/* * QTest testcase for the Nuvoton NPCM7xx GPIO modules. * * Copyright 2020 Google LLC * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ #include "qemu/osdep.h" #include "libqtest-single.h" #define NR_GPIO_DEVICES (8) #define GPIO(x) (0xf0010000 + (x) * 0x1000) #define GPIO_IRQ(x) (116 + (x)) /* GPIO registers */ #define GP_N_TLOCK1 0x00 #define GP_N_DIN 0x04 /* Data IN */ #define GP_N_POL 0x08 /* Polarity */ #define GP_N_DOUT 0x0c /* Data OUT */ #define GP_N_OE 0x10 /* Output Enable */ #define GP_N_OTYP 0x14 #define GP_N_MP 0x18 #define GP_N_PU 0x1c /* Pull-up */ #define GP_N_PD 0x20 /* Pull-down */ #define GP_N_DBNC 0x24 /* Debounce */ #define GP_N_EVTYP 0x28 /* Event Type */ #define GP_N_EVBE 0x2c /* Event Both Edge */ #define GP_N_OBL0 0x30 #define GP_N_OBL1 0x34 #define GP_N_OBL2 0x38 #define GP_N_OBL3 0x3c #define GP_N_EVEN 0x40 /* Event Enable */ #define GP_N_EVENS 0x44 /* Event Set (enable) */ #define GP_N_EVENC 0x48 /* Event Clear (disable) */ #define GP_N_EVST 0x4c /* Event Status */ #define GP_N_SPLCK 0x50 #define GP_N_MPLCK 0x54 #define GP_N_IEM 0x58 /* Input Enable */ #define GP_N_OSRC 0x5c #define GP_N_ODSC 0x60 #define GP_N_DOS 0x68 /* Data OUT Set */ #define GP_N_DOC 0x6c /* Data OUT Clear */ #define GP_N_OES 0x70 /* Output Enable Set */ #define GP_N_OEC 0x74 /* Output Enable Clear */ #define GP_N_TLOCK2 0x7c static void gpio_unlock(int n) { if (readl(GPIO(n) + GP_N_TLOCK1) != 0) { writel(GPIO(n) + GP_N_TLOCK2, 0xc0de1248); writel(GPIO(n) + GP_N_TLOCK1, 0xc0defa73); } } /* Restore the GPIO controller to a sensible default state. */ static void gpio_reset(int n) { gpio_unlock(0); writel(GPIO(n) + GP_N_EVEN, 0x00000000); writel(GPIO(n) + GP_N_EVST, 0xffffffff); writel(GPIO(n) + GP_N_POL, 0x00000000); writel(GPIO(n) + GP_N_DOUT, 0x00000000); writel(GPIO(n) + GP_N_OE, 0x00000000); writel(GPIO(n) + GP_N_OTYP, 0x00000000); writel(GPIO(n) + GP_N_PU, 0xffffffff); writel(GPIO(n) + GP_N_PD, 0x00000000); writel(GPIO(n) + GP_N_IEM, 0xffffffff); } static void test_dout_to_din(void) { gpio_reset(0); /* When output is enabled, DOUT should be reflected on DIN. */ writel(GPIO(0) + GP_N_OE, 0xffffffff); /* PU and PD shouldn't have any impact on DIN. */ writel(GPIO(0) + GP_N_PU, 0xffff0000); writel(GPIO(0) + GP_N_PD, 0x0000ffff); writel(GPIO(0) + GP_N_DOUT, 0x12345678); g_assert_cmphex(readl(GPIO(0) + GP_N_DOUT), ==, 0x12345678); g_assert_cmphex(readl(GPIO(0) + GP_N_DIN), ==, 0x12345678); } static void test_pullup_pulldown(void) { gpio_reset(0); /* * When output is disabled, and PD is the inverse of PU, PU should be * reflected on DIN. If PD is not the inverse of PU, the state of DIN is * undefined, so we don't test that. */ writel(GPIO(0) + GP_N_OE, 0x00000000); /* DOUT shouldn't have any impact on DIN. */ writel(GPIO(0) + GP_N_DOUT, 0xffff0000); writel(GPIO(0) + GP_N_PU, 0x23456789); writel(GPIO(0) + GP_N_PD, ~0x23456789U); g_assert_cmphex(readl(GPIO(0) + GP_N_PU), ==, 0x23456789); g_assert_cmphex(readl(GPIO(0) + GP_N_PD), ==, ~0x23456789U); g_assert_cmphex(readl(GPIO(0) + GP_N_DIN), ==, 0x23456789); } static void test_output_enable(void) { gpio_reset(0); /* * With all pins weakly pulled down, and