phy_reg); memmove(d->phy_reg, phy_reg_init, sizeof phy_reg_init); d->phy_reg[PHY_ID2] = edc->phy_id2; memset(d->mac_reg, 0, sizeof d->mac_reg); memmove(d->mac_reg, mac_reg_init, sizeof mac_reg_init); d->rxbuf_min_shift = 1; memset(&d->tx, 0, sizeof d->tx); if (qemu_get_queue(d->nic)->link_down) { e1000x_update_regs_on_link_down(d->mac_reg, d->phy_reg); } e1000x_reset_mac_addr(d->nic, d->mac_reg, macaddr); } static void set_ctrl(E1000State *s, int index, uint32_t val) { /* RST is self clearing */ s->mac_reg[CTRL] = val & ~E1000_CTRL_RST; } static void e1000_flush_queue_timer(void *opaque) { E1000State *s = opaque; qemu_flush_queued_packets(qemu_get_queue(s->nic)); } static void set_rx_control(E1000State *s, int index, uint32_t val) { s->mac_reg[RCTL] = val; s->rxbuf_size = e1000x_rxbufsize(val); s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1; DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT], s->mac_reg[RCTL]); timer_mod(s->flush_queue_timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 1000); } static void set_mdic(E1000State *s, int index, uint32_t val) { uint32_t data = val & E1000_MDIC_DATA_MASK; uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy # val = s->mac_reg[MDIC] | E1000_MDIC_ERROR; else if (val & E1000_MDIC_OP_READ) { DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr); if (!(phy_regcap[addr] & PHY_R)) { DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr); val |= E1000_MDIC_ERROR; } else val = (val ^ data) | s->phy_reg[addr]; } else if (val & E1000_MDIC_OP_WRITE) { DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data); if (!(phy_regcap[addr] & PHY_W)) { DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr); val |= E1000_MDIC_ERROR; } else { if (addr < NPHYWRITEOPS && phyreg_writeops[addr]) { phyreg_writeops[addr](s, index, data); } else { s->phy_reg[addr] = data; } } } s->mac_reg[MDIC] = val | E1000_MDIC_READY; if (val & E1000_MDIC_INT_EN) { set_ics(s, 0, E1000_ICR_MDAC); } } static uint32_t get_eecd(E1000State *s, int index) { uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd; DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n", s->eecd_state.bitnum_out, s->eecd_state.reading); if (!s->eecd_state.reading || ((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >> ((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1) ret |= E1000_EECD_DO; return ret; } static void set_eecd(E1000State *s, int index, uint32_t val) { uint32_t oldval = s->eecd_state.old_eecd; s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS | E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ); if (!(E1000_EECD_CS & val)) { /* CS inactive; nothing to do */ return; } if (E1000_EECD_CS & (val ^ oldval)) { /* CS rise edge; reset state */ s->eecd_state.val_in = 0; s->eecd_state.bitnum_in = 0; s->eecd_state.bitnum_out = 0; s->eecd_state.reading = 0; } if (!(E1000_EECD_SK & (val ^ oldval))) { /* no clock edge */ return; } if (!(E1000_EECD_SK & val)) { /* falling edge */ s->eecd_state.bitnum_out++; return; } s->eecd_state.val_in <<= 1; if (val & E1000_EECD_DI) s->eecd_state.val_in |= 1; if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) { s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1; s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) == EEPROM_READ_OPCODE_MICROWIRE); } DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n", s->eecd_state.bitnum_in, s->eecd_state.bitnum_out, s->eecd_state.reading); } static uint32_t flash_eerd_read(E1000State *s, int x) { unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START; if ((s->mac_reg[EERD] & E1000_EEPROM_RW_REG_START) == 0) return (s->mac_reg[EERD]); if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG) return (E1000_EEPROM_RW_REG_DONE | r); return ((s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) | E1000_EEPROM_RW_REG_DONE | r); } static void putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse) { uint32_t sum; if (cse && cse < n) n = cse + 1; if (sloc < n-1) { sum = net_checksum_add(n-css, data+css); stw_be_p(data + sloc, net_checksum_finish_nozero(sum)); } } static inline void inc_tx_bcast_or_mcast_count(E1000State *s, const unsigned char *arr) { if (!memcmp(arr, bcast, sizeof bcast)) { e1000x_inc_reg_if_not_full(s->mac_reg, BPTC); } else if (arr[0] & 1) { e1000x_inc_reg_if_not_full(s->mac_reg, MPTC); } } static void e1000_send_packet(E1000State *s, const uint8_t *buf, int size) { static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511, PTC1023, PTC1522 }; NetClientState *nc = qemu_get_queue(s->nic); if (s->phy_reg[PHY_CTRL] & MII_CR_LOOPBACK) { nc->info->receive(nc, buf, size); } else { qemu_send_packet(nc, buf, size); } inc_tx_bcast_or_mcast_count(s, buf); e1000x_increase_size_stats(s->mac_reg, PTCregs, size); } static void xmit_seg(E1000State *s) { uint16_t len; unsigned int frames = s->tx.tso_frames, css, sofar; struct e1000_tx *tp = &s->tx; struct e1000x_txd_props *props = tp->cptse ? &tp->tso_props : &tp->props; if (tp->cptse) { css = props->ipcss; DBGOUT(TXSUM, "frames %d size %d ipcss %d\n", frames, tp->size, css); if (props->ip) { /* IPv4 */ stw_be_p(tp->data+css+2, tp->size - css); stw_be_p(tp->data+css+4, lduw_be_p(tp->data + css + 4) + frames); } else { /* IPv6 */ stw_be_p(tp->data+css+4, tp->size - css); } css = props->tucss; len = tp->size - css; DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", props->tcp, css, len); if (props->tcp) { sofar = frames * props->mss; stl_be_p(tp->data+css+4, ldl_be_p(tp->data+css+4)+sofar); /* seq */ if (props->paylen - sofar > props->mss) { tp->data[css + 13] &= ~9; /* PSH, FIN */ } else if (frames) { e1000x_inc_reg_if_not_full(s->mac_reg, TSCTC); } } else { /* UDP */ stw_be_p(tp->data+css+4, len); } if (tp->sum_needed & E1000_TXD_POPTS_TXSM) { unsigned int phsum; // add pseudo-header length before checksum calculation void *sp = tp->data + props->tucso; phsum = lduw_be_p(sp) + len; phsum = (phsum >> 16) + (phsum & 0xffff); stw_be_p(sp, phsum); } tp->tso_frames++; } if (tp->sum_needed & E1000_TXD_POPTS_TXSM) { putsum(tp->data, tp->size, props->tucso, props->tucss, props->tucse); } if (tp->sum_needed & E1000_TXD_POPTS_IXSM) { putsum(tp->data, tp->size, props->ipcso, props->ipcss, props->ipcse); } if (tp->vlan_needed) { memmove(tp->vlan, tp->data, 4); memmove(tp->data, tp->data + 4, 8); memcpy(tp->data + 8, tp->vlan_header, 4); e1000_send_packet(s, tp->vlan, tp->size + 4); } else { e1000_send_packet(s, tp->data, tp->size); } e1000x_inc_reg_if_not_full(s->mac_reg, TPT); e1000x_grow_8reg_if_not_full(s->mac_reg, TOTL, s->tx.size); s->mac_reg[GPTC] = s->mac_reg[TPT]; s->mac_reg[GOTCL] = s->mac_reg[TOTL]; s->mac_reg[GOTCH] = s->mac_reg[TOTH]; } static void process_tx_desc(E1000State *s, struct e1000_tx_desc *dp) { PCIDevice *d = PCI_DEVICE(s); uint32_t txd_lower = le32_to_cpu(dp->lower.data); uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D); unsigned int split_size = txd_lower & 0xffff, bytes, sz; unsigned int msh = 0xfffff; uint64_t addr; struct e1000_context_desc *xp = (struct e1000_context_desc *)dp; struct e1000_tx *tp = &s->tx; s->mit_ide |= (txd_lower & E1000_TXD_CMD_IDE); if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */ if (le32_to_cpu(xp->cmd_and_length) & E1000_TXD_CMD_TSE) { e1000x_read_tx_ctx_descr(xp, &tp->tso_props); s->use_tso_for_migration = 1; tp->tso_frames = 0; } else { e1000x_read_tx_ctx_descr(xp, &tp->props); s->use_tso_for_migration = 0; } return; } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) { // data descriptor if (tp->size == 0) { tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8; } tp->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0; } else { // legacy descriptor tp->cptse = 0; } if (e1000x_vlan_enabled(s->mac_reg) && e1000x_is_vlan_txd(txd_lower) && (tp->cptse || txd_lower & E1000_TXD_CMD_EOP)) { tp->vlan_needed = 1; stw_be_p(tp->vlan_header, le16_to_cpu(s->mac_reg[VET])); stw_be_p(tp->vlan_header + 2, le16_to_cpu(dp->upper.fields.special)); } addr = le64_to_cpu(dp->buffer_addr); if (tp->cptse) { msh = tp->tso_props.hdr_len + tp->tso_props.mss; do { bytes = split_size; if (tp->size + bytes > msh) bytes = msh - tp->size; bytes = MIN(sizeof(tp->data) - tp->size, bytes); pci_dma_read(d, addr, tp->data + tp->size, bytes); sz = tp->size + bytes; if (sz >= tp->tso_props.hdr_len && tp->size < tp->tso_props.hdr_len) { memmove(tp->header, tp->data, tp->tso_props.hdr_len); } tp->size = sz; addr += bytes; if (sz == msh) { xmit_seg(s); memmove(tp->data, tp->header, tp->tso_props.hdr_len); tp->size = tp->tso_props.hdr_len; } split_size -= bytes; } while (bytes && split_size); } else { split_size = MIN(sizeof(tp->data) - tp->size, split_size); pci_dma_read(d, addr, tp->data + tp->size, split_size); tp->size += split_size; } if (!(txd_lower & E1000_TXD_CMD_EOP)) return; if (!(tp->cptse && tp->size < tp->tso_props.hdr_len)) { xmit_seg(s); } tp->tso_frames = 0; tp->sum_needed = 0; tp->vlan_needed = 0; tp->size = 0; tp->cptse = 0; } static uint32_t txdesc_writeback(E1000State *s, dma_addr_t base, struct e1000_tx_desc *dp) { PCIDevice *d = PCI_DEVICE(s); uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data); if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS))) return 0; txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) & ~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU); dp->upper.data = cpu_to_le32(txd_upper); pci_dma_write(d, base + ((char *)&dp->upper - (char *)dp), &dp->upper, sizeof(dp->upper)); return E1000_ICR_TXDW; } static uint64_t tx_desc_base(E1000State *s) { uint64_t bah = s->mac_reg[TDBAH]; uint64_t bal = s->mac_reg[TDBAL] & ~0xf; return (bah << 32) + bal; } static void start_xmit(E1000State *s) { PCIDevice *d = PCI_DEVICE(s); dma_addr_t base; struct e1000_tx_desc desc; uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE; if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) { DBGOUT(TX, "tx disabled\n"); return; } while (s->mac_reg[TDH] != s->mac_reg[TDT]) { base = tx_desc_base(s) + sizeof(struct e1000_tx_desc) * s->mac_reg[TDH]; pci_dma_read(d, base, &desc, sizeof(desc)); DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH], (void *)(intptr_t)desc.buffer_addr, desc.lower.data, desc.upper.data); process_tx_desc(s, &desc); cause |= txdesc_writeback(s, base, &desc); if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN]) s->mac_reg[TDH] = 0; /* * the following could happen only if guest sw assigns * bogus values to TDT/TDLEN. * there's nothing too intelligent we could do about this. */ if (s->mac_reg[TDH] == tdh_start || tdh_start >= s->mac_reg[TDLEN] / sizeof(desc)) { DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n", tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]); break; } } set_ics(s, 0, cause); } static int receive_filter(E1000State *s, const uint8_t *buf, int size) { uint32_t rctl = s->mac_reg[RCTL]; int isbcast = !memcmp(buf, bcast, sizeof bcast), ismcast = (buf[0] & 1); if (e1000x_is_vlan_packet(buf, le16_to_cpu(s->mac_reg[VET])) && e1000x_vlan_rx_filter_enabled(s->mac_reg)) { uint16_t vid = lduw_be_p(buf + 14); uint32_t vfta = ldl_le_p((uint32_t*)(s->mac_reg + VFTA) + ((vid >> 5) & 0x7f)); if ((vfta & (1 << (vid & 0x1f))) == 0) return 0; } if (!isbcast && !ismcast && (rctl & E1000_RCTL_UPE)) { /* promiscuous ucast */ return 1; } if (ismcast && (rctl & E1000_RCTL_MPE)) { /* promiscuous mcast */ e1000x_inc_reg_if_not_full(s->mac_reg, MPRC); return 1; } if (isbcast && (rctl & E1000_RCTL_BAM)) { /* broadcast enabled */ e1000x_inc_reg_if_not_full(s->mac_reg, BPRC); return 1; } return e1000x_rx_group_filter(s->mac_reg, buf); } static void e1000_set_link_status(NetClientState *nc) { E1000State *s = qemu_get_nic_opaque(nc); uint32_t old_status = s->mac_reg[STATUS]; if (nc->link_down) { e1000x_update_regs_on_link_down(s->mac_reg, s->phy_reg); } else { if (have_autoneg(s) && !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) { e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer); } else { e1000_link_up(s); } } if (s->mac_reg[STATUS] != old_status) set_ics(s, 0, E1000_ICR_LSC); } static bool e1000_has_rxbufs(E1000State *s, size_t total_size) { int bufs; /* Fast-path short packets */ if (total_size <= s->rxbuf_size) { return s->mac_reg[RDH] != s->mac_reg[RDT]; } if (s->mac_reg[RDH] < s->mac_reg[RDT]) { bufs = s->mac_reg[RDT] - s->mac_reg[RDH]; } else if (s->mac_reg[RDH] > s->mac_reg[RDT]) { bufs = s->mac_reg[RDLEN] / sizeof(struct e1000_rx_desc) + s->mac_reg[RDT] - s->mac_reg[RDH]; } else { return false; } return total_size <= bufs * s->rxbuf_size; } static int e1000_can_receive(NetClientState *nc) { E1000State *s = qemu_get_nic_opaque(nc); return e1000x_rx_ready(&s->parent_obj, s->mac_reg) && e1000_has_rxbufs(s, 1) && !timer_pending(s->flush_queue_timer); } static uint64_t rx_desc_base(E1000State *s) { uint64_t bah = s->mac_reg[RDBAH]; uint64_t bal = s->mac_reg[RDBAL] & ~0xf; return (bah << 32) + bal; } static void e1000_receiver_overrun(E1000State *s, size_t size) { trace_e1000_receiver_overrun(size, s->mac_reg[RDH], s->mac_reg[RDT]); e1000x_inc_reg_if_not_full(s->mac_reg, RNBC); e1000x_inc_reg_if_not_full(s->mac_reg, MPC); set_ics(s, 0, E1000_ICS_RXO); } static ssize_t e1000_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt) { E1000State *s = qemu_get_nic_opaque(nc); PCIDevice *d = PCI_DEVICE(s); struct e1000_rx_desc desc; dma_addr_t base; unsigned int n, rdt; uint32_t rdh_start; uint16_t vlan_special = 0; uint8_t vlan_status = 0; uint8_t min_buf[MIN_BUF_SIZE]; struct iovec min_iov; uint8_t *filter_buf = iov->iov_base; size_t size = iov_size(iov, iovcnt); size_t iov_ofs = 0; size_t desc_offset; size_t desc_size; size_t total_size; if (!e1000x_hw_rx_enabled(s->mac_reg)) { return -1; } if (timer_pending(s->flush_queue_timer)) { return 0; } /* Pad to minimum Ethernet frame length */ if (size < sizeof(min_buf)) { iov_to_buf(iov, iovcnt, 0, min_buf, size); memset(&min_buf[size], 0, sizeof(min_buf) - size); e1000x_inc_reg_if_not_full(s->mac_reg, RUC); min_iov.iov_base = filter_buf = min_buf; min_iov.iov_len = size = sizeof(min_buf); iovcnt = 1; iov = &min_iov; } else if (iov->iov_len < MAXIMUM_ETHERNET_HDR_LEN) { /* This is very unlikely, but may happen. */ iov_to_buf(iov, iovcnt, 0, min_buf, MAXIMUM_ETHERNET_HDR_LEN); filter_buf = min_buf; } /* Discard oversized packets if !LPE and !SBP. */ if (e1000x_is_oversized(s->mac_reg, size)) { return size; } if (!receive_filter(s, filter_buf, size)) { return size; } if (e1000x_vlan_enabled(s->mac_reg) && e1000x_is_vlan_packet(filter_buf, le16_to_cpu(s->mac_reg[VET]))) { vlan_special = cpu_to_le16(lduw_be_p(filter_buf + 14)); iov_ofs = 4; if (filter_buf == iov->iov_base) { memmove(filter_buf + 4, filter_buf, 12); } else { iov_from_buf(iov, iovcnt, 4, filter_buf, 12); while (iov->iov_len <= iov_ofs) { iov_ofs -= iov->iov_len; iov++; } } vlan_status = E1000_RXD_STAT_VP; size -= 4; } rdh_start = s->mac_reg[RDH]; desc_offset = 0; total_size = size + e1000x_fcs_len(s->mac_reg); if (!e1000_has_rxbufs(s, total_size)) { e1000_receiver_overrun(s, total_size); return -1; } do { desc_size = total_size - desc_offset; if (desc_size > s->rxbuf_size) { desc_size = s->rxbuf_size; } base = rx_desc_base(s) + sizeof(desc) * s->mac_reg[RDH]; pci_dma_read(d, base, &desc, sizeof(desc)); desc.special = vlan_special; desc.status |= (vlan_status | E1000_RXD_STAT_DD); if (desc.buffer_addr) { if (desc_offset < size) { size_t iov_copy; hwaddr ba = le64_to_cpu(desc.buffer_addr); size_t copy_size = size - desc_offset; if (copy_size > s->rxbuf_size) { copy_size = s->rxbuf_size; } do { iov_copy = MIN(copy_size, iov->iov_len - iov_ofs); pci_dma_write(d, ba, iov->iov_base + iov_ofs, iov_copy); copy_size -= iov_copy; ba += iov_copy; iov_ofs += iov_copy; if (iov_ofs == iov->iov_len) { iov++; iov_ofs = 0; } } while (copy_size); } desc_offset += desc_size; desc.length = cpu_to_le16(desc_size); if (desc_offset >= total_size) { desc.status |= E1000_RXD_STAT_EOP | E1000_RXD_STAT_IXSM; } else { /* Guest zeroing out status is not a hardware requirement. Clear EOP in case guest didn't do it. */ desc.status &= ~E1000_RXD_STAT_EOP; } } else { // as per intel docs; skip descriptors with null buf addr DBGOUT(RX, "Null RX descriptor!!\n"); } pci_dma_write(d, base, &desc, sizeof(desc)); if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN]) s->mac_reg[RDH] = 0; /* see comment in start_xmit; same here */ if (s->mac_reg[RDH] == rdh_start || rdh_start >= s->mac_reg[RDLEN] / sizeof(desc)) { DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n", rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]); e1000_receiver_overrun(s, total_size); return -1; } } while (desc_offset < total_size); e1000x_update_rx_total_stats(s->mac_reg, size, total_size); n = E1000_ICS_RXT0; if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH]) rdt += s->mac_reg[RDLEN] / sizeof(desc); if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) <= s->mac_reg[RDLEN] >> s->rxbuf_min_shift) n |= E1000_ICS_RXDMT0; set_ics(s, 0, n); return size; } static ssize_t e1000_receive(NetClientState *nc, const uint8_t *buf, size_t size) { const struct iovec iov = { .iov_base = (uint8_t *)buf, .iov_len = size }; return e1000_receive_iov(nc, &iov, 1); } static uint32_t mac_readreg(E1000State *s, int index) { return s->mac_reg[index]; } static uint32_t mac_low4_read(E1000State *s, int index) { return s->mac_reg[index] & 0xf; } static uint32_t mac_low11_read(E1000State *s, int index) { return s->mac_reg[index] & 0x7ff; } static uint32_t mac_low13_read(E1000State *s, int index) { return s->mac_reg[index] & 0x1fff; } static uint32_t mac_low16_read(E1000State *s, int index) { return s->mac_reg[index] & 0xffff; } static uint32_t mac_icr_read(E1000State *s, int index) { uint32_t ret = s->mac_reg[ICR]; DBGOUT(INTERRUPT, "ICR read: %x\n", ret); set_interrupt_cause(s, 0, 0); return ret; } static uint32_t mac_read_clr4(E1000State *s, int index) { uint32_t ret = s->mac_reg[index]; s->mac_reg[index] = 0; return ret; } static uint32_t mac_read_clr8(E1000State *s, int index) { uint32_t ret = s->mac_reg[index]; s->mac_reg[index] = 0; s->mac_reg[index-1] = 0; return ret; } static void mac_writereg(E1000State *s, int index, uint32_t val) { uint32_t macaddr[2]; s->mac_reg[index] = val; if (index == RA + 1) { macaddr[0] = cpu_to_le32(s->mac_reg[RA]); macaddr[1] = cpu_to_le32(s->mac_reg[RA + 1]); qemu_format_nic_info_str(qemu_get_queue(s->nic), (uint8_t *)macaddr); } } static void set_rdt(E1000State *s, int index, uint32_t val) { s->mac_reg[index] = val & 0xffff; if (e1000_has_rxbufs(s, 1)) { qemu_flush_queued_packets(qemu_get_queue(s->nic)); } } static void set_16bit(E1000State *s, int index, uint32_t val) { s->mac_reg[index] = val & 0xffff; } static void set_dlen(E1000State *s, int index, uint32_t val) { s->mac_reg[index] = val & 0xfff80; } static void set_tctl(E1000State *s, int index, uint32_t val) { s->mac_reg[index] = val; s->mac_reg[TDT] &= 0xffff; start_xmit(s); } static void set_icr(E1000State *s, int index, uint32_t val) { DBGOUT(INTERRUPT, "set_icr %x\n", val); set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val); } static void set_imc(E1000State *s, int index, uint32_t val) { s->mac_reg[IMS] &= ~val; set_ics(s, 0, 0); } static void set_ims(E1000State *s, int index, uint32_t val) { s->mac_reg[IMS] |= val; set_ics(s, 0, 0); } #define getreg(x) [x] = mac_readreg static uint32_t (*macreg_readops[])(E1000State *, int) = { getreg(PBA), getreg(RCTL), getreg(TDH), getreg(TXDCTL), getreg(WUFC), getreg(TDT), getreg(CTRL), getreg(LEDCTL), getreg(MANC), getreg(MDIC), getreg(SWSM), getreg(STATUS), getreg(TORL), getreg(TOTL), getreg(IMS), getreg(TCTL), getreg(RDH), getreg(RDT), getreg(VET), getreg(ICS), getreg(TDBAL), getreg(TDBAH), getreg(RDBAH), getreg(RDBAL), getreg(TDLEN), getreg(RDLEN), getreg(RDTR), getreg(RADV), getreg(TADV), getreg(ITR), getreg(FCRUC), getreg(IPAV), getreg(WUC), getreg(WUS), getreg(SCC), getreg(ECOL), getreg(MCC), getreg(LATECOL), getreg(COLC), getreg(DC), getreg(TNCRS), getreg(SEQEC), getreg(CEXTERR), getreg(RLEC), getreg(XONRXC), getreg(XONTXC), getreg(XOFFRXC), getreg(XOFFTXC), getreg(RFC), getreg(RJC), getreg(RNBC), getreg(TSCTFC), getreg(MGTPRC), getreg(MGTPDC), getreg(MGTPTC), getreg(GORCL), getreg(GOTCL), [TOTH] = mac_read_clr8, [TORH] = mac_read_clr8, [GOTCH] = mac_read_clr8, [GORCH] = mac_read_clr8, [PRC64] = mac_read_clr4, [PRC127] = mac_read_clr4, [PRC255] = mac_read_clr4, [PRC511] = mac_read_clr4, [PRC1023] = mac_read_clr4, [PRC1522] = mac_read_clr4, [PTC64] = mac_read_clr4, [PTC127] = mac_read_clr4, [PTC255] = mac_read_clr4, [PTC511] = mac_read_clr4, [PTC1023] = mac_read_clr4, [PTC1522] = mac_read_clr4, [GPRC] = mac_read_clr4, [GPTC] = mac_read_clr4, [TPT] = mac_read_clr4, [TPR] = mac_read_clr4, [RUC] = mac_read_clr4, [ROC] = mac_read_clr4, [BPRC] = mac_read_clr4, [MPRC] = mac_read_clr4, [TSCTC] = mac_read_clr4, [BPTC] = mac_read_clr4, [MPTC] = mac_read_clr4, [ICR] = mac_icr_read, [EECD] = get_eecd, [EERD] = flash_eerd_read, [RDFH] = mac_low13_read, [RDFT] = mac_low13_read, [RDFHS] = mac_low13_read, [RDFTS] = mac_low13_read, [RDFPC] = mac_low13_read, [TDFH] = mac_low11_read, [TDFT] = mac_low11_read, [TDFHS] = mac_low13_read, [TDFTS] = mac_low13_read, [TDFPC] = mac_low13_read, [AIT] = mac_low16_read, [CRCERRS ... MPC] = &mac_readreg, [IP6AT ... IP6AT+3] = &mac_readreg, [IP4AT ... IP4AT+6] = &mac_readreg, [FFLT ... FFLT+6] = &mac_low11_read, [RA ... RA+31] = &mac_readreg, [WUPM ... WUPM+31] = &mac_readreg, [MTA ... MTA+127] = &mac_readreg, [VFTA ... VFTA+127] = &mac_readreg, [FFMT ... FFMT+254] = &mac_low4_read, [FFVT ... FFVT+254] = &mac_readreg, [PBM ... PBM+16383] = &mac_readreg, }; enum { NREADOPS = ARRAY_SIZE(macreg_readops) }; #define putreg(x) [x] = mac_writereg static void (*macreg_writeops[])(E1000State *, int, uint32_t) = { putreg(PBA), putreg(EERD), putreg(SWSM), putreg(WUFC), putreg(TDBAL), putreg(TDBAH), putreg(TXDCTL), putreg(RDBAH), putreg(RDBAL), putreg(LEDCTL), putreg(VET), putreg(FCRUC), putreg(TDFH), putreg(TDFT), putreg(TDFHS), putreg(TDFTS), putreg(TDFPC), putreg(RDFH), putreg(RDFT), putreg(RDFHS), putreg(RDFTS), putreg(RDFPC), putreg(IPAV), putreg(WUC), putreg(WUS), putreg(AIT), [TDLEN] = set_dlen, [RDLEN] = set_dlen, [TCTL] = set_tctl, [TDT] = set_tctl, [MDIC] = set_mdic, [ICS] = set_ics, [TDH] = set_16bit, [RDH] = set_16bit, [RDT] = set_rdt, [IMC] = set_imc, [IMS] = set_ims, [ICR] = set_icr, [EECD] = set_eecd, [RCTL] = set_rx_control, [CTRL] = set_ctrl, [RDTR] = set_16bit, [RADV] = set_16bit, [TADV] = set_16bit, [ITR] = set_16bit, [IP6AT ... IP6AT+3] = &mac_writereg, [IP4AT ... IP4AT+6] = &mac_writereg, [FFLT ... FFLT+6] = &mac_writereg, [RA ... RA+31] = &mac_writereg, [WUPM ... WUPM+31] = &mac_writereg, [MTA ... MTA+127] = &mac_writereg, [VFTA ... VFTA+127] = &mac_writereg, [FFMT ... FFMT+254] = &mac_writereg, [FFVT ... FFVT+254] = &mac_writereg, [PBM ... PBM+16383] = &mac_writereg, }; enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) }; enum { MAC_ACCESS_PARTIAL = 1, MAC_ACCESS_FLAG_NEEDED = 2 }; #define markflag(x) ((E1000_FLAG_##x << 2) | MAC_ACCESS_FLAG_NEEDED) /* In the array below the meaning of the bits is: [f|f|f|f|f|f|n|p] * f - flag bits (up to 6 possible flags) * n - flag needed * p - partially implenented */ static const uint8_t mac_reg_access[0x8000] = { [RDTR] = markflag(MIT), [TADV] = markflag(MIT), [RADV] = markflag(MIT), [ITR] = markflag(MIT), [IPAV] = markflag(MAC), [WUC] = markflag(MAC), [IP6AT] = markflag(MAC), [IP4AT] = markflag(MAC), [FFVT] = markflag(MAC), [WUPM] = markflag(MAC), [ECOL] = markflag(MAC), [MCC] = markflag(MAC), [DC] = markflag(MAC), [TNCRS] = markflag(MAC), [RLEC] = markflag(MAC), [XONRXC] = markflag(MAC), [XOFFTXC] = markflag(MAC), [RFC] = markflag(MAC), [TSCTFC] = markflag(MAC), [MGTPRC] = markflag(MAC), [WUS] = markflag(MAC), [AIT] = markflag(MAC), [FFLT] = markflag(MAC), [FFMT] = markflag(MAC), [SCC] = markflag(MAC), [FCRUC] = markflag(MAC), [LATECOL] = markflag(MAC), [COLC] = markflag(MAC), [SEQEC] = markflag(MAC), [CEXTERR] = markflag(MAC), [XONTXC] = markflag(MAC), [XOFFRXC] = markflag(MAC), [RJC] = markflag(MAC), [RNBC] = markflag(MAC), [MGTPDC] = markflag(MAC), [MGTPTC] = markflag(MAC), [RUC] = markflag(MAC), [ROC] = markflag(MAC), [GORCL] = markflag(MAC), [GORCH] = markflag(MAC), [GOTCL] = markflag(MAC), [GOTCH] = markflag(MAC), [BPRC] = markflag(MAC), [MPRC] = markflag(MAC), [TSCTC] = markflag(MAC), [PRC64] = markflag(MAC), [PRC127] = markflag(MAC), [PRC255] = markflag(MAC), [PRC511] = markflag(MAC), [PRC1023] = markflag(MAC), [PRC1522] = markflag(MAC), [PTC64] = markflag(MAC), [PTC127] = markflag(MAC), [PTC255] = markflag(MAC), [PTC511] = markflag(MAC), [PTC1023] = markflag(MAC), [PTC1522] = markflag(MAC), [MPTC] = markflag(MAC), [BPTC] = markflag(MAC), [TDFH] = markflag(MAC) | MAC_ACCESS_PARTIAL, [TDFT] = markflag(MAC) | MAC_ACCESS_PARTIAL, [TDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL, [TDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL, [TDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL, [RDFH] = markflag(MAC) | MAC_ACCESS_PARTIAL, [RDFT] = markflag(MAC) | MAC_ACCESS_PARTIAL, [RDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL, [RDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL, [RDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL, [PBM] = markflag(MAC) | MAC_ACCESS_PARTIAL, }; static void e1000_mmio_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { E1000State *s = opaque; unsigned int index = (addr & 0x1ffff) >> 2; if (index < NWRITEOPS && macreg_writeops[index]) { if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED) || (s->compat_flags & (mac_reg_access[index] >> 2))) { if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { DBGOUT(GENERAL, "Writing to register at offset: 0x%08x. " "It is not fully implemented.