/* * QEMU ESP/NCR53C9x emulation * * Copyright (c) 2005-2006 Fabrice Bellard * Copyright (c) 2012 Herve Poussineau * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "hw/sysbus.h" #include "migration/vmstate.h" #include "hw/irq.h" #include "hw/scsi/esp.h" #include "trace.h" #include "qemu/log.h" #include "qemu/module.h" /* * On Sparc32, this is the ESP (NCR53C90) part of chip STP2000 (Master I/O), * also produced as NCR89C100. See * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt * and * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR53C9X.txt * * On Macintosh Quadra it is a NCR53C96. */ static void esp_raise_irq(ESPState *s) { if (!(s->rregs[ESP_RSTAT] & STAT_INT)) { s->rregs[ESP_RSTAT] |= STAT_INT; qemu_irq_raise(s->irq); trace_esp_raise_irq(); } } static void esp_lower_irq(ESPState *s) { if (s->rregs[ESP_RSTAT] & STAT_INT) { s->rregs[ESP_RSTAT] &= ~STAT_INT; qemu_irq_lower(s->irq); trace_esp_lower_irq(); } } static void esp_raise_drq(ESPState *s) { qemu_irq_raise(s->irq_data); trace_esp_raise_drq(); } static void esp_lower_drq(ESPState *s) { qemu_irq_lower(s->irq_data); trace_esp_lower_drq(); } void esp_dma_enable(ESPState *s, int irq, int level) { if (level) { s->dma_enabled = 1; trace_esp_dma_enable(); if (s->dma_cb) { s->dma_cb(s); s->dma_cb = NULL; } } else { trace_esp_dma_disable(); s->dma_enabled = 0; } } void esp_request_cancelled(SCSIRequest *req) { ESPState *s = req->hba_private; if (req == s->current_req) { scsi_req_unref(s->current_req); s->current_req = NULL; s->current_dev = NULL; } } static uint32_t esp_get_tc(ESPState *s) { uint32_t dmalen; dmalen = s->rregs[ESP_TCLO]; dmalen |= s->rregs[ESP_TCMID] << 8; dmalen |= s->rregs[ESP_TCHI] << 16; return dmalen; } static void esp_set_tc(ESPState *s, uint32_t dmalen) { s->rregs[ESP_TCLO] = dmalen; s->rregs[ESP_TCMID] = dmalen >> 8; s->rregs[ESP_TCHI] = dmalen >> 16; } static uint32_t esp_get_stc(ESPState *s) { uint32_t dmalen; dmalen = s->wregs[ESP_TCLO]; dmalen |= s->wregs[ESP_TCMID] << 8; dmalen |= s->wregs[ESP_TCHI] << 16; return dmalen; } static uint8_t esp_pdma_read(ESPState *s) { uint8_t val; if (s->do_cmd) { val = s->cmdbuf[s->cmdlen++]; } else { val = s->ti_buf[s->ti_rptr++]; } return val; } static void esp_pdma_write(ESPState *s, uint8_t val) { uint32_t dmalen = esp_get_tc(s); if (dmalen == 0) { return; } if (s->do_cmd) { s->cmdbuf[s->cmdlen++] = val; } else { s->ti_buf[s->ti_wptr++] = val; } dmalen--; esp_set_tc(s, dmalen); } static int esp_select(ESPState *s) { int target; target = s->wregs[ESP_WBUSID] & BUSID_DID; s->ti_size = 0; s->ti_rptr = 0; s->ti_wptr = 0; if (s->current_req) { /* Started a new command before the old one finished. Cancel it. */ scsi_req_cancel(s->current_req); s->async_len = 0; } s->current_dev = scsi_device_find(&s->bus, 0, target, 0); if (!s->current_dev) { /* No such drive */ s->rregs[ESP_RSTAT] = 