/* * Linux host USB redirector * * Copyright (c) 2005 Fabrice Bellard * * Copyright (c) 2008 Max Krasnyansky * Support for host device auto connect & disconnect * Major rewrite to support fully async operation * * Copyright 2008 TJ * Added flexible support for /dev/bus/usb /sys/bus/usb/devices in addition * to the legacy /proc/bus/usb USB device discovery and handling * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu-common.h" #include "qemu/timer.h" #include "monitor/monitor.h" #include "sysemu/sysemu.h" #include "trace.h" #include #include #include #include #include "hw/usb.h" #include "hw/usb/desc.h" /* We redefine it to avoid version problems */ struct usb_ctrltransfer { uint8_t bRequestType; uint8_t bRequest; uint16_t wValue; uint16_t wIndex; uint16_t wLength; uint32_t timeout; void *data; }; typedef int USBScanFunc(void *opaque, int bus_num, int addr, const char *port, int class_id, int vendor_id, int product_id, const char *product_name, int speed); //#define DEBUG #ifdef DEBUG #define DPRINTF printf #else #define DPRINTF(...) #endif #define PRODUCT_NAME_SZ 32 #define MAX_PORTLEN 16 /* endpoint association data */ #define ISO_FRAME_DESC_PER_URB 32 /* devio.c limits single requests to 16k */ #define MAX_USBFS_BUFFER_SIZE 16384 typedef struct AsyncURB AsyncURB; struct endp_data { uint8_t halted; uint8_t iso_started; AsyncURB *iso_urb; int iso_urb_idx; int iso_buffer_used; int inflight; }; struct USBAutoFilter { uint32_t bus_num; uint32_t addr; char *port; uint32_t vendor_id; uint32_t product_id; }; enum USBHostDeviceOptions { USB_HOST_OPT_PIPELINE, }; typedef struct USBHostDevice { USBDevice dev; int fd; int hub_fd; int hub_port; uint8_t descr[8192]; int descr_len; int closing; uint32_t iso_urb_count; uint32_t options; Notifier exit; QEMUBH *bh; struct endp_data ep_in[USB_MAX_ENDPOINTS]; struct endp_data ep_out[USB_MAX_ENDPOINTS]; QLIST_HEAD(, AsyncURB) aurbs; /* Host side address */ int bus_num; int addr; char port[MAX_PORTLEN]; struct USBAutoFilter match; int32_t bootindex; int seen, errcount; QTAILQ_ENTRY(USBHostDevice) next; } USBHostDevice; static QTAILQ_HEAD(, USBHostDevice) hostdevs = QTAILQ_HEAD_INITIALIZER(hostdevs); static int usb_host_close(USBHostDevice *dev); static int parse_filter(const char *spec, struct USBAutoFilter *f); static void usb_host_auto_check(void *unused); static int usb_host_read_file(char *line, size_t line_size, const char *device_file, const char *device_name); static void usb_linux_update_endp_table(USBHostDevice *s); static int usb_host_usbfs_type(USBHostDevice *s, USBPacket *p) { static const int usbfs[] = { [USB_ENDPOINT_XFER_CONTROL] = USBDEVFS_URB_TYPE_CONTROL, [USB_ENDPOINT_XFER_ISOC] = USBDEVFS_URB_TYPE_ISO, [USB_ENDPOINT_XFER_BULK] = USBDEVFS_URB_TYPE_BULK, [USB_ENDPOINT_XFER_INT] = USBDEVFS_URB_TYPE_INTERRUPT, }; uint8_t type = p->ep->type; assert(type < ARRAY_SIZE(usbfs)); return usbfs[type]; } static int usb_host_do_reset(USBHostDevice *dev) { struct timeval s, e; uint32_t usecs; int ret; gettimeofday(&s, NULL); ret = ioctl(dev->fd, USBDEVFS_RESET); gettimeofday(&e, NULL); usecs = (e.tv_sec - s.tv_sec) * 1000000; usecs += e.tv_usec - s.tv_usec; if (usecs > 1000000) { /* more than a second, something is fishy, broken usb device? */ fprintf(stderr, "husb: device %d:%d reset took %d.%06d seconds\n", dev->bus_num, dev->addr, usecs / 1000000, usecs % 1000000); } return ret; } static struct endp_data *get_endp(USBHostDevice *s, int pid, int ep) { struct endp_data *eps = pid == USB_TOKEN_IN ? s->ep_in : s->ep_out; assert(pid == USB_TOKEN_IN || pid == USB_TOKEN_OUT); assert(ep > 0 && ep <= USB_MAX_ENDPOINTS); return eps + ep - 1; } static int is_isoc(USBHostDevice *s, int pid, int ep) { return usb_ep_get_type(&s->dev, pid, ep) == USB_ENDPOINT_XFER_ISOC; } static int is_valid(USBHostDevice *s, int pid, int ep) { return usb_ep_get_type(&s->dev, pid, ep) != USB_ENDPOINT_XFER_INVALID; } static int is_halted(USBHostDevice *s, int pid, int ep) { return get_endp(s, pid, ep)->halted; } static void clear_halt(USBHostDevice *s, int pid, int ep) { trace_usb_host_ep_clear_halt(s->bus_num, s->addr, ep); get_endp(s, pid, ep)->halted = 0; } static void set_halt(USBHostDevice *s, int pid, int ep) { if (ep != 0) { trace_usb_host_ep_set_halt(s->bus_num, s->addr, ep); get_endp(s, pid, ep)->halted = 1; } } static int is_iso_started(USBHostDevice *s, int pid, int ep) { return get_endp(s, pid, ep)->iso_started; } static void clear_iso_started(USBHostDevice *s, int pid, int ep) { trace_usb_host_iso_stop(s->bus_num, s->addr, ep); get_endp(s, pid, ep)->iso_started = 0; } static void set_iso_started(USBHostDevice *s, int pid, int ep) { struct endp_data *e = get_endp(s, pid, ep); trace_usb_host_iso_start(s->bus_num, s->addr, ep); if (!e->iso_started) { e->iso_started = 1; e->inflight = 0; } } static int change_iso_inflight(USBHostDevice *s, int pid, int ep, int value) { struct endp_data *e = get_endp(s, pid, ep); e->inflight += value; return e->inflight; } static void set_iso_urb(USBHostDevice *s, int pid, int ep, AsyncURB *iso_urb) { get_endp(s, pid, ep)->iso_urb = iso_urb; } static AsyncURB *get_iso_urb(USBHostDevice *s, int pid, int ep) { return get_endp(s, pid, ep)->iso_urb; } static void set_iso_urb_idx(USBHostDevice *s, int pid, int ep, int i) { get_endp(s, pid, ep)->iso_urb_idx = i; } static int get_iso_urb_idx(USBHostDevice *s, int pid, int ep) { return get_endp(s, pid, ep)->iso_urb_idx; } static void set_iso_buffer_used(USBHostDevice *s, int pid, int ep, int i) { get_endp(s, pid, ep)->iso_buffer_used = i; } static int get_iso_buffer_used(USBHostDevice *s, int pid, int