DOUT all-ones, OE should be * reflected on DIN. */ writel(GPIO(0) + GP_N_DOUT, 0xffffffff); writel(GPIO(0) + GP_N_PU, 0x00000000); writel(GPIO(0) + GP_N_PD, 0xffffffff); writel(GPIO(0) + GP_N_OE, 0x3456789a); g_assert_cmphex(readl(GPIO(0) + GP_N_OE), ==, 0x3456789a); g_assert_cmphex(readl(GPIO(0) + GP_N_DIN), ==, 0x3456789a); writel(GPIO(0) + GP_N_OEC, 0x00030002); g_assert_cmphex(readl(GPIO(0) + GP_N_OE), ==, 0x34547898); g_assert_cmphex(readl(GPIO(0) + GP_N_DIN), ==, 0x34547898); writel(GPIO(0) + GP_N_OES, 0x0000f001); g_assert_cmphex(readl(GPIO(0) + GP_N_OE), ==, 0x3454f899); g_assert_cmphex(readl(GPIO(0) + GP_N_DIN), ==, 0x3454f899); } static void test_open_drain(void) { gpio_reset(0); /* * Upper half of DOUT drives a 1 only if the corresponding bit in OTYP is * not set. If OTYP is set, DIN is determined by PU/PD. Lower half of * DOUT always drives a 0 regardless of OTYP; PU/PD have no effect. When * OE is 0, output is determined by PU/PD; OTYP has no effect. */ writel(GPIO(0) + GP_N_OTYP, 0x456789ab); writel(GPIO(0) + GP_N_OE, 0xf0f0f0f0); writel(GPIO(0) + GP_N_DOUT, 0xffff0000); writel(GPIO(0) + GP_N_PU, 0xff00ff00); writel(GPIO(0) + GP_N_PD, 0x00ff00ff); g_assert_cmphex(readl(GPIO(0) + GP_N_OTYP), ==, 0x456789ab); g_assert_cmphex(readl(GPIO(0) + GP_N_DIN), ==, 0xff900f00); } static void test_polarity(void) { gpio_reset(0); /* * In push-pull mode, DIN should reflect DOUT because the signal is * inverted in both directions. */ writel(GPIO(0) + GP_N_OTYP, 0x00000000); writel(GPIO(0) + GP_N_OE, 0xffffffff); writel(GPIO(0) + GP_N_DOUT, 0x56789abc); writel(GPIO(0) + GP_N_POL, 0x6789abcd); g_assert_cmphex(readl(GPIO(0) + GP_N_POL), ==, 0x6789abcd); g_assert_cmphex(readl(GPIO(0) + GP_N_DIN), ==, 0x56789abc); /* * When turning off the drivers, DIN should reflect the inverse of the * pulled-up lines. */ writel(GPIO(0) + GP_N_OE, 0x00000000); writel(GPIO(0) + GP_N_POL, 0xffffffff); writel(GPIO(0) + GP_N_PU, 0x789abcde); writel(GPIO(0) + GP_N_PD, ~0x789abcdeU); g_assert_cmphex(readl(GPIO(0) + GP_N_DIN), ==, ~0x789abcdeU); /* * In open-drain mode, DOUT=1 will appear to drive the pin high (since DIN * is inverted), while DOUT=0 will leave the pin floating. */ writel(GPIO(0) + GP_N_OTYP, 0xffffffff); writel(GPIO(0) + GP_N_OE, 0xffffffff); writel(GPIO(0) + GP_N_PU, 0xffff0000); writel(GPIO(0) + GP_N_PD, 0x0000ffff); writel(GPIO(0) + GP_N_DOUT, 0xff00ff00); g_assert_cmphex(readl(GPIO(0) + GP_N_DIN), ==, 0xff00ffff); } static void test_input_mask(void) { gpio_reset(0); /* IEM=0 forces the input to zero before polarity inversion. */ writel(GPIO(0) + GP_N_OE, 0xffffffff); writel(GPIO(0) + GP_N_DOUT, 0xff00ff00); writel(GPIO(0) + GP_N_POL, 0xffff0000); writel(GPIO(0) + GP_N_IEM, 0x87654321); g_assert_cmphex(readl(GPIO(0) + GP_N_DIN), ==, 0xff9a4300); } static void test_temp_lock(void) { gpio_reset(0); writel(GPIO(0) + GP_N_DOUT, 0x98765432); /* Make sure we're unlocked initially. */ g_assert_cmphex(readl(GPIO(0) + GP_N_TLOCK1), ==, 0); /* Writing any value to TLOCK1 will lock. */ writel(GPIO(0) + GP_N_TLOCK1, 0); g_assert_cmphex(readl(GPIO(0) + GP_N_TLOCK1), ==, 1); writel(GPIO(0) + GP_N_DOUT, 