0; s->rregs[ESP_RINTR] |= INTR_DC; s->rregs[ESP_RSEQ] = SEQ_0; esp_raise_irq(s); return -1; } /* * Note that we deliberately don't raise the IRQ here: this will be done * either in do_busid_cmd() for DATA OUT transfers or by the deferred * IRQ mechanism in esp_transfer_data() for DATA IN transfers */ s->rregs[ESP_RINTR] |= INTR_FC; s->rregs[ESP_RSEQ] = SEQ_CD; return 0; } static uint32_t get_cmd(ESPState *s) { uint8_t *buf = s->cmdbuf; uint32_t dmalen; int target; target = s->wregs[ESP_WBUSID] & BUSID_DID; if (s->dma) { dmalen = esp_get_tc(s); if (dmalen > ESP_CMDBUF_SZ) { return 0; } if (s->dma_memory_read) { s->dma_memory_read(s->dma_opaque, buf, dmalen); } else { if (esp_select(s) < 0) { return -1; } esp_raise_drq(s); return 0; } } else { dmalen = s->ti_size; if (dmalen > TI_BUFSZ) { return 0; } memcpy(buf, s->ti_buf, dmalen); buf[0] = buf[2] >> 5; } trace_esp_get_cmd(dmalen, target); if (esp_select(s) < 0) { return -1; } return dmalen; } static void do_busid_cmd(ESPState *s, uint8_t *buf, uint8_t busid) { int32_t datalen; int lun; SCSIDevice *current_lun; trace_esp_do_busid_cmd(busid); lun = busid & 7; current_lun = scsi_device_find(&s->bus, 0, s->current_dev->id, lun); s->current_req = scsi_req_new(current_lun, 0, lun, buf, s); datalen = scsi_req_enqueue(s->current_req); s->ti_size = datalen; if (datalen != 0) { s->rregs[ESP_RSTAT] = STAT_TC; s->rregs[ESP_RSEQ] = SEQ_CD; esp_set_tc(s, 0); if (datalen > 0) { /* * Switch to DATA IN phase but wait until initial data xfer is * complete before raising the command completion interrupt */ s->data_in_ready = false; s->rregs[ESP_RSTAT] |= STAT_DI; } else { s->rregs[ESP_RSTAT] |= STAT_DO; s->rregs[ESP_RINTR] |= INTR_BS | INTR_FC; esp_raise_irq(s); esp_lower_drq(s); } scsi_req_continue(s->current_req); return; } } static void do_cmd(ESPState *s) { uint8_t *buf = s->cmdbuf; uint8_t busid = buf[0]; do_busid_cmd(s, &buf[1], busid); } static void satn_pdma_cb(ESPState *s) { s->do_cmd = 0; if (s->cmdlen) { do_cmd(s); } } static void handle_satn(ESPState *s) { int32_t cmdlen; if (s->dma && !s->dma_enabled) { s->dma_cb = handle_satn; return; } s->pdma_cb = satn_pdma_cb; cmdlen = get_cmd(s); if (cmdlen > 0) { s->cmdlen = cmdlen; do_cmd(s); } else if (cmdlen == 0) { s->cmdlen = 0; s->do_cmd = 1; /* Target present, but no cmd yet - switch to command phase */ s->rregs[ESP_RSEQ] = SEQ_CD; s->rregs[ESP_RSTAT] = STAT_CD; } } static void s_without_satn_pdma_cb(ESPState *s) { s->do_cmd = 0; if (s->cmdlen) { do_busid_cmd(s, s->cmdbuf, 0); } } static void handle_s_without_atn(ESPState *s) { int32_t cmdlen; if (s->dma && !s->dma_enabled) { s->dma_cb = handle_s_without_atn; return; } s->pdma_cb = s_without_satn_pdma_cb; cmdlen = get_cmd(s); if (cmdlen > 0) { s->cmdlen = cmdlen; do_busid_cmd(s, s->cmdbuf, 0); } else if (cmdlen == 0) { s->cmdlen = 0; s->do_cmd = 1; /* Target present, but no cmd yet - switch to command phase */ s->rregs[ESP_RSEQ] = SEQ_CD; s->rregs[ESP_RSTAT] = STAT_CD; } } static void satn_stop_pdma_cb(ESPState *s) { s->do_cmd = 0; if (s->cmdlen) { trace_esp_handle_satn_stop(s->cmdlen); s->do_cmd = 1; s->rregs[ESP_RSTAT] = STAT_TC | STAT_CD; s->rregs[ESP_RINTR] |= INTR_BS | INTR_FC; s->rregs[ESP_RSEQ] = SEQ_CD; esp_raise_irq(s); } } static void handle_satn_stop(ESPState *s) { int32_t cmdlen; if (s->dma && !s->dma_enabled) { s->dma_cb = handle_satn_stop; return; } s->pdma_cb = satn_stop_pdma_cb; cmdlen = get_cmd(s); if (cmdlen > 0) { trace_esp_handle_satn_stop(s->cmdlen); s->cmdlen = cmdlen; s->do_cmd = 1; s->rregs[ESP_RSTAT] = STAT_CD; s->rregs[ESP_RINTR] |= INTR_BS | INTR_FC; s->rregs[ESP_RSEQ] = SEQ_CD; esp_raise_irq(s); } else if (cmdlen == 0) { s->cmdlen = 0; s->do_cmd = 1; /* Target present, but no cmd yet - switch to command phase */ s->rregs[ESP_RSEQ] = SEQ_CD; s->rregs[ESP_RSTAT] = STAT_CD; } } static void write_response_pdma_cb(ESPState *s) { s->rregs[ESP_RSTAT] = STAT_TC | STAT_ST; s->rregs[ESP_RINTR] |= INTR_BS | INTR_FC; s->rregs[ESP_RSEQ] = SEQ_CD; esp_raise_irq(s); } static void write_response(ESPState *s) { trace_esp_write_response(s->status); s->ti_buf[0] = s->status; s->ti_buf[1] = 0; if (s->dma) { if (s->dma_memory_write) { s->dma_memory_write(s->dma_opaque, s->ti_buf, 2); s->rregs[ESP_RSTAT] = STAT_TC | STAT_ST; s->rregs[ESP_RINTR] |= INTR_BS | INTR_FC; s->rregs[ESP_RSEQ] = SEQ_CD; } else { s->pdma_cb = write_response_pdma_cb; esp_raise_drq(s); return; } } else { s->ti_size = 2; s->ti_rptr = 0; s->ti_wptr = 2; s->rregs[ESP_RFLAGS] = 2; } esp_raise_irq(s); } static void esp_dma_done(ESPState *s) { s->rregs[ESP_RSTAT] |= STAT_TC; s->rregs[ESP_RINTR] |= INTR_BS; s->rregs[ESP_RSEQ] = 0; s->rregs[ESP_RFLAGS] = 0; esp_set_tc(s, 0); esp_raise_irq(s); } static void do_dma_pdma_cb(ESPState *s) { int to_device = ((s->rregs[ESP_RSTAT] & 7) == STAT_DO); int len; if (s->do_cmd) { s->ti_size = 0; s->cmdlen = 0; s->do_cmd = 0; do_cmd(s); esp_lower_drq(s); return; } if (to_device) { /* Copy FIFO data to device */ len = MIN(s->ti_wptr, TI_BUFSZ); memcpy(s->async_buf, s->ti_buf, len); s->ti_wptr = 0; s->ti_rptr = 0; s->async_buf += len; s->async_len -= len; s->ti_size += len; if (s->async_len == 0) { scsi_req_continue(s->current_req); return; } if (esp_get_tc(s) == 0) { esp_lower_drq(s); esp_dma_done(s); } return; } else { if (s->async_len == 0) { if (s->current_req) { /* Defer until the scsi layer has completed */ scsi_req_continue(s->current_req); s->data_in_ready = false; } return; } if (esp_get_tc(s) != 0) { /* Copy device data to FIFO */ s->ti_wptr = 0; s->ti_rptr = 0; len = MIN(s->async_len, TI_BUFSZ); memcpy(s->ti_buf, s->async_buf, len); s->ti_wptr += len; s->async_buf += len; s->async_len -= len; s->ti_size -= len; esp_set_tc(s, esp_get_tc(s) - len); return; } /* Partially filled a scsi buffer. Complete immediately. */ esp_lower_drq(s); esp_dma_done(s); } } static void