ep) { return get_endp(s, pid, ep)->iso_buffer_used; } /* * Async URB state. * We always allocate iso packet descriptors even for bulk transfers * to simplify allocation and casts. */ struct AsyncURB { struct usbdevfs_urb urb; struct usbdevfs_iso_packet_desc isocpd[ISO_FRAME_DESC_PER_URB]; USBHostDevice *hdev; QLIST_ENTRY(AsyncURB) next; /* For regular async urbs */ USBPacket *packet; int more; /* large transfer, more urbs follow */ /* For buffered iso handling */ int iso_frame_idx; /* -1 means in flight */ }; static AsyncURB *async_alloc(USBHostDevice *s) { AsyncURB *aurb = g_malloc0(sizeof(AsyncURB)); aurb->hdev = s; QLIST_INSERT_HEAD(&s->aurbs, aurb, next); return aurb; } static void async_free(AsyncURB *aurb) { QLIST_REMOVE(aurb, next); g_free(aurb); } static void do_disconnect(USBHostDevice *s) { usb_host_close(s); usb_host_auto_check(NULL); } static void async_complete(void *opaque) { USBHostDevice *s = opaque; AsyncURB *aurb; int urbs = 0; while (1) { USBPacket *p; int r = ioctl(s->fd, USBDEVFS_REAPURBNDELAY, &aurb); if (r < 0) { if (errno == EAGAIN) { if (urbs > 2) { /* indicates possible latency issues */ trace_usb_host_iso_many_urbs(s->bus_num, s->addr, urbs); } return; } if (errno == ENODEV) { if (!s->closing) { trace_usb_host_disconnect(s->bus_num, s->addr); do_disconnect(s); } return; } perror("USBDEVFS_REAPURBNDELAY"); return; } DPRINTF("husb: async completed. aurb %p status %d alen %d\n", aurb, aurb->urb.status, aurb->urb.actual_length); /* If this is a buffered iso urb mark it as complete and don't do anything else (it is handled further in usb_host_handle_iso_data) */ if (aurb->iso_frame_idx == -1) { int inflight; int pid = (aurb->urb.endpoint & USB_DIR_IN) ? USB_TOKEN_IN : USB_TOKEN_OUT; int ep = aurb->urb.endpoint & 0xf; if (aurb->urb.status == -EPIPE) { set_halt(s, pid, ep); } aurb->iso_frame_idx = 0; urbs++; inflight = change_iso_inflight(s, pid, ep, -1); if (inflight == 0 && is_iso_started(s, pid, ep)) { /* can be latency issues, or simply end of stream */ trace_usb_host_iso_out_of_bufs(s->bus_num, s->addr, ep); } continue; } p = aurb->packet; trace_usb_host_urb_complete(s->bus_num, s->addr, aurb, aurb->urb.status, aurb->urb.actual_length, aurb->more); if (p) { switch (aurb->urb.status) { case 0: p->actual_length += aurb->urb.actual_length; if (!aurb->more) { /* Clear previous ASYNC status */ p->status = USB_RET_SUCCESS; } break; case -EPIPE: set_halt(s, p->pid, p->ep->nr); p->status = USB_RET_STALL; break; case -EOVERFLOW: p->status = USB_RET_BABBLE; break; default: p->status = USB_RET_IOERROR; break; } if (aurb->urb.type == USBDEVFS_URB_TYPE_CONTROL) { trace_usb_host_req_complete(s->bus_num, s->addr, p, p->status, aurb->urb.actual_length); usb_generic_async_ctrl_complete(&s->dev, p); } else if (!aurb->more) { trace_usb_host_req_complete(s->bus_num, s->addr, p, p->status, aurb->urb.actual_length); usb_packet_complete(&s->dev, p); } } async_free(aurb); } } static void usb_host_async_cancel(USBDevice *dev, USBPacket *p) { USBHostDevice *s = DO_UPCAST(USBHostDevice, dev, dev); AsyncURB *aurb; trace_usb_host_req_canceled(s->bus_num, s->addr, p); QLIST_FOREACH(aurb, &s->aurbs, next) { if (p != aurb->packet) { continue; } trace_usb_host_urb_canceled(s->bus_num, s->addr, aurb); /* Mark it as dead (see async_complete above) */ aurb->packet = NULL; int r = ioctl(s->fd, USBDEVFS_DISCARDURB, aurb); if (r < 0) { DPRINTF("husb: async. discard urb failed errno %d\n", errno); } } } static int usb_host_open_device(int bus, int addr) { const char *usbfs = NULL; char filename[32]; struct stat st; int fd, rc; rc = stat("/dev/bus/usb", &st); if (rc == 0 && S_ISDIR(st.st_mode)) { /* udev-created device nodes available */ usbfs = "/dev/bus/usb"; } else { /* fallback: usbfs mounted below /proc */ usbfs = "/proc/bus/usb"; } snprintf(filename, sizeof(filename), "%s/%03d/%03d", usbfs, bus, addr); fd = open(filename, O_RDWR | O_NONBLOCK); if (fd < 0) { fprintf(stderr, "husb: open %s: %s\n", filename, strerror(errno)); } return fd; } static int usb_host_claim_port(USBHostDevice *s) { #ifdef USBDEVFS_CLAIM_PORT char *h, hub_name[64], line[1024]; int hub_addr, ret; snprintf(hub_name, sizeof(hub_name), "%d-%s", s->match.bus_num, s->match.port); /* try strip off last ".$portnr" to get hub */ h = strrchr(hub_name, '.'); if (h != NULL) { s->hub_port = atoi(h+1); *h = '\0'; } else { /* no dot in there -> it is the root hub */ snprintf(hub_name, sizeof(hub_name), "usb%d", s->match.bus_num); s->hub_port = atoi(s->match.port); } if (!usb_host_read_file(line, sizeof(line), "devnum", hub_name)) { return -1; } if (sscanf(line, "%d", &hub_addr) != 1) { return -1; } s->hub_fd = usb_host_open_device(s->match.bus_num, hub_addr); if (s->hub_fd < 0) { return -1; } ret = ioctl(s->hub_fd, USBDEVFS_CLAIM_PORT, &s->hub_port); if (ret < 0) { close(s->hub_fd); s->hub_fd = -1; return -1; } trace_usb_host_claim_port(s->match.bus_num, hub_addr, s->hub_port); return 0; #else return -1; #endif } static void usb_host_release_port(USBHostDevice *s) { if (s->hub_fd == -1) { return; } #ifdef USBDEVFS_RELEASE_PORT ioctl(s->hub_fd, USBDEVFS_RELEASE_PORT, &s->hub_port); #endif close(s->hub_fd); s->hub_fd = -1; } static int usb_host_disconnect_ifaces(USBHostDevice *dev, int nb_interfaces) { /* earlier Linux 2.4 do not support that */ #ifdef USBDEVFS_DISCONNECT struct usbdevfs_ioctl ctrl; int ret, interface; for (interface = 0; interface < nb_interfaces; interface++) { ctrl.ioctl_code = USBDEVFS_DISCONNECT; ctrl.ifno = interface; ctrl.data = 0; ret = ioctl(dev->fd, USBDEVFS_IOCTL, &ctrl); if (ret < 0 && errno != ENODATA) { perror("USBDEVFS_DISCONNECT"); return -1; } } #endif return 0; } static int usb_linux_get_num_interfaces(USBHostDevice *s) { char device_name[64], line[1024]; int num_interfaces = 0; sprintf(device_name, "%d-%s", s->bus_num, s->port); if (!usb_host_read_file(line, sizeof(line), "bNumInterfaces", device_name)) { return -1; } if (sscanf(line, "%d", &num_interfaces) != 1) { return -1; } return num_interfaces; } static int usb_host_claim_interfaces(USBHostDevice *dev, int configuration) { const char *op = NULL; int dev_descr_len, config_descr_len; int interface, nb_interfaces; int ret, i; for (i = 0; i < USB_MAX_INTERFACES; i++) { dev->dev.altsetting[i] = 0; } if (configuration == 0) { /* address state - ignore */ dev->dev.ninterfaces = 0; dev->dev.configuration = 0; return 1; } DPRINTF("husb: claiming interfaces. config %d\n", configuration); i = 0; dev_descr_len = dev->descr[0]; if (dev_descr_len > dev->descr_len) { fprintf(stderr, "husb: update iface failed. descr too short\n"); return 0; } i += dev_descr_len; while (i < dev->descr_len) { DPRINTF("husb: i is %d, descr_len is %d, dl %d, dt %d\n", i, dev->descr_len, dev->descr[i], dev->descr[i+1]); if (dev->descr[i+1] != USB_DT_CONFIG) { i += dev->descr[i]; continue; } config_descr_len = dev->descr[i]; DPRINTF("husb: config #%d need %d\n", dev->descr[i + 5], configuration); if (configuration == dev->descr[i + 5]) { configuration = dev->descr[i + 5]; break; } i += config_descr_len; } if (i >= dev->descr_len) { fprintf(stderr, "husb: update iface failed. no matching configuration\n"); return 0; } nb_interfaces = dev->descr[i + 4]; if (usb_host_disconnect_ifaces(dev, nb_interfaces) < 0) { goto fail; } /* XXX: only grab if all interfaces are free */ for (interface = 0; interface < nb_interfaces; interface++) { op = "USBDEVFS_CLAIMINTERFACE"; ret = ioctl(dev->fd, USBDEVFS_CLAIMINTERFACE, &interface); if (ret < 0) { goto fail; } } trace_usb_host_claim_interfaces(dev->bus_num, dev->addr, nb_interfaces, configuration); dev->dev.ninterfaces = nb_interfaces; dev->dev.configuration = configuration; return 1; fail: if (errno == ENODEV) { do_disconnect(dev); } perror(op); return 0; } static int usb_host_release_interfaces(USBHostDevice *s) { int ret, i; trace_usb_host_release_interfaces(s->bus_num, s->addr); for (i = 0; i < s->dev.ninterfaces; i++) { ret = ioctl(s->fd, USBDEVFS_RELEASEINTERFACE, &i); if (ret < 0) { perror("USBDEVFS_RELEASEINTERFACE"); return 0; } } return 1; } static void usb_host_handle_reset(USBDevice *dev) { USBHostDevice *s = DO_UPCAST(USBHostDevice, dev, dev); trace_usb_host_reset(s->bus_num, s->addr); usb_host_do_reset(s);; usb_host_claim_interfaces(s, 0); usb_linux_update_endp_table(s); } static void usb_host_handle_destroy(USBDevice *dev) { USBHostDevice *s = (USBHostDevice *)dev; usb_host_release_port(s); usb_host_close(s); QTAILQ_REMOVE(&hostdevs, s, next); qemu_remove_exit_notifier(&s->exit); } /* iso data is special, we need to keep enough urbs in flight to make sure that the controller never runs out of them, otherwise the device will likely suffer a buffer underrun / overrun. */ static AsyncURB *usb_host_alloc_iso(USBHostDevice *s, int pid, uint8_t ep) { AsyncURB *aurb; int i, j, len = usb_ep_get_max_packet_size(&s->dev, pid, ep); aurb = g_malloc0(s->iso_urb_count * sizeof(*aurb)); for (i = 0; i < s->iso_urb_count; i++) { aurb[i].urb.endpoint = ep; aurb[i].urb.buffer_length = ISO_FRAME_DESC_PER_URB * len; aurb[i].urb.buffer = g_malloc(aurb[i].urb.buffer_length); aurb[i].urb.type = USBDEVFS_URB_TYPE_ISO; aurb[i].urb.flags = USBDEVFS_URB_ISO_ASAP; aurb[i].urb.number_of_packets = ISO_FRAME_DESC_PER_URB; for (j = 0 ; j < ISO_FRAME_DESC_PER_URB; j++) aurb[i].urb.iso_frame_desc[j].length = len; if (pid == USB_TOKEN_IN) { aurb[i].urb.endpoint |= 0x80; /* Mark as fully consumed (idle) */ aurb[i].iso_frame_idx = ISO_FRAME_DESC_PER_URB; } } set_iso_urb(s, pid, ep, aurb); return aurb; } static void usb_host_stop_n_free_iso(USBHostDevice *s, int pid, uint8_t ep) { AsyncURB *aurb; int i, ret, killed = 0, free = 1; aurb = get_iso_urb(s, pid, ep); if (!aurb) { return; } for (i = 0; i < s->iso_urb_count; i++) { /* in flight? */ if (aurb[i].iso_frame_idx == -1) { ret = ioctl(s->fd, USBDEVFS_DISCARDURB, &aurb[i]); if (ret < 0) { perror("USBDEVFS_DISCARDURB"); free = 0; continue; } killed++; } } /* Make sure any urbs we've killed are reaped before we free them */ if (killed) { async_complete(s); } for (i = 0; i < s->iso_urb_count; i++) { g_free(aurb[i].urb.buffer); } if (free) g_free(aurb); else printf("husb: leaking iso urbs because of discard failure\n"); set_iso_urb(s, pid, ep, NULL); set_iso_urb_idx(s, pid, ep, 0); clear_iso_started(s, pid, ep); } static void urb_status_to_usb_ret(int status, USBPacket *p) { switch (status) { case -EPIPE: p->status = USB_RET_STALL; break; case -EOVERFLOW: p->status = USB_RET_BABBLE; break; default: p->status = USB_RET_IOERROR; } } static void usb_host_handle_iso_data(USBHostDevice *s, USBPacket *p, int in) { AsyncURB *aurb; int i, j, max_packet_size, offset, len; uint8_t *buf; max_packet_size = p->ep->max_packet_size; if (max_packet_size == 0) { p->status = USB_RET_NAK; return; } aurb = get_iso_urb(s, p->pid, p->ep->nr); if (!aurb) { aurb = usb_host_alloc_iso(s, p->pid, p->ep->nr); } i = get_iso_urb_idx(s, p->pid, p->ep->nr); j = aurb[i].iso_frame_idx; if (j >= 0 && j < ISO_FRAME_DESC_PER_URB) { if (in) { /* Check urb status */ if (aurb[i].urb.status) { urb_status_to_usb_ret(aurb[i].urb.status, p); /* Move to the next urb */ aurb[i].iso_frame_idx = ISO_FRAME_DESC_PER_URB - 1; /* Check frame status */ } else if (aurb[i].urb.iso_frame_desc[j].status) { urb_status_to_usb_ret(aurb[i].urb.iso_frame_desc[j].status, p); /* Check the frame fits */ } else if (aurb[i].urb.iso_frame_desc[j].actual_length > p->iov.size) { printf("husb: received iso data is larger then packet\n"); p->status = USB_RET_BABBLE; /* All good copy data over */ } else { len = aurb[i].urb.iso_frame_desc[j].actual_length; buf = aurb[i].urb.buffer + j * aurb[i].urb.iso_frame_desc[0].length; usb_packet_copy(p, buf, len); } } else { len = p->iov.size; offset = (j == 0) ? 