0xa9876543); g_assert_cmphex(readl(GPIO(0) + GP_N_DOUT), ==, 0x98765432); /* Now, try to unlock. */ gpio_unlock(0); g_assert_cmphex(readl(GPIO(0) + GP_N_TLOCK1), ==, 0); writel(GPIO(0) + GP_N_DOUT, 0xa9876543); g_assert_cmphex(readl(GPIO(0) + GP_N_DOUT), ==, 0xa9876543); /* Try it again, but write TLOCK2 to lock. */ writel(GPIO(0) + GP_N_TLOCK2, 0); g_assert_cmphex(readl(GPIO(0) + GP_N_TLOCK1), ==, 1); writel(GPIO(0) + GP_N_DOUT, 0x98765432); g_assert_cmphex(readl(GPIO(0) + GP_N_DOUT), ==, 0xa9876543); /* Now, try to unlock. */ gpio_unlock(0); g_assert_cmphex(readl(GPIO(0) + GP_N_TLOCK1), ==, 0); writel(GPIO(0) + GP_N_DOUT, 0x98765432); g_assert_cmphex(readl(GPIO(0) + GP_N_DOUT), ==, 0x98765432); } static void test_events_level(void) { gpio_reset(0); writel(GPIO(0) + GP_N_EVTYP, 0x00000000); writel(GPIO(0) + GP_N_DOUT, 0xba987654); writel(GPIO(0) + GP_N_OE, 0xffffffff); writel(GPIO(0) + GP_N_EVST, 0xffffffff); g_assert_cmphex(readl(GPIO(0) + GP_N_EVST), ==, 0xba987654); g_assert_false(qtest_get_irq(global_qtest, GPIO_IRQ(0))); writel(GPIO(0) + GP_N_DOUT, 0x00000000); g_assert_cmphex(readl(GPIO(0) + GP_N_EVST), ==, 0xba987654); g_assert_false(qtest_get_irq(global_qtest, GPIO_IRQ(0))); writel(GPIO(0) + GP_N_EVST, 0x00007654); g_assert_cmphex(readl(GPIO(0) + GP_N_EVST), ==, 0xba980000); g_assert_false(qtest_get_irq(global_qtest, GPIO_IRQ(0))); writel(GPIO(0) + GP_N_EVST, 0xba980000); g_assert_cmphex(readl(GPIO(0) + GP_N_EVST), ==, 0x00000000); g_assert_false(qtest_get_irq(global_qtest, GPIO_IRQ(0))); } static void test_events_rising_edge(void) { gpio_reset(0); writel(GPIO(0) + GP_N_EVTYP, 0xffffffff); writel(GPIO(0) + GP_N_EVBE, 0x00000000); writel(GPIO(0) + GP_N_DOUT, 0xffff0000); writel(GPIO(0) + GP_N_OE, 0xffffffff); writel(GPIO(0) + GP_N_EVST, 0xffffffff); g_assert_cmphex(readl(GPIO(0) + GP_N_EVST), ==, 0x00000000); g_assert_false(qtest_get_irq(global_qtest, GPIO_IRQ(0))); writel(GPIO(0) + GP_N_DOUT, 0xff00ff00); g_assert_cmphex(readl(GPIO(0) + GP_N_EVST), ==, 0x0000ff00); g_assert_false(qtest_get_irq(global_qtest, GPIO_IRQ(0))); writel(GPIO(0) + GP_N_DOUT, 0x00ff0000); g_assert_cmphex(readl(GPIO(0) + GP_N_EVST), ==, 0x00ffff00); g_assert_false(qtest_get_irq(global_qtest, GPIO_IRQ(0))); writel(GPIO(0) + GP_N_EVST, 0x0000f000); g_assert_cmphex(readl(GPIO(0) + GP_N_EVST), ==, 0x00ff0f00); g_assert_false(qtest_get_irq(global_qtest, GPIO_IRQ(0))); writel(GPIO(0) + GP_N_EVST, 0x00ff0f00); g_assert_cmphex(readl(GPIO(0) + GP_N_EVST), ==, 0x00000000); g_assert_false(qtest_get_irq(global_qtest, GPIO_IRQ(0))); } static void test_events_both_edges(void) { gpio_reset(0); writel(GPIO(0) + GP_N_EVTYP, 0xffffffff); writel(GPIO(0) + GP_N_EVBE, 0xffffffff); writel(GPIO(0) + GP_N_DOUT, 0xffff0000); writel(GPIO(0) + GP_N_OE, 0xffffffff); writel(GPIO(0) + GP_N_EVST, 0xffffffff); g_assert_cmphex(readl(GPIO(0) + GP_N_EVST), ==, 0x00000000); g_assert_false(qtest_get_irq(global_qtest, GPIO_IRQ(0))); writel(GPIO(0) + GP_N_DOUT, 0xff00ff00); g_assert_cmphex(readl(GPIO(0) + GP_N_EVST), ==, 0x00ffff00); g_assert_false(qtest_get_irq(global_qtest, GPIO_IRQ(0))); writel(GPIO(0) + GP_N_DOUT, 0xef00ff08); g_assert_cmphex(readl(GPIO(0) + GP_N_EVST), ==, 