\n", index<<2); } macreg_writeops[index](s, index, val); } else { /* "flag needed" bit is set, but the flag is not active */ DBGOUT(MMIO, "MMIO write attempt to disabled reg. addr=0x%08x\n", index<<2); } } else if (index < NREADOPS && macreg_readops[index]) { DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04"PRIx64"\n", index<<2, val); } else { DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08"PRIx64"\n", index<<2, val); } } static uint64_t e1000_mmio_read(void *opaque, hwaddr addr, unsigned size) { E1000State *s = opaque; unsigned int index = (addr & 0x1ffff) >> 2; if (index < NREADOPS && macreg_readops[index]) { if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED) || (s->compat_flags & (mac_reg_access[index] >> 2))) { if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { DBGOUT(GENERAL, "Reading register at offset: 0x%08x. " "It is not fully implemented.\n", index<<2); } return macreg_readops[index](s, index); } else { /* "flag needed" bit is set, but the flag is not active */ DBGOUT(MMIO, "MMIO read attempt of disabled reg. addr=0x%08x\n", index<<2); } } else { DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2); } return 0; } static const MemoryRegionOps e1000_mmio_ops = { .read = e1000_mmio_read, .write = e1000_mmio_write, .endianness = DEVICE_LITTLE_ENDIAN, .impl = { .min_access_size = 4, .max_access_size = 4, }, }; static uint64_t e1000_io_read(void *opaque, hwaddr addr, unsigned size) { E1000State *s = opaque; (void)s; return 0; } static void e1000_io_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { E1000State *s = opaque; (void)s; } static const MemoryRegionOps e1000_io_ops = { .read = e1000_io_read, .write = e1000_io_write, .endianness = DEVICE_LITTLE_ENDIAN, }; static bool is_version_1(void *opaque, int version_id) { return version_id == 1; } static int e1000_pre_save(void *opaque) { E1000State *s = opaque; NetClientState *nc = qemu_get_queue(s->nic); /* If the mitigation timer is active, emulate a timeout now. */ if (s->mit_timer_on) { e1000_mit_timer(s); } /* * If link is down and auto-negotiation is supported and ongoing, * complete auto-negotiation immediately. This allows us to look * at MII_SR_AUTONEG_COMPLETE to infer link status on load. */ if (nc->link_down && have_autoneg(s)) { s->phy_reg[PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE; } /* Decide which set of props to migrate in the main structure */ if (chkflag(TSO) || !s->use_tso_for_migration) { /* Either we're migrating with the extra subsection, in which * case the mig_props is always 'props' OR * we've not got the subsection, but 'props' was the last * updated. */ s->mig_props = s->tx.props; } else { /* We're not using the subsection, and 'tso_props' was * the last updated. */ s->mig_props = s->tx.tso_props; } return 0; } static int e1000_post_load(void *opaque, int version_id) { E1000State *s = opaque; NetClientState *nc = qemu_get_queue(s->nic); if (!chkflag(MIT)) { s->mac_reg[ITR] = s->mac_reg[RDTR] = s->mac_reg[RADV] = s->mac_reg[TADV] = 0; s->mit_irq_level = false; } s->mit_ide = 0; s->mit_timer_on = false; /* nc.link_down can't be migrated, so infer link_down according * to link status bit in mac_reg[STATUS]. * Alternatively, restart link negotiation if it was in progress. */ nc->link_down = (s->mac_reg[STATUS] & E1000_STATUS_LU) == 0; if (have_autoneg(s) && !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) { nc->link_down = false; timer_mod(s->autoneg_timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500); } s->tx.props = s->mig_props; if (!s->received_tx_tso) { /* We received only one set of offload data (tx.props) * and haven't got tx.tso_props. The best we can do * is dupe the data. */ s->tx.tso_props = s->mig_props; } return 0; } static int e1000_tx_tso_post_load(void *opaque, int version_id) { E1000State *s = opaque; s->received_tx_tso = true; return 0; } static bool e1000_mit_state_needed(void *opaque) { E1000State *s = opaque; return chkflag(MIT); } static bool e1000_full_mac_needed(void *opaque) { E1000State *s = opaque; return chkflag(MAC); } static bool e1000_tso_state_needed(void *opaque) { E1000State *s = opaque; return chkflag(TSO); } static const VMStateDescription vmstate_e1000_mit_state = { .name = "e1000/mit_state", .version_id = 1, .minimum_version_id = 1, .needed = e1000_mit_state_needed, .fields = (VMStateField[]) { VMSTATE_UINT32(mac_reg[RDTR], E1000State), VMSTATE_UINT32(mac_reg[RADV], E1000State), VMSTATE_UINT32(mac_reg[TADV], E1000State), VMSTATE_UINT32(mac_reg[ITR], E1000State), VMSTATE_BOOL(mit_irq_level, E1000State), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_e1000_full_mac_state = { .name = "e1000/full_mac_state", .version_id = 1, .minimum_version_id = 1, .needed = e1000_full_mac_needed, .fields = (VMStateField[]) { VMSTATE_UINT32_ARRAY(mac_reg, E1000State, 0x8000), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_e1000_tx_tso_state = { .name = "e1000/tx_tso_state", .version_id = 1, .minimum_version_id = 1, .needed = e1000_tso_state_needed, .post_load = e1000_tx_tso_post_load, .fields = (VMStateField[]) { VMSTATE_UINT8(tx.tso_props.ipcss, E1000State), VMSTATE_UINT8(tx.tso_props.ipcso, E1000State), VMSTATE_UINT16(tx.tso_props.ipcse, E1000State), VMSTATE_UINT8(tx.tso_props.tucss, E1000State), VMSTATE_UINT8(tx.tso_props.tucso, E1000State), VMSTATE_UINT16(tx.tso_props.tucse, E1000State), VMSTATE_UINT32(tx.tso_props.paylen, E1000State), VMSTATE_UINT8(tx.tso_props.hdr_len, E1000State), VMSTATE_UINT16(tx.tso_props.mss, E1000State), VMSTATE_INT8(tx.tso_props.ip, E1000State), VMSTATE_INT8(tx.tso_props.tcp, E1000State), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_e1000 = { .name = "e1000", .version_id = 2, .minimum_version_id = 1, .pre_save = e1000_pre_save, .post_load = e1000_post_load, .fields = (VMStateField[]) { VMSTATE_PCI_DEVICE(parent_obj, E1000State), VMSTATE_UNUSED_TEST(is_version_1, 4), /* was instance id */ VMSTATE_UNUSED(4), /* Was mmio_base. */ VMSTATE_UINT32(rxbuf_size, E1000State), VMSTATE_UINT32(rxbuf_min_shift, E1000State), VMSTATE_UINT32(eecd_state.val_in, E1000State), VMSTATE_UINT16(eecd_state.bitnum_in, E1000State), VMSTATE_UINT16(eecd_state.bitnum_out, E1000State), VMSTATE_UINT16(eecd_state.reading, E1000State), VMSTATE_UINT32(eecd_state.old_eecd, E1000State), VMSTATE_UINT8(mig_props.ipcss, E1000State), VMSTATE_UINT8(mig_props.ipcso, E1000State), VMSTATE_UINT16(mig_props.ipcse, E1000State), VMSTATE_UINT8(mig_props.tucss, E1000State), VMSTATE_UINT8(mig_props.tucso, E1000State), VMSTATE_UINT16(mig_props.tucse, E1000State), VMSTATE_UINT32(mig_props.paylen, E1000State), VMSTATE_UINT8(mig_props.hdr_len, E1000State), VMSTATE_UINT16(mig_props.mss, E1000State), VMSTATE_UINT16(tx.size, E1000State), VMSTATE_UINT16(tx.tso_frames, E1000State), VMSTATE_UINT8(tx.sum_needed, E1000State), VMSTATE_INT8(mig_props.ip, E1000State), VMSTATE_INT8(mig_props.tcp, E1000State), VMSTATE_BUFFER(tx.header, E1000State), VMSTATE_BUFFER(tx.data, E1000State), VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64), VMSTATE_UINT16_ARRAY(phy_reg, E1000State, 0x20), VMSTATE_UINT32(mac_reg[CTRL], E1000State), VMSTATE_UINT32(mac_reg[EECD], E1000State), VMSTATE_UINT32(mac_reg[EERD], E1000State), VMSTATE_UINT32(mac_reg[GPRC], E1000State), VMSTATE_UINT32(mac_reg[GPTC], E1000State), VMSTATE_UINT32(mac_reg[ICR], E1000State), VMSTATE_UINT32(mac_reg[ICS], E1000State), VMSTATE_UINT32(mac_reg[IMC], E1000State), VMSTATE_UINT32(mac_reg[IMS], E1000State), VMSTATE_UINT32(mac_reg[LEDCTL], E1000State), VMSTATE_UINT32(mac_reg[MANC], E1000State), VMSTATE_UINT32(mac_reg[MDIC], E1000State), VMSTATE_UINT32(mac_reg[MPC], E1000State), VMSTATE_UINT32(mac_reg[PBA], E1000State), VMSTATE_UINT32(mac_reg[RCTL], E1000State), VMSTATE_UINT32(mac_reg[RDBAH], E1000State), VMSTATE_UINT32(mac_reg[RDBAL], E1000State), VMSTATE_UINT32(mac_reg[RDH], E1000State), VMSTATE_UINT32(mac_reg[RDLEN], E1000State), VMSTATE_UINT32(mac_reg[RDT], E1000State), VMSTATE_UINT32(mac_reg[STATUS], E1000State), VMSTATE_UINT32(mac_reg[SWSM], E1000State), VMSTATE_UINT32(mac_reg[TCTL], E1000State), VMSTATE_UINT32(mac_reg[TDBAH], E1000State), VMSTATE_UINT32(mac_reg[TDBAL], E1000State), VMSTATE_UINT32(mac_reg[TDH], E1000State), VMSTATE_UINT32(mac_reg[TDLEN], E1000State), VMSTATE_UINT32(mac_reg[TDT], E1000State), VMSTATE_UINT32(mac_reg[TORH], E1000State), VMSTATE_UINT32(mac_reg[TORL], E1000State), VMSTATE_UINT32(mac_reg[TOTH], E1000State), VMSTATE_UINT32(mac_reg[TOTL], E1000State), VMSTATE_UINT32(mac_reg[TPR], E1000State), VMSTATE_UINT32(mac_reg[TPT], E1000State), VMSTATE_UINT32(mac_reg[TXDCTL], E1000State), VMSTATE_UINT32(mac_reg[WUFC], E1000State), VMSTATE_UINT32(mac_reg[VET], E1000State), VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, RA, 32), VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, MTA, 128), VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, VFTA, 128), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription*[]) { &vmstate_e1000_mit_state, &vmstate_e1000_full_mac_state, &vmstate_e1000_tx_tso_state, NULL } }; /* * EEPROM contents documented in Tables 5-2 and 5-3, pp. 98-102. * Note: A valid DevId will be inserted during pci_e1000_init(). */ static const uint16_t e1000_eeprom_template[64] = { 0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000, 0x0000, 0x3000, 0x1000, 0x6403, 0 /*DevId*/, 0x8086, 0 /*DevId*/, 0x8086, 0x3040, 0x0008, 0x2000, 0x7e14, 0x0048, 0x1000, 0x00d8, 0x0000, 0x2700, 0x6cc9, 0x3150, 0x0722, 0x040b, 0x0984, 0x0000, 0xc000, 0x0706, 0x1008, 0x0000, 0x0f04, 0x7fff, 0x4d01, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0100, 0x4000, 0x121c, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000, }; /* PCI interface */ static void e1000_mmio_setup(E1000State *d) { int i; const uint32_t excluded_regs[] = { E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS, E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE }; memory_region_init_io(&d->mmio, OBJECT(d), &e1000_mmio_ops, d, "e1000-mmio", PNPMMIO_SIZE); memory_region_add_coalescing(&d->mmio, 0, excluded_regs[0]); for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++) memory_region_add_coalescing(&d->mmio, excluded_regs[i] + 4, excluded_regs[i+1] - excluded_regs[i] - 4); memory_region_init_io(&d->io, OBJECT(d), &e1000_io_ops, d, "e1000-io", IOPORT_SIZE); } static void pci_e1000_uninit(PCIDevice *dev) { E1000State *d = E1000(dev); timer_del(d->autoneg_timer); timer_free(d->autoneg_timer); timer_del(d->mit_timer); timer_free(d->mit_timer); timer_del(d->flush_queue_timer); timer_free(d->flush_queue_timer); qemu_del_nic(d->nic); } static NetClientInfo net_e1000_info = { .type = NET_CLIENT_DRIVER_NIC, .size = sizeof(NICState), .can_receive = e1000_can_receive, .receive = e1000_receive, .receive_iov = e1000_receive_iov, .link_status_changed = e1000_set_link_status, }; static void e1000_write_config(PCIDevice *pci_dev, uint32_t address, uint32_t val, int len) { E1000State *s = E1000(pci_dev); pci_default_write_config(pci_dev, address, val, len); if (range_covers_byte(address, len, PCI_COMMAND) && (pci_dev->config[PCI_COMMAND] & PCI_COMMAND_MASTER)) { qemu_flush_queued_packets(qemu_get_queue(s->nic)); } } static void pci_e1000_realize(PCIDevice *pci_dev, Error **errp) { DeviceState *dev = DEVICE(pci_dev); E1000State *d = E1000(pci_dev); uint8_t *pci_conf; uint8_t *macaddr; pci_dev->config_write = e1000_write_config; pci_conf = pci_dev->config; /* TODO: RST# value should be 0, PCI spec 6.2.4 */ pci_conf[PCI_CACHE_LINE_SIZE] = 0x10; pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */ e1000_mmio_setup(d); pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &d->mmio); pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &d->io); qemu_macaddr_default_if_unset(&d->conf.macaddr); macaddr = d->conf.macaddr.a; e1000x_core_prepare_eeprom(d->eeprom_data, e1000_eeprom_template, sizeof(e1000_eeprom_template), PCI_DEVICE_GET_CLASS(pci_dev)->device_id, macaddr); d->nic = qemu_new_nic(&net_e1000_info, &d->conf, object_get_typename(OBJECT(d)), dev->id, d); qemu_format_nic_info_str(qemu_get_queue(d->nic), macaddr); d->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, e1000_autoneg_timer, d); d->mit_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000_mit_timer, d); d->flush_queue_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, e1000_flush_queue_timer, d); } static void qdev_e1000_reset(DeviceState *dev) { E1000State *d = E1000(dev); e1000_reset(d); } static Property e1000_properties[] = { DEFINE_NIC_PROPERTIES(E1000State, conf), DEFINE_PROP_BIT("autonegotiation", E1000State, compat_flags, E1000_FLAG_AUTONEG_BIT, true), DEFINE_PROP_BIT("mitigation", E1000State, compat_flags, E1000_FLAG_MIT_BIT, true), DEFINE_PROP_BIT("extra_mac_registers", E1000State, compat_flags, E1000_FLAG_MAC_BIT, true), DEFINE_PROP_BIT("migrate_tso_props", E1000State, compat_flags, E1000_FLAG_TSO_BIT, true), DEFINE_PROP_END_OF_LIST(), }; typedef struct E1000Info { const char *name; uint16_t device_id; uint8_t revision; uint16_t phy_id2; } E1000Info; static void e1000_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); E1000BaseClass *e = E1000_DEVICE_CLASS(klass); const E1000Info *info = data; k->realize = pci_e1000_realize; k->exit = pci_e1000_uninit; k->romfile = "efi-e1000.rom"; k->vendor_id = PCI_VENDOR_ID_INTEL; k->device_id = info->device_id; k->revision = info->revision; e->phy_id2 = info->phy_id2; k->class_id = PCI_CLASS_NETWORK_ETHERNET; set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); dc->desc = "Intel Gigabit Ethernet"; dc->reset = qdev_e1000_reset; dc->vmsd = &vmstate_e1000; dc->props = e1000_properties; } static void e1000_instance_init(Object *obj) { E1000State *n = E1000(obj); device_add_bootindex_property(obj, &n->conf.bootindex, "bootindex", "/ethernet-phy@0", DEVICE(n), NULL); } static const TypeInfo e1000_base_info = { .name = TYPE_E1000_BASE, .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(E1000State), .instance_init = e1000_instance_init, .class_size = sizeof(E1000BaseClass), .abstract = true, .interfaces = (InterfaceInfo[]) { { INTERFACE_CONVENTIONAL_PCI_DEVICE }, { }, }, }; static const E1000Info e1000_devices[] = { { .name = "e1000", .device_id = E1000_DEV_ID_82540EM, .revision = 0x03, .phy_id2 = E1000_PHY_ID2_8254xx_DEFAULT, }, { .name = "e1000-82544gc", .device_id = E1000_DEV_ID_82544GC_COPPER, .revision = 0x03, .phy_id2 = E1000_PHY_ID2_82544x, }, { .name = "e1000-82545em", .device_id = E1000_DEV_ID_82545EM_COPPER, .revision = 0x03, .phy_id2 = E1000_PHY_ID2_8254xx_DEFAULT, }, }; static void e1000_register_types(void) { int i; type_register_static(&e1000_base_info); for (i = 0; i < ARRAY_SIZE(e1000_devices); i++) { const E1000Info *info = &e1000_devices[i]; TypeInfo type_info = {}; type_info.name = info->name; type_info.parent = TYPE_E1000_BASE; type_info.class_data = (void *)info; type_info.class_init = e1000_class_init; type_info.instance_init = e1000_instance_init; type_register(&type_info); } } type_init(e1000_register_types)