esp_do_dma(ESPState *s) { uint32_t len; int to_device = ((s->rregs[ESP_RSTAT] & 7) == STAT_DO); len = esp_get_tc(s); if (s->do_cmd) { /* * handle_ti_cmd() case: esp_do_dma() is called only from * handle_ti_cmd() with do_cmd != NULL (see the assert()) */ trace_esp_do_dma(s->cmdlen, len); assert(s->cmdlen <= sizeof(s->cmdbuf) && len <= sizeof(s->cmdbuf) - s->cmdlen); if (s->dma_memory_read) { s->dma_memory_read(s->dma_opaque, &s->cmdbuf[s->cmdlen], len); } else { s->pdma_cb = do_dma_pdma_cb; esp_raise_drq(s); return; } trace_esp_handle_ti_cmd(s->cmdlen); s->ti_size = 0; s->cmdlen = 0; s->do_cmd = 0; do_cmd(s); return; } if (s->async_len == 0) { /* Defer until data is available. */ return; } if (len > s->async_len) { len = s->async_len; } if (to_device) { if (s->dma_memory_read) { s->dma_memory_read(s->dma_opaque, s->async_buf, len); } else { s->pdma_cb = do_dma_pdma_cb; esp_raise_drq(s); return; } } else { if (s->dma_memory_write) { s->dma_memory_write(s->dma_opaque, s->async_buf, len); } else { /* Copy device data to FIFO */ len = MIN(len, TI_BUFSZ - s->ti_wptr); memcpy(&s->ti_buf[s->ti_wptr], s->async_buf, len); s->ti_wptr += len; s->async_buf += len; s->async_len -= len; s->ti_size -= len; esp_set_tc(s, esp_get_tc(s) - len); s->pdma_cb = do_dma_pdma_cb; esp_raise_drq(s); /* Indicate transfer to FIFO is complete */ s->rregs[ESP_RSTAT] |= STAT_TC; return; } } esp_set_tc(s, esp_get_tc(s) - len); s->async_buf += len; s->async_len -= len; if (to_device) { s->ti_size += len; } else { s->ti_size -= len; } if (s->async_len == 0) { scsi_req_continue(s->current_req); /* * If there is still data to be read from the device then * complete the DMA operation immediately. Otherwise defer * until the scsi layer has completed. */ if (to_device || esp_get_tc(s) != 0 || s->ti_size == 0) { return; } } /* Partially filled a scsi buffer. Complete immediately. */ esp_dma_done(s); esp_lower_drq(s); } static void esp_report_command_complete(ESPState *s, uint32_t status) { trace_esp_command_complete(); if (s->ti_size != 0) { trace_esp_command_complete_unexpected(); } s->ti_size = 0; s->async_len = 0; if (status) { trace_esp_command_complete_fail(); } s->status = status; s->rregs[ESP_RSTAT] = STAT_ST; esp_dma_done(s); esp_lower_drq(s); if (s->current_req) { scsi_req_unref(s->current_req); s->current_req = NULL; s->current_dev = NULL; } } void esp_command_complete(SCSIRequest *req, size_t resid) { ESPState *s = req->hba_private; if (s->rregs[ESP_RSTAT] & STAT_INT) { /* * Defer handling command complete until the previous * interrupt has been handled. */ trace_esp_command_complete_deferred(); s->deferred_status = req->status; s->deferred_complete = true; return; } esp_report_command_complete(s, req->status); } void esp_transfer_data(SCSIRequest *req, uint32_t len) { ESPState *s = req->hba_private; int to_device = ((s->rregs[ESP_RSTAT] & 7) == STAT_DO); uint32_t dmalen = esp_get_tc(s); assert(!s->do_cmd); trace_esp_transfer_data(dmalen, s->ti_size); s->async_len = len; s->async_buf = scsi_req_get_buf(req); if (!to_device && !s->data_in_ready) { /* * Initial incoming data xfer is complete so raise command * completion interrupt */ s->data_in_ready = true; s->rregs[ESP_RSTAT] |= STAT_TC; s->rregs[ESP_RINTR] |= INTR_BS; esp_raise_irq(s); /* * If data is ready to transfer and the TI command has already * been executed, start DMA immediately. Otherwise DMA will start * when host sends the TI command */ if (s->ti_size && (s->rregs[ESP_CMD] == (CMD_TI | CMD_DMA))) { esp_do_dma(s); } return; } if (dmalen) { esp_do_dma(s); } else if (s->ti_size <= 0) { /* * If this was the last part of a DMA transfer then the * completion interrupt is deferred to here. */ esp_dma_done(s); esp_lower_drq(s); } } static void handle_ti(ESPState *s) { uint32_t dmalen; if (s->dma && !s->dma_enabled) { s->dma_cb = handle_ti; return; } dmalen = esp_get_tc(s); if (s->dma) { trace_esp_handle_ti(dmalen); s->rregs[ESP_RSTAT] &= ~STAT_TC; esp_do_dma(s); } else if (s->do_cmd) { trace_esp_handle_ti_cmd(s->cmdlen); s->ti_size = 0; s->cmdlen = 0; s->do_cmd = 0; do_cmd(s); } } void esp_hard_reset(ESPState *s) { memset(s->rregs, 0, ESP_REGS); memset(s->wregs, 0, ESP_REGS); s->tchi_written = 0; s->ti_size = 0; s->ti_rptr = 0; s->ti_wptr = 0; s->dma = 0; s->do_cmd = 0; s->dma_cb = NULL; s->rregs[ESP_CFG1] = 7; } static void esp_soft_reset(ESPState *s) { qemu_irq_lower(s->irq); qemu_irq_lower(s->irq_data); esp_hard_reset(s); } static void parent_esp_reset(ESPState *s, int irq, int level) { if (level) { esp_soft_reset(s); } } uint64_t esp_reg_read(ESPState *s, uint32_t saddr) { uint32_t val; switch (saddr) { case ESP_FIFO: if ((s->rregs[ESP_RSTAT] & STAT_PIO_MASK) == 0) { /* Data out. */ qemu_log_mask(LOG_UNIMP, "esp: PIO data read not implemented\n"); s->rregs[ESP_FIFO] = 0; } else if (s->ti_rptr < s->ti_wptr) { s->ti_size--; s->rregs[ESP_FIFO] = s->ti_buf[s->ti_rptr++]; } if (s->ti_rptr == s->ti_wptr) { s->ti_rptr = 0; s->ti_wptr = 0; } val = s->rregs[ESP_FIFO]; break; case ESP_RINTR: /* * Clear sequence step, interrupt register and all status bits * except TC */ val = s->rregs[ESP_RINTR]; s->rregs[ESP_RINTR] = 0; s->rregs[ESP_RSTAT] &= ~STAT_TC; s->rregs[ESP_RSEQ] = SEQ_0; esp_lower_irq(s); if (s->deferred_complete) { esp_report_command_complete(s, s->deferred_status); s->deferred_complete = false; } break; case ESP_TCHI: /* Return the unique id if the value has never been written */ if (!s->tchi_written) { val = s->chip_id; } else { val = s->rregs[saddr]; } break; default: val = s->rregs[saddr]; break; } trace_esp_mem_readb(saddr, val); return val; } void esp_reg_write(ESPState *s, uint32_t saddr, uint64_t val) { trace_esp_mem_writeb(saddr, s->wregs[saddr], val); switch (saddr) { case ESP_TCHI: s->tchi_written = true; /* fall through */ case ESP_TCLO: case