0x10ffff08); g_assert_false(qtest_get_irq(global_qtest, GPIO_IRQ(0))); writel(GPIO(0) + GP_N_EVST, 0x0000f000); g_assert_cmphex(readl(GPIO(0) + GP_N_EVST), ==, 0x10ff0f08); g_assert_false(qtest_get_irq(global_qtest, GPIO_IRQ(0))); writel(GPIO(0) + GP_N_EVST, 0x10ff0f08); g_assert_cmphex(readl(GPIO(0) + GP_N_EVST), ==, 0x00000000); g_assert_false(qtest_get_irq(global_qtest, GPIO_IRQ(0))); } static void test_gpion_irq(gconstpointer test_data) { intptr_t n = (intptr_t)test_data; gpio_reset(n); writel(GPIO(n) + GP_N_EVTYP, 0x00000000); writel(GPIO(n) + GP_N_DOUT, 0x00000000); writel(GPIO(n) + GP_N_OE, 0xffffffff); writel(GPIO(n) + GP_N_EVST, 0xffffffff); writel(GPIO(n) + GP_N_EVEN, 0x00000000); /* Trigger an event; interrupts are masked. */ g_assert_cmphex(readl(GPIO(n) + GP_N_EVST), ==, 0x00000000); g_assert_false(qtest_get_irq(global_qtest, GPIO_IRQ(n))); writel(GPIO(n) + GP_N_DOS, 0x00008000); g_assert_cmphex(readl(GPIO(n) + GP_N_EVST), ==, 0x00008000); g_assert_false(qtest_get_irq(global_qtest, GPIO_IRQ(n))); /* Unmask all event interrupts; verify that the interrupt fired. */ writel(GPIO(n) + GP_N_EVEN, 0xffffffff); g_assert_true(qtest_get_irq(global_qtest, GPIO_IRQ(n))); /* Clear the current bit, set a new bit, irq stays asserted. */ writel(GPIO(n) + GP_N_DOC, 0x00008000); g_assert_true(qtest_get_irq(global_qtest, GPIO_IRQ(n))); writel(GPIO(n) + GP_N_DOS, 0x00000200); g_assert_true(qtest_get_irq(global_qtest, GPIO_IRQ(n))); writel(GPIO(n) + GP_N_EVST, 0x00008000); g_assert_true(qtest_get_irq(global_qtest, GPIO_IRQ(n))); /* Mask/unmask the event that's currently active. */ writel(GPIO(n) + GP_N_EVENC, 0x00000200); g_assert_false(qtest_get_irq(global_qtest, GPIO_IRQ(n))); writel(GPIO(n) + GP_N_EVENS, 0x00000200); g_assert_true(qtest_get_irq(global_qtest, GPIO_IRQ(n))); /* Clear the input and the status bit, irq is deasserted. */ writel(GPIO(n) + GP_N_DOC, 0x00000200); g_assert_true(qtest_get_irq(global_qtest, GPIO_IRQ(n))); writel(GPIO(n) + GP_N_EVST, 0x00000200); g_assert_false(qtest_get_irq(global_qtest, GPIO_IRQ(n))); } int main(int argc, char **argv) { int ret; int i; g_test_init(&argc, &argv, NULL); g_test_set_nonfatal_assertions(); qtest_add_func("/npcm7xx_gpio/dout_to_din", test_dout_to_din); qtest_add_func("/npcm7xx_gpio/pullup_pulldown", test_pullup_pulldown); qtest_add_func("/npcm7xx_gpio/output_enable", test_output_enable); qtest_add_func("/npcm7xx_gpio/open_drain", test_open_drain); qtest_add_func("/npcm7xx_gpio/polarity", test_polarity); qtest_add_func("/npcm7xx_gpio/input_mask", test_input_mask); qtest_add_func("/npcm7xx_gpio/temp_lock", test_temp_lock); qtest_add_func("/npcm7xx_gpio/events/level", test_events_level); qtest_add_func("/npcm7xx_gpio/events/rising_edge", test_events_rising_edge); qtest_add_func("/npcm7xx_gpio/events/both_edges", test_events_both_edges); for (i = 0; i < NR_GPIO_DEVICES; i++) { g_autofree char *test_name = g_strdup_printf("/npcm7xx_gpio/gpio[%d]/irq", i); qtest_add_data_func(test_name, (void *)(intptr_t)i, test_gpion_irq); } qtest_start("-machine npcm750-evb"); qtest_irq_intercept_in(global_qtest, "/machine/soc/a9mpcore/gic"); ret = g_test_run(); qtest_end(); return ret; }