0 : get_iso_buffer_used(s, p->pid, p->ep->nr); /* Check the frame fits */ if (len > max_packet_size) { printf("husb: send iso data is larger then max packet size\n"); p->status = USB_RET_NAK; return; } /* All good copy data over */ usb_packet_copy(p, aurb[i].urb.buffer + offset, len); aurb[i].urb.iso_frame_desc[j].length = len; offset += len; set_iso_buffer_used(s, p->pid, p->ep->nr, offset); /* Start the stream once we have buffered enough data */ if (!is_iso_started(s, p->pid, p->ep->nr) && i == 1 && j == 8) { set_iso_started(s, p->pid, p->ep->nr); } } aurb[i].iso_frame_idx++; if (aurb[i].iso_frame_idx == ISO_FRAME_DESC_PER_URB) { i = (i + 1) % s->iso_urb_count; set_iso_urb_idx(s, p->pid, p->ep->nr, i); } } else { if (in) { set_iso_started(s, p->pid, p->ep->nr); } else { DPRINTF("hubs: iso out error no free buffer, dropping packet\n"); } } if (is_iso_started(s, p->pid, p->ep->nr)) { /* (Re)-submit all fully consumed / filled urbs */ for (i = 0; i < s->iso_urb_count; i++) { if (aurb[i].iso_frame_idx == ISO_FRAME_DESC_PER_URB) { if (ioctl(s->fd, USBDEVFS_SUBMITURB, &aurb[i]) < 0) { perror("USBDEVFS_SUBMITURB"); if (!in || p->status == USB_RET_SUCCESS) { switch(errno) { case ETIMEDOUT: p->status = USB_RET_NAK; break; case EPIPE: default: p->status = USB_RET_STALL; } } break; } aurb[i].iso_frame_idx = -1; change_iso_inflight(s, p->pid, p->ep->nr, 1); } } } } static void usb_host_handle_data(USBDevice *dev, USBPacket *p) { USBHostDevice *s = DO_UPCAST(USBHostDevice, dev, dev); struct usbdevfs_urb *urb; AsyncURB *aurb; int ret, rem, prem, v; uint8_t *pbuf; uint8_t ep; trace_usb_host_req_data(s->bus_num, s->addr, p, p->pid == USB_TOKEN_IN, p->ep->nr, p->iov.size); if (!is_valid(s, p->pid, p->ep->nr)) { p->status = USB_RET_NAK; trace_usb_host_req_complete(s->bus_num, s->addr, p, p->status, p->actual_length); return; } if (p->pid == USB_TOKEN_IN) { ep = p->ep->nr | 0x80; } else { ep = p->ep->nr; } if (is_halted(s, p->pid, p->ep->nr)) { unsigned int arg = ep; ret = ioctl(s->fd, USBDEVFS_CLEAR_HALT, &arg); if (ret < 0) { perror("USBDEVFS_CLEAR_HALT"); p->status = USB_RET_NAK; trace_usb_host_req_complete(s->bus_num, s->addr, p, p->status, p->actual_length); return; } clear_halt(s, p->pid, p->ep->nr); } if (is_isoc(s, p->pid, p->ep->nr)) { usb_host_handle_iso_data(s, p, p->pid == USB_TOKEN_IN); return; } v = 0; prem = 0; pbuf = NULL; rem = p->iov.size; do { if (prem == 0 && rem > 0) { assert(v < p->iov.niov); prem = p->iov.iov[v].iov_len; pbuf = p->iov.iov[v].iov_base; assert(prem <= rem); v++; } aurb = async_alloc(s); aurb->packet = p; urb = &aurb->urb; urb->endpoint = ep; urb->type = usb_host_usbfs_type(s, p); urb->usercontext = s; urb->buffer = pbuf; urb->buffer_length = prem; if (urb->buffer_length > MAX_USBFS_BUFFER_SIZE) { urb->buffer_length = MAX_USBFS_BUFFER_SIZE; } pbuf += urb->buffer_length; prem -= urb->buffer_length; rem -= urb->buffer_length; if (rem) { aurb->more = 1; } trace_usb_host_urb_submit(s->bus_num, s->addr, aurb, urb->buffer_length, aurb->more); ret = ioctl(s->fd, USBDEVFS_SUBMITURB, urb); DPRINTF("husb: data submit: ep 0x%x, len %u, more %d, packet %p, aurb %p\n", urb->endpoint, urb->buffer_length, aurb->more, p, aurb); if (ret < 0) { perror("USBDEVFS_SUBMITURB"); async_free(aurb); switch(errno) { case ETIMEDOUT: p->status = USB_RET_NAK; trace_usb_host_req_complete(s->bus_num, s->addr, p, p->status, p->actual_length); break; case EPIPE: default: p->status = USB_RET_STALL; trace_usb_host_req_complete(s->bus_num, s->addr, p, p->status, p->actual_length); } return; } } while (rem > 0); p->status = USB_RET_ASYNC; } static int ctrl_error(void) { if (errno == ETIMEDOUT) { return USB_RET_NAK; } else { return USB_RET_STALL; } } static void usb_host_set_address(USBHostDevice *s, int addr) { trace_usb_host_set_address(s->bus_num, s->addr, addr); s->dev.addr = addr; } static void usb_host_set_config(USBHostDevice *s, int config, USBPacket *p) { int ret, first = 1; trace_usb_host_set_config(s->bus_num, s->addr, config); usb_host_release_interfaces(s); again: ret = ioctl(s->fd, USBDEVFS_SETCONFIGURATION, &config); DPRINTF("husb: ctrl set config %d ret %d errno %d\n", config, ret, errno); if (ret < 0 && errno == EBUSY && first) { /* happens if usb device is in use by host drivers */ int count = usb_linux_get_num_interfaces(s); if (count > 0) { DPRINTF("husb: busy -> disconnecting %d interfaces\n", count); usb_host_disconnect_ifaces(s, count); first = 0; goto again; } } if (ret < 0) { p->status = ctrl_error(); return; } usb_host_claim_interfaces(s, config); usb_linux_update_endp_table(s); } static void usb_host_set_interface(USBHostDevice *s, int iface, int alt, USBPacket *p) { struct usbdevfs_setinterface si; int i, ret; trace_usb_host_set_interface(s->bus_num, s->addr, iface, alt); for (i = 1; i <= USB_MAX_ENDPOINTS; i++) { if (is_isoc(s, USB_TOKEN_IN, i)) { usb_host_stop_n_free_iso(s, USB_TOKEN_IN, i); } if (is_isoc(s, USB_TOKEN_OUT, i)) { usb_host_stop_n_free_iso(s, USB_TOKEN_OUT, i); } } if (iface >= USB_MAX_INTERFACES) { p->status = USB_RET_STALL; return; } si.interface = iface; si.altsetting = alt; ret = ioctl(s->fd, USBDEVFS_SETINTERFACE, &si); DPRINTF("husb: ctrl set iface %d altset %d ret %d errno %d\n", iface, alt, ret, errno); if (ret < 0) { p->status = ctrl_error(); return; } s->dev.altsetting[iface] = alt; usb_linux_update_endp_table(s); } static void usb_host_handle_control(USBDevice *dev, USBPacket *p, int request, int value, int index, int length, uint8_t *data) { USBHostDevice *s = DO_UPCAST(USBHostDevice, dev, dev); struct usbdevfs_urb *urb; AsyncURB *aurb; int ret; /* * Process certain standard device requests. * These are infrequent and are processed synchronously. */ /* Note request is (bRequestType << 8) | bRequest */ trace_usb_host_req_control(s->bus_num, s->addr, p, request, value, index); switch (request) { case DeviceOutRequest | USB_REQ_SET_ADDRESS: usb_host_set_address(s, value); trace_usb_host_req_emulated(s->bus_num, s->addr, p, p->status); return; case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: usb_host_set_config(s, value & 0xff, p); trace_usb_host_req_emulated(s->bus_num, s->addr, p, p->status); return; case InterfaceOutRequest | USB_REQ_SET_INTERFACE: usb_host_set_interface(s, index, value, p); trace_usb_host_req_emulated(s->bus_num, s->addr, p, p->status); return; case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: if (value == 0) { /* clear halt */ int pid = (index & USB_DIR_IN) ? USB_TOKEN_IN : USB_TOKEN_OUT; ioctl(s->fd, USBDEVFS_CLEAR_HALT, &index); clear_halt(s, pid, index & 0x0f); trace_usb_host_req_emulated(s->bus_num, s->addr, p, 0); return; } } /* The rest are asynchronous */ if (length > sizeof(dev->data_buf)) { fprintf(stderr, "husb: ctrl buffer too small (%d > %zu)\n", length, sizeof(dev->data_buf)); p->status = USB_RET_STALL; return; } aurb = async_alloc(s); aurb->packet = p; /* * Setup ctrl transfer. * * s->ctrl is laid out such that data buffer immediately follows * 'req' struct which is exactly what usbdevfs expects. */ urb = &aurb->urb; urb->type = USBDEVFS_URB_TYPE_CONTROL; urb->endpoint = p->ep->nr; urb->buffer = &dev->setup_buf; urb->buffer_length = length + 8; urb->usercontext = s; trace_usb_host_urb_submit(s->bus_num, s->addr, aurb, urb->buffer_length, aurb->more); ret = ioctl(s->fd, USBDEVFS_SUBMITURB, urb); DPRINTF("husb: submit ctrl. len %u aurb %p\n", urb->buffer_length, aurb); if (ret < 0) { DPRINTF("husb: submit failed. errno %d\n", errno); async_free(aurb); switch(errno) { case ETIMEDOUT: p->status = USB_RET_NAK; break; case EPIPE: default: p->status = USB_RET_STALL; break; } return; } p->status = USB_RET_ASYNC; } static void usb_linux_update_endp_table(USBHostDevice *s) { static const char *tname[] = { [USB_ENDPOINT_XFER_CONTROL] = "control", [USB_ENDPOINT_XFER_ISOC] = "isoc", [USB_ENDPOINT_XFER_BULK] = "bulk", [USB_ENDPOINT_XFER_INT] = "int", }; uint8_t devep, type; uint16_t mps, v, p; int ep, pid; unsigned int i, configuration = -1, interface = -1, altsetting = -1; struct endp_data *epd; USBDescriptor *d; bool active = false; usb_ep_reset(&s->dev); for (i = 0;; i += d->bLength) { if (i+2 >= s->descr_len) { break; } d = (void *)(s->descr + i); if (d->bLength < 2) { trace_usb_host_parse_error(s->bus_num, s->addr, "descriptor too short"); return; } if (i + d->bLength > s->descr_len) { trace_usb_host_parse_error(s->bus_num, s->addr, "descriptor too long"); return; } switch (d->bDescriptorType) { case 0: trace_usb_host_parse_error(s->bus_num, s->addr, "invalid descriptor type"); return; case USB_DT_DEVICE: if (d->bLength < 0x12) { trace_usb_host_parse_error(s->bus_num, s->addr, "device descriptor too short"); return; } v = (d->u.device.idVendor_hi << 8) | d->u.device.idVendor_lo; p = (d->u.device.idProduct_hi << 8) | d->u.device.idProduct_lo; trace_usb_host_parse_device(s->bus_num, s->addr, v, p); break; case USB_DT_CONFIG: if (d->bLength < 0x09) { trace_usb_host_parse_error(s->bus_num, s->addr, "config descriptor too short"); return; } configuration = d->u.config.bConfigurationValue; active = (configuration == s->dev.configuration); trace_usb_host_parse_config(s->bus_num, s->addr, configuration, active); break; case USB_DT_INTERFACE: if (d->bLength < 0x09) { trace_usb_host_parse_error(s->bus_num, s->addr, "interface descriptor too short"); return; } interface = d->u.interface.bInterfaceNumber; altsetting = d->u.interface.bAlternateSetting; active = (configuration == s->dev.configuration) && (altsetting == s->dev.altsetting[interface]); trace_usb_host_parse_interface(s->bus_num, s->addr, interface, altsetting, active); break; case USB_DT_ENDPOINT: if (d->bLength < 0x07) { trace_usb_host_parse_error(s->bus_num, s->addr, "endpoint descriptor too short"); return; } devep = d->u.endpoint.bEndpointAddress; pid = (devep & USB_DIR_IN) ? USB_TOKEN_IN : USB_TOKEN_OUT; ep = devep & 0xf; if (ep == 0) { trace_usb_host_parse_error(s->bus_num, s->addr, "invalid endpoint address"); return; } type = d->u.endpoint.bmAttributes & 0x3; mps = d->u.endpoint.wMaxPacketSize_lo | (d->u.endpoint.wMaxPacketSize_hi << 8); trace_usb_host_parse_endpoint(s->bus_num, s->addr, ep, (devep & USB_DIR_IN) ? "in" : "out", tname[type], active); if (active) { usb_ep_set_max_packet_size(&s->dev, pid, ep, mps); assert(usb_ep_get_type(&s->dev, pid, ep) == USB_ENDPOINT_XFER_INVALID); usb_ep_set_type(&s->dev, pid, ep, type); usb_ep_set_ifnum(&s->dev, pid, ep, interface); if ((s->options & (1 << USB_HOST_OPT_PIPELINE)) && (type == USB_ENDPOINT_XFER_BULK) && (pid == USB_TOKEN_OUT)) { usb_ep_set_pipeline(&s->dev, pid, ep, true); } epd = get_endp(s, pid, ep); epd->halted = 0; } break; default: trace_usb_host_parse_unknown(s->bus_num, s->addr, d->bLength, d->bDescriptorType); break; } } } /* * Check