ESP_TCMID: s->rregs[ESP_RSTAT] &= ~STAT_TC; break; case ESP_FIFO: if (s->do_cmd) { if (s->cmdlen < ESP_CMDBUF_SZ) { s->cmdbuf[s->cmdlen++] = val & 0xff; } else { trace_esp_error_fifo_overrun(); } } else if (s->ti_wptr == TI_BUFSZ - 1) { trace_esp_error_fifo_overrun(); } else { s->ti_size++; s->ti_buf[s->ti_wptr++] = val & 0xff; } break; case ESP_CMD: s->rregs[saddr] = val; if (val & CMD_DMA) { s->dma = 1; /* Reload DMA counter. */ if (esp_get_stc(s) == 0) { esp_set_tc(s, 0x10000); } else { esp_set_tc(s, esp_get_stc(s)); } } else { s->dma = 0; } switch (val & CMD_CMD) { case CMD_NOP: trace_esp_mem_writeb_cmd_nop(val); break; case CMD_FLUSH: trace_esp_mem_writeb_cmd_flush(val); /*s->ti_size = 0;*/ s->ti_wptr = 0; s->ti_rptr = 0; break; case CMD_RESET: trace_esp_mem_writeb_cmd_reset(val); esp_soft_reset(s); break; case CMD_BUSRESET: trace_esp_mem_writeb_cmd_bus_reset(val); if (!(s->wregs[ESP_CFG1] & CFG1_RESREPT)) { s->rregs[ESP_RINTR] |= INTR_RST; esp_raise_irq(s); } break; case CMD_TI: trace_esp_mem_writeb_cmd_ti(val); handle_ti(s); break; case CMD_ICCS: trace_esp_mem_writeb_cmd_iccs(val); write_response(s); s->rregs[ESP_RINTR] |= INTR_FC; s->rregs[ESP_RSTAT] |= STAT_MI; break; case CMD_MSGACC: trace_esp_mem_writeb_cmd_msgacc(val); s->rregs[ESP_RINTR] |= INTR_DC; s->rregs[ESP_RSEQ] = 0; s->rregs[ESP_RFLAGS] = 0; esp_raise_irq(s); break; case CMD_PAD: trace_esp_mem_writeb_cmd_pad(val); s->rregs[ESP_RSTAT] = STAT_TC; s->rregs[ESP_RINTR] |= INTR_FC; s->rregs[ESP_RSEQ] = 0; break; case CMD_SATN: trace_esp_mem_writeb_cmd_satn(val); break; case CMD_RSTATN: trace_esp_mem_writeb_cmd_rstatn(val); break; case CMD_SEL: trace_esp_mem_writeb_cmd_sel(val); handle_s_without_atn(s); break; case CMD_SELATN: trace_esp_mem_writeb_cmd_selatn(val); handle_satn(s); break; case CMD_SELATNS: trace_esp_mem_writeb_cmd_selatns(val); handle_satn_stop(s); break; case CMD_ENSEL: trace_esp_mem_writeb_cmd_ensel(val); s->rregs[ESP_RINTR] = 0; break; case CMD_DISSEL: trace_esp_mem_writeb_cmd_dissel(val); s->rregs[ESP_RINTR] = 0; esp_raise_irq(s); break; default: trace_esp_error_unhandled_command(val); break; } break; case ESP_WBUSID ... ESP_WSYNO: break; case ESP_CFG1: case ESP_CFG2: case ESP_CFG3: case ESP_RES3: case ESP_RES4: s->rregs[saddr] = val; break; case ESP_WCCF ... ESP_WTEST: break; default: trace_esp_error_invalid_write(val, saddr); return; } s->wregs[saddr] = val; } static bool esp_mem_accepts(void *opaque, hwaddr addr, unsigned size, bool is_write, MemTxAttrs attrs) { return (size == 1) || (is_write && size == 4); } static bool esp_is_before_version_5(void *opaque, int version_id) { ESPState *s = ESP(opaque); version_id = MIN(version_id, s->mig_version_id); return version_id < 5; } static bool esp_is_version_5(void *opaque, int version_id) { ESPState *s = ESP(opaque); version_id = MIN(version_id, s->mig_version_id); return version_id == 5; } static int esp_pre_save(void *opaque) { ESPState *s = ESP(opaque); s->mig_version_id = vmstate_esp.version_id; return 0; } static int esp_post_load(void *opaque, int version_id) { ESPState *s = ESP(opaque); version_id = MIN(version_id, s->mig_version_id); if (version_id < 5) { esp_set_tc(s, s->mig_dma_left); } s->mig_version_id = vmstate_esp.version_id; return 0; } const VMStateDescription vmstate_esp = { .name = "esp", .version_id = 5, .minimum_version_id = 3, .pre_save = esp_pre_save, .post_load = esp_post_load, .fields = (VMStateField[]) { VMSTATE_BUFFER(rregs, ESPState), VMSTATE_BUFFER(wregs, ESPState), VMSTATE_INT32(ti_size, ESPState), VMSTATE_UINT32(ti_rptr, ESPState), VMSTATE_UINT32(ti_wptr, ESPState), VMSTATE_BUFFER(ti_buf, ESPState), VMSTATE_UINT32(status, ESPState), VMSTATE_UINT32(deferred_status, ESPState), VMSTATE_BOOL(deferred_complete, ESPState), VMSTATE_UINT32(dma, ESPState), VMSTATE_PARTIAL_BUFFER(cmdbuf, ESPState, 16), VMSTATE_BUFFER_START_MIDDLE_V(cmdbuf, ESPState, 16, 4), VMSTATE_UINT32(cmdlen, ESPState), VMSTATE_UINT32(do_cmd, ESPState), VMSTATE_UINT32_TEST(mig_dma_left, ESPState, esp_is_before_version_5), VMSTATE_BOOL_TEST(data_in_ready, ESPState, esp_is_version_5), VMSTATE_END_OF_LIST() }, }; static void sysbus_esp_mem_write(void *opaque, hwaddr addr, uint64_t val, unsigned int size) { SysBusESPState *sysbus = opaque; ESPState *s = ESP(&sysbus->esp); uint32_t saddr; saddr = addr >> sysbus->it_shift; esp_reg_write(s, saddr, val); } static uint64_t sysbus_esp_mem_read(void *opaque, hwaddr addr, unsigned int size) { SysBusESPState *sysbus = opaque; ESPState *s = ESP(&sysbus->esp); uint32_t saddr; saddr = addr >> sysbus->it_shift; return esp_reg_read(s, saddr); } static const MemoryRegionOps sysbus_esp_mem_ops = { .read = sysbus_esp_mem_read, .write = sysbus_esp_mem_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid.accepts = esp_mem_accepts, }; static void sysbus_esp_pdma_write(void *opaque, hwaddr addr, uint64_t val, unsigned int size) { SysBusESPState *sysbus = opaque; ESPState *s = ESP(&sysbus->esp); uint32_t dmalen; trace_esp_pdma_write(size); switch (size) { case 1: esp_pdma_write(s, val); break; case 2: esp_pdma_write(s, val >> 8); esp_pdma_write(s, val); break; } dmalen = esp_get_tc(s); if (dmalen == 0 || (s->ti_wptr == TI_BUFSZ)) { s->pdma_cb(s); } } static uint64_t sysbus_esp_pdma_read(void *opaque, hwaddr addr, unsigned int size) { SysBusESPState *sysbus = opaque; ESPState *s = ESP(&sysbus->esp); uint64_t val = 0; trace_esp_pdma_read(size); switch (size) { case 1: val = esp_pdma_read(s); break; case 2: val = esp_pdma_read(s); val = (val << 8) | esp_pdma_read(s); break; } if (s->ti_rptr == s->ti_wptr) { s->ti_wptr = 0; s->ti_rptr = 0; s->pdma_cb(s); } return val; } static const MemoryRegionOps sysbus_esp_pdma_ops = { .read = sysbus_esp_pdma_read, .write = sysbus_esp_pdma_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid.min_access_size = 1, .valid.max_access_size = 4, .impl.min_access_size = 1, .impl.max_access_size = 2, }; static const struct SCSIBusInfo esp_scsi_info = { .tcq = false, .max_target = ESP_MAX_DEVS, .max_lun = 7, .transfer_data = esp_transfer_data, .complete = esp_command_complete, .cancel = esp_request_cancelled }; static void sysbus_esp_gpio_demux(void *opaque, int irq, int level) { SysBusESPState *sysbus = SYSBUS_ESP(opaque); ESPState *s = ESP(&sysbus->esp); switch (irq) { case 0: parent_esp_reset(s, irq, level); break; case 1: esp_dma_enable(opaque, irq, level); break; } } static void sysbus_esp_realize(DeviceState *dev, Error **errp) { SysBusDevice *sbd = SYS_BUS_DEVICE(dev); SysBusESPState *sysbus = SYSBUS_ESP(dev); ESPState *s = ESP(&sysbus->esp); if (!qdev_realize(DEVICE(s), NULL, errp)) { return; } sysbus_init_irq(sbd, &s->irq); sysbus_init_irq(sbd, &s->irq_data); assert(sysbus->it_shift != -1); s->chip_id = TCHI_FAS100A; memory_region_init_io(&sysbus->iomem, OBJECT(sysbus), &sysbus_esp_mem_ops, sysbus, "esp-regs", ESP_REGS << sysbus->it_shift); sysbus_init_mmio(sbd, &sysbus->iomem); memory_region_init_io(&sysbus->pdma, OBJECT(sysbus), &sysbus_esp_pdma_ops, sysbus, "esp-pdma", 4); sysbus_init_mmio(sbd, &sysbus->pdma); qdev_init_gpio_in(dev, sysbus_esp_gpio_demux, 2); scsi_bus_new(&s->bus, sizeof(s->bus), dev, &esp_scsi_info, NULL); } static void sysbus_esp_hard_reset(DeviceState *dev) { SysBusESPState *sysbus = SYSBUS_ESP(dev); ESPState *s = ESP(&sysbus->esp); esp_hard_reset(s); } static void sysbus_esp_init(Object *obj) { SysBusESPState *sysbus = SYSBUS_ESP(obj); object_initialize_child(obj, "esp", &sysbus->esp, TYPE_ESP); } static const VMStateDescription vmstate_sysbus_esp_scsi = { .name = "sysbusespscsi", .version_id = 2, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT8_V(esp.mig_version_id, SysBusESPState, 2), VMSTATE_STRUCT(esp, SysBusESPState, 0, vmstate_esp, ESPState), VMSTATE_END_OF_LIST() } }; static void sysbus_esp_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = sysbus_esp_realize; dc->reset = sysbus_esp_hard_reset; dc->vmsd = &vmstate_sysbus_esp_scsi; set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); } static const TypeInfo sysbus_esp_info = { .name = TYPE_SYSBUS_ESP, .parent = TYPE_SYS_BUS_DEVICE, .instance_init = sysbus_esp_init, .instance_size = sizeof(SysBusESPState), .class_init = sysbus_esp_class_init, }; static void esp_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); /* internal device for sysbusesp/pciespscsi, not user-creatable */ dc->user_creatable = false; set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); } static const TypeInfo esp_info = { .name = TYPE_ESP, .parent = TYPE_DEVICE, .instance_size = sizeof(ESPState), .class_init = esp_class_init, }; static void esp_register_types(void) { type_register_static(&sysbus_esp_info); type_register_static(&esp_info); } type_init(esp_register_types)