if we can safely redirect a usb2 device to a usb1 virtual controller, * this function assumes this is safe, if: * 1) There are no isoc endpoints * 2) There are no interrupt endpoints with a max_packet_size > 64 * Note bulk endpoints with a max_packet_size > 64 in theory also are not * usb1 compatible, but in practice this seems to work fine. */ static int usb_linux_full_speed_compat(USBHostDevice *dev) { int i, packet_size; /* * usb_linux_update_endp_table only registers info about ep in the current * interface altsettings, so we need to parse the descriptors again. */ for (i = 0; (i + 5) < dev->descr_len; i += dev->descr[i]) { if (dev->descr[i + 1] == USB_DT_ENDPOINT) { switch (dev->descr[i + 3] & 0x3) { case 0x00: /* CONTROL */ break; case 0x01: /* ISO */ return 0; case 0x02: /* BULK */ break; case 0x03: /* INTERRUPT */ packet_size = dev->descr[i + 4] + (dev->descr[i + 5] << 8); if (packet_size > 64) return 0; break; } } } return 1; } static int usb_host_open(USBHostDevice *dev, int bus_num, int addr, const char *port, const char *prod_name, int speed) { int fd = -1, ret; trace_usb_host_open_started(bus_num, addr); if (dev->fd != -1) { goto fail; } fd = usb_host_open_device(bus_num, addr); if (fd < 0) { goto fail; } DPRINTF("husb: opened %s\n", buf); dev->bus_num = bus_num; dev->addr = addr; strcpy(dev->port, port); dev->fd = fd; /* read the device description */ dev->descr_len = read(fd, dev->descr, sizeof(dev->descr)); if (dev->descr_len <= 0) { perror("husb: reading device data failed"); goto fail; } #ifdef DEBUG { int x; printf("=== begin dumping device descriptor data ===\n"); for (x = 0; x < dev->descr_len; x++) { printf("%02x ", dev->descr[x]); } printf("\n=== end dumping device descriptor data ===\n"); } #endif /* start unconfigured -- we'll wait for the guest to set a configuration */ if (!usb_host_claim_interfaces(dev, 0)) { goto fail; } usb_ep_init(&dev->dev); usb_linux_update_endp_table(dev); if (speed == -1) { struct usbdevfs_connectinfo ci; ret = ioctl(fd, USBDEVFS_CONNECTINFO, &ci); if (ret < 0) { perror("usb_host_device_open: USBDEVFS_CONNECTINFO"); goto fail; } if (ci.slow) { speed = USB_SPEED_LOW; } else { speed = USB_SPEED_HIGH; } } dev->dev.speed = speed; dev->dev.speedmask = (1 << speed); if (dev->dev.speed == USB_SPEED_HIGH && usb_linux_full_speed_compat(dev)) { dev->dev.speedmask |= USB_SPEED_MASK_FULL; } trace_usb_host_open_success(bus_num, addr); if (!prod_name || prod_name[0] == '\0') { snprintf(dev->dev.product_desc, sizeof(dev->dev.product_desc), "host:%d.%d", bus_num, addr); } else { pstrcpy(dev->dev.product_desc, sizeof(dev->dev.product_desc), prod_name); } ret = usb_device_attach(&dev->dev); if (ret) { goto fail; } /* USB devio uses 'write' flag to check for async completions */ qemu_set_fd_handler(dev->fd, NULL, async_complete, dev); return 0; fail: trace_usb_host_open_failure(bus_num, addr); if (dev->fd != -1) { close(dev->fd); dev->fd = -1; } return -1; } static int usb_host_close(USBHostDevice *dev) { int i; if (dev->fd == -1) { return -1; } trace_usb_host_close(dev->bus_num, dev->addr); qemu_set_fd_handler(dev->fd, NULL, NULL, NULL); dev->closing = 1; for (i = 1; i <= USB_MAX_ENDPOINTS; i++) { if (is_isoc(dev, USB_TOKEN_IN, i)) { usb_host_stop_n_free_iso(dev, USB_TOKEN_IN, i); } if (is_isoc(dev, USB_TOKEN_OUT, i)) { usb_host_stop_n_free_iso(dev, USB_TOKEN_OUT, i); } } async_complete(dev); dev->closing = 0; if (dev->dev.attached) { usb_device_detach(&dev->dev); } usb_host_do_reset(dev); close(dev->fd); dev->fd = -1; return 0; } static void usb_host_exit_notifier(struct Notifier *n, void *data) { USBHostDevice *s = container_of(n, USBHostDevice, exit); usb_host_release_port(s); if (s->fd != -1) { usb_host_do_reset(s);; } } /* * This is *NOT* about restoring state. We have absolutely no idea * what state the host device is in at the moment and whenever it is * still present in the first place. Attemping to contine where we * left off is impossible. * * What we are going to to to here is emulate a surprise removal of * the usb device passed through, then kick host scan so the device * will get re-attached (and re-initialized by the guest) in case it * is still present. * * As the device removal will change the state of other devices (usb * host controller, most likely interrupt controller too) we have to * wait with it until *all* vmstate is loaded. Thus post_load just * kicks a bottom half which then does the actual work. */ static void usb_host_post_load_bh(void *opaque) { USBHostDevice *dev = opaque; if (dev->fd != -1) { usb_host_close(dev); } if (dev->dev.attached) { usb_device_detach(&dev->dev); } usb_host_auto_check(NULL); } static int usb_host_post_load(void *opaque, int version_id) { USBHostDevice *dev = opaque; qemu_bh_schedule(dev->bh); return 0; } static int usb_host_initfn(USBDevice *dev) { USBHostDevice *s = DO_UPCAST(USBHostDevice, dev, dev); dev->flags |= (1 << USB_DEV_FLAG_IS_HOST); dev->auto_attach = 0; s->fd = -1; s->hub_fd = -1; QTAILQ_INSERT_TAIL(&hostdevs, s, next); s->exit.notify = usb_host_exit_notifier; qemu_add_exit_notifier(&s->exit); s->bh = qemu_bh_new(usb_host_post_load_bh, s); usb_host_auto_check(NULL); if (s->match.bus_num != 0 && s->match.port != NULL) { usb_host_claim_port(s); } add_boot_device_path(s->bootindex, &dev->qdev, NULL); return 0; } static const VMStateDescription vmstate_usb_host = { .name = "usb-host", .version_id = 1, .minimum_version_id = 1, .post_load = usb_host_post_load, .fields = (VMStateField[]) { VMSTATE_USB_DEVICE(dev, USBHostDevice), VMSTATE_END_OF_LIST() } }; static Property usb_host_dev_properties[] = { DEFINE_PROP_UINT32("hostbus", USBHostDevice, match.bus_num, 0), DEFINE_PROP_UINT32("hostaddr", USBHostDevice, match.addr, 0), DEFINE_PROP_STRING("hostport", USBHostDevice, match.port), DEFINE_PROP_HEX32("vendorid", USBHostDevice, match.vendor_id, 0), DEFINE_PROP_HEX32("productid", USBHostDevice, match.product_id, 0), DEFINE_PROP_UINT32("isobufs", USBHostDevice, iso_urb_count, 4), DEFINE_PROP_INT32("bootindex", USBHostDevice, bootindex, -1), DEFINE_PROP_BIT("pipeline", USBHostDevice, options, USB_HOST_OPT_PIPELINE, true), DEFINE_PROP_END_OF_LIST(), }; static void usb_host_class_initfn(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); USBDeviceClass *uc = USB_DEVICE_CLASS(klass); uc->init = usb_host_initfn; uc->product_desc = "USB Host Device"; uc->cancel_packet = usb_host_async_cancel; uc->handle_data = usb_host_handle_data; uc->handle_control = usb_host_handle_control; uc->handle_reset = usb_host_handle_reset; uc->handle_destroy = usb_host_handle_destroy; dc->vmsd = &vmstate_usb_host; dc->props = usb_host_dev_properties; } static const TypeInfo usb_host_dev_info = { .name = "usb-host", .parent = TYPE_USB_DEVICE, .instance_size = sizeof(USBHostDevice), .class_init = usb_host_class_initfn, }; static void usb_host_register_types(void) { type_register_static(&usb_host_dev_info); usb_legacy_register("usb-host", "host", usb_host_device_open); } type_init(usb_host_register_types) USBDevice *usb_host_device_open(USBBus *bus, const char *devname) { struct USBAutoFilter filter; USBDevice *dev; char *p; dev = usb_create(bus, "usb-host"); if (strstr(devname, "auto:")) { if (parse_filter(devname, &filter) < 0) { goto fail; } } else { if ((p = strchr(devname, '.'))) { filter.bus_num = strtoul(devname, NULL, 0); filter.addr = strtoul(p + 1, NULL, 0); filter.vendor_id = 0; filter.product_id = 0; } else if ((p = strchr(devname, ':'))) { filter.bus_num = 0; filter.addr = 0; filter.vendor_id = strtoul(devname, NULL, 16); filter.product_id = strtoul(p + 1, NULL, 16); } else { goto fail; } } qdev_prop_set_uint32(&dev->qdev, "hostbus", filter.bus_num); qdev_prop_set_uint32(&dev->qdev, "hostaddr", filter.addr); qdev_prop_set_uint32(&dev->qdev, "vendorid", filter.vendor_id); qdev_prop_set_uint32(&dev->qdev, "productid", filter.product_id); qdev_init_nofail(&dev->qdev); return dev; fail: qdev_free(&dev->qdev); return NULL; } int usb_host_device_close(const char *devname) { #if 0 char product_name[PRODUCT_NAME_SZ]; int bus_num, addr; USBHostDevice *s; if (strstr(devname, "auto:")) { return usb_host_auto_del(devname); } if (usb_host_find_device(&bus_num, &addr, product_name, sizeof(product_name), devname) < 0) { return -1; } s = hostdev_find(bus_num, addr); if (s) { usb_device_delete_addr(s->bus_num, s->dev.addr); return 0; } #endif return -1; } /* * Read sys file-system device file * * @line address of buffer to put file contents in * @line_size size of line * @device_file path to device file (printf format string) * @device_name device being opened (inserted into device_file) * * @return 0 failed, 1 succeeded ('line' contains data) */ static int usb_host_read_file(char *line, size_t line_size, const char *device_file, const char *device_name) { FILE *f; int ret = 0; char filename[PATH_MAX]; snprintf(filename, PATH_MAX, "/sys/bus/usb/devices/%s/%s", device_name, device_file); f = fopen(filename, "r"); if (f) { ret = fgets(line, line_size, f) != NULL; fclose(f); } return ret; } /* * Use /sys/bus/usb/devices/ directory to determine host's USB * devices. * * This code is based on Robert Schiele's original patches posted to * the Novell bug-tracker https://bugzilla.novell.com/show_bug.cgi?id=241950 */ static int usb_host_scan(void *opaque, USBScanFunc *func) { DIR *dir = NULL; char line[1024]; int bus_num, addr, speed, class_id, product_id, vendor_id; int ret = 0; char port[MAX_PORTLEN]; char product_name[512]; struct dirent *de; dir = opendir("/sys/bus/usb/devices"); if (!dir) { perror("husb: opendir /sys/bus/usb/devices"); fprintf(stderr, "husb: please make sure sysfs is mounted at /sys\n"); goto the_end; } while ((de = readdir(dir))) { if (de->d_name[0] != '.' && !strchr(de->d_name, ':')) { if (sscanf(de->d_name, "%d-%7[0-9.]", &bus_num, port) < 2) { continue; } if (!usb_host_read_file(line, sizeof(line), "devnum", de->d_name)) { goto the_end; } if (sscanf(line, "%d", &addr) != 1) { goto the_end; } if (!usb_host_read_file(line, sizeof(line), "bDeviceClass", de->d_name)) { goto the_end; } if (sscanf(line, "%x", &class_id) != 1) { goto the_end; } if (!usb_host_read_file(line, sizeof(line), "idVendor", de->d_name)) { goto the_end; } if (sscanf(line, "%x", &vendor_id) != 1) { goto the_end; } if (!usb_host_read_file(line, sizeof(line), "idProduct", de->d_name)) { goto the_end; } if (sscanf(line, "%x", &product_id) != 1) { goto the_end; } if (!usb_host_read_file(line, sizeof(line), "product", de->d_name)) { *product_name = 0; } else { if (strlen(line) > 0) { line[strlen(line) - 1] = '\0'; } pstrcpy(product_name, sizeof(product_name), line); } if (!usb_host_read_file(line, sizeof(line), "speed", de->d_name)) { goto the_end; } if (!strcmp(line, "5000\n")) { speed = USB_SPEED_SUPER; } else if (!strcmp(line, "480\n")) { speed = USB_SPEED_HIGH; } else if (!strcmp(line, "1.5\n")) { speed = USB_SPEED_LOW; } else { speed = USB_SPEED_FULL; } ret = func(opaque, bus_num, addr, port, class_id, vendor_id, product_id, product_name, speed); if (ret) { goto the_end; } } } the_end: if (dir) { closedir(dir); } return ret; } static QEMUTimer *usb_auto_timer; static VMChangeStateEntry *usb_vmstate; static int usb_host_auto_scan(void *opaque, int bus_num, int addr, const char *port, int class_id, int vendor_id, int product_id, const char *product_name, int speed) { struct USBAutoFilter *f; struct USBHostDevice *s; /* Ignore hubs */ if (class_id == 9) return 0; QTAILQ_FOREACH(s, &hostdevs, next) { f = &s->match; if (f->bus_num > 0 && f->bus_num != bus_num) { continue; } if (f->addr > 0 && f->addr != addr) { continue; } if (f->port != NULL && strcmp(f->port, port) != 0) { continue; } if (f->vendor_id > 0 && f->vendor_id != vendor_id) { continue; } if (f->product_id > 0 && f->product_id != product_id) { continue; } /* We got a match */ s->seen++; if (s->errcount >= 3) { return 0; } /* Already attached ? */ if (s->fd != -1) { return 0; } DPRINTF("husb: auto open: bus_num %d addr %d\n", bus_num, addr); if (usb_host_open(s, bus_num, addr, port, product_name, speed) < 0) { s->errcount++; } break; } return 0; } static void usb_host_vm_state(void *unused, int running, RunState state) { if (running) { usb_host_auto_check(unused); } } static void usb_host_auto_check(void *unused) { struct USBHostDevice *s; int unconnected = 0; if (runstate_is_running()) { usb_host_scan(NULL, usb_host_auto_scan); QTAILQ_FOREACH(s, &hostdevs, next) { if (s->fd == -1) { unconnected++; } if (s->seen == 0) { s->errcount = 0; } s->seen = 0; } if (unconnected == 0) { /* nothing to watch */ if (usb_auto_timer) { qemu_del_timer(usb_auto_timer); trace_usb_host_auto_scan_disabled(); } return; } } if (!usb_vmstate) { usb_vmstate = qemu_add_vm_change_state_handler(usb_host_vm_state, NULL); } if (!usb_auto_timer) { usb_auto_timer = qemu_new_timer_ms(rt_clock, usb_host_auto_check, NULL); if (!usb_auto_timer) { return; } trace_usb_host_auto_scan_enabled(); } qemu_mod_timer(usb_auto_timer, qemu_get_clock_ms(rt_clock) + 2000); } /* * Autoconnect filter * Format: * auto:bus:dev[:vid:pid] * auto:bus.dev[:vid:pid] * * bus - bus number (dec, * means any) * dev - device number (dec, * means any) * vid - vendor id (hex, * means any) * pid - product id (hex, * means any) * * See 'lsusb' output. */ static int parse_filter(const char *spec, struct USBAutoFilter *f) { enum { BUS, DEV, VID, PID, DONE }; const char *p = spec; int i; f->bus_num = 0; f->addr = 0; f->vendor_id = 0; f->product_id = 0; for (i = BUS; i < DONE; i++) { p = strpbrk(p, ":."); if (!p) { break; } p++; if (*p == '*') { continue; } switch(i) { case BUS: f->bus_num = strtol(p, NULL, 10); break; case DEV: f->addr = strtol(p, NULL, 10); break; case VID: f->vendor_id = strtol(p, NULL, 16); break; case PID: f->product_id = strtol(p, NULL, 16); break; } } if (i < DEV) { fprintf(stderr, "husb: invalid auto filter spec %s\n", spec); return -1; } return 0; } /**********************/ /* USB host device info */ struct usb_class_info { int class; const char *class_name; }; static const struct usb_class_info usb_class_info[] = { { USB_CLASS_AUDIO, "Audio"}, { USB_CLASS_COMM, "Communication"}, { USB_CLASS_HID, "HID"}, { USB_CLASS_HUB, "Hub" }, { USB_CLASS_PHYSICAL, "Physical" }, { USB_CLASS_PRINTER, "Printer" }, { USB_CLASS_MASS_STORAGE, "Storage" }, { USB_CLASS_CDC_DATA, "Data" }, { USB_CLASS_APP_SPEC, "Application Specific" }, { USB_CLASS_VENDOR_SPEC, "Vendor Specific" }, { USB_CLASS_STILL_IMAGE, "Still Image" }, { USB_CLASS_CSCID, "Smart Card" }, { USB_CLASS_CONTENT_SEC, "Content Security" }, { -1, NULL } }; static const char *usb_class_str(uint8_t class) { const struct usb_class_info *p; for(p = usb_class_info; p->class != -1; p++) { if (p->class == class) { break; } } return p->class_name; } static void usb_info_device(Monitor *mon, int bus_num, int addr, const char *port, int class_id, int vendor_id, int product_id, const char *product_name, int speed) { const char *class_str, *speed_str; switch(speed) { case USB_SPEED_LOW: speed_str = "1.5"; break; case USB_SPEED_FULL: speed_str = "12"; break; case USB_SPEED_HIGH: speed_str = "480"; break; case USB_SPEED_SUPER: speed_str = "5000"; break; default: speed_str = "?"; break; } monitor_printf(mon, " Bus %d, Addr %d, Port %s, Speed %s Mb/s\n", bus_num, addr, port, speed_str); class_str = usb_class_str(class_id); if (class_str) { monitor_printf(mon, " %s:", class_str); } else { monitor_printf(mon, " Class %02x:", class_id); } monitor_printf(mon, " USB device %04x:%04x", vendor_id, product_id); if (product_name[0] != '\0') { monitor_printf(mon, ", %s", product_name); } monitor_printf(mon, "\n"); } static int usb_host_info_device(void *opaque, int bus_num, int addr, const char *path, int class_id, int vendor_id, int product_id, const char *product_name, int speed) { Monitor *mon = opaque; usb_info_device(mon, bus_num, addr, path, class_id, vendor_id, product_id, product_name, speed); return 0; } static void dec2str(int val, char *str, size_t size) { if (val == 0) { snprintf(str, size, "*"); } else { snprintf(str, size, "%d", val); } } static void hex2str(int val, char *str, size_t size) { if (val == 0) { snprintf(str, size, "*"); } else { snprintf(str, size, "%04x", val); } } void usb_host_info(Monitor *mon) { struct USBAutoFilter *f; struct USBHostDevice *s; usb_host_scan(mon, usb_host_info_device); if (QTAILQ_EMPTY(&hostdevs)) { return; } monitor_printf(mon, " Auto filters:\n"); QTAILQ_FOREACH(s, &hostdevs, next) { char bus[10], addr[10], vid[10], pid[10]; f = &s->match; dec2str(f->bus_num, bus, sizeof(bus)); dec2str(f->addr, addr, sizeof(addr)); hex2str(f->vendor_id, vid, sizeof(vid)); hex2str(f->product_id, pid, sizeof(pid)); monitor_printf(mon, " Bus %s, Addr %s, Port %s, ID %s:%s\n", bus, addr, f->port ? f->port : "*", vid, pid); } }