/* * QEMU PCI bus manager * * Copyright (c) 2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "vl.h" //#define DEBUG_PCI struct PCIBus { int bus_num; int devfn_min; pci_set_irq_fn set_irq; pci_map_irq_fn map_irq; uint32_t config_reg; /* XXX: suppress */ /* low level pic */ SetIRQFunc *low_set_irq; void *irq_opaque; PCIDevice *devices[256]; PCIDevice *parent_dev; PCIBus *next; /* The bus IRQ state is the logical OR of the connected devices. Keep a count of the number of devices with raised IRQs. */ int irq_count[]; }; static void pci_update_mappings(PCIDevice *d); target_phys_addr_t pci_mem_base; static int pci_irq_index; static PCIBus *first_bus; PCIBus *pci_register_bus(pci_set_irq_fn set_irq, pci_map_irq_fn map_irq, void *pic, int devfn_min, int nirq) { PCIBus *bus; bus = qemu_mallocz(sizeof(PCIBus) + (nirq * sizeof(int))); bus->set_irq = set_irq; bus->map_irq = map_irq; bus->irq_opaque = pic; bus->devfn_min = devfn_min; first_bus = bus; return bus; } PCIBus *pci_register_secondary_bus(PCIDevice *dev, pci_map_irq_fn map_irq) { PCIBus *bus; bus = qemu_mallocz(sizeof(PCIBus)); bus->map_irq = map_irq; bus->parent_dev = dev; bus->next = dev->bus->next; dev->bus->next = bus; return bus; } int pci_bus_num(PCIBus *s) { return s->bus_num; } void pci_device_save(PCIDevice *s, QEMUFile *f) { qemu_put_be32(f, 1); /* PCI device version */ qemu_put_buffer(f, s->config, 256); } int pci_device_load(PCIDevice *s, QEMUFile *f) { uint32_t version_id; version_id = qemu_get_be32(f); if (version_id != 1) return -EINVAL; qemu_get_buffer(f, s->config, 256); pci_update_mappings(s); return 0; } /* -1 for devfn means auto assign */ PCIDevice *pci_register_device(PCIBus *bus, const char *name, int instance_size, int devfn, PCIConfigReadFunc *config_read, PCIConfigWriteFunc *config_write) { PCIDevice *pci_dev; if (pci_irq_index >= PCI_DEVICES_MAX) return NULL; if (devfn < 0) { for(devfn = bus->devfn_min ; devfn < 256; devfn += 8) { if (!bus->devices[devfn]) goto found; } return NULL; found: ; } pci_dev = qemu_mallocz(instance_size); if (!pci_dev) return NULL; pci_dev->bus = bus; pci_dev->devfn = devfn; pstrcpy(pci_dev->name, sizeof(pci_dev->name), name); memset(pci_dev->irq_state, 0, sizeof(pci_dev->irq_state)); if (!config_read) config_read = pci_default_read_config; if (!config_write) config_write = pci_default_write_config; pci_dev->config_read = config_read; pci_dev->config_write = config_write; pci_dev->irq_index = pci_irq_index++; bus->devices[devfn] = pci_dev; return pci_dev; } void pci_register_io_region(PCIDevice *pci_dev, int region_num, uint32_t size, int type, PCIMapIORegionFunc *map_func) { PCIIORegion *r; uint32_t addr; if ((unsigned int)region_num >= PCI_NUM_REGIONS) return; r = &pci_dev->io_regions[region_num]; r->addr = -1; r->size = size; r->type = type; r->map_func = map_func; if (region_num == PCI_ROM_SLOT) { addr = 0x30; } else { addr = 0x10 + region_num * 4; } *(uint32_t *)(pci_dev->config + addr) = cpu_to_le32(type); } target_phys_addr_t pci_to_cpu_addr(target_phys_addr_t addr) { return addr + pci_mem_base; } static void pci_update_mappings(PCIDevice *d) { PCIIORegion *r; int cmd, i; uint32_t last_addr, new_addr, config_ofs; cmd = le16_to_cpu(*(uint16_t *)(d->config + PCI_COMMAND)); for(i = 0; i < PCI_NUM_REGIONS; i++) { r = &d->io_regions[i]; if (i == PCI_ROM_SLOT) { config_ofs = 0x30; } else { config_ofs = 0x10 + i * 4; } if (r->size != 0) { if (r->type & PCI_ADDRESS_SPACE_IO) { if (cmd & PCI_COMMAND_IO) { new_addr = le32_to_cpu(*(uint32_t *)(d->config + config_ofs)); new_addr = new_addr & ~(r->size - 1); last_addr = new_addr + r->size - 1; /* NOTE: we have only 64K ioports on PC */ if (last_addr <= new_addr || new_addr == 0 || last_addr >= 0x10000) { new_addr = -1; } } else { new_addr = -1; } } else { if (cmd & PCI_COMMAND_MEMORY) { new_addr = le32_to_cpu(*(uint32_t *)(d->config + config_ofs)); /* the ROM slot has a specific enable bit */ if (i == PCI_ROM_SLOT && !(new_addr & 1)) goto no_mem_map; new_addr = new_addr & ~(r->size - 1); last_addr = new_addr + r->size - 1; /* NOTE: we do not support wrapping */ /* XXX: as we cannot support really dynamic mappings, we handle specific values as invalid mappings. */ if (last_addr <= new_addr || new_addr == 0 || last_addr == -1) { new_addr = -1; } } else { no_mem_map: new_addr = -1; } } /* now do the real mapping */ if (new_addr != r->addr) { if (r->addr != -1) { if (r->type & PCI_ADDRESS_SPACE_IO) { int class; /* NOTE: specific hack for IDE in PC case: only one byte must be mapped. */ class = d->config[0x0a] | (d->config[0x0b] << 8); if (class == 0x0101 && r->size == 4) { isa_unassign_ioport(r->addr + 2, 1); } else { isa_unassign_ioport(r->addr, r->size); } } else { cpu_register_physical_memory(pci_to_cpu_addr(r->addr), r->size, IO_MEM_UNASSIGNED); } } r->addr = new_addr; if (r->addr != -1) { r->map_func(d, i, r->addr, r->size, r->type); } } } } } uint32_t pci_default_read_config(PCIDevice *d, uint32_t address, int len) { uint32_t val; switch(len) { default: case 4: if (address <= 0xfc) { val = le32_to_cpu(*(uint32_t *)(d->config + address)); break; } /* fall through */ case 2: if (address <= 0xfe) { val = le16_to_cpu(*(uint16_t *)(d->config + address)); break; } /* fall through */ case 1: val = d->config[address]; break; } return val; } void pci_default_write_config(PCIDevice *d, uint32_t address, uint32_t val, int len) { int can_write, i; uint32_t end, addr; if (len == 4 && ((address >= 0x10 && address < 0x10 + 4 * 6) || (address >= 0x30 && address < 0x34))) { PCIIORegion *r; int reg; if ( address >= 0x30 ) { reg = PCI_ROM_SLOT; }else{ reg = (address - 0x10) >> 2; } r = &d->io_regions[reg]; if (r->size == 0) goto default_config; /* compute the stored value */ if (reg == PCI_ROM_SLOT) { /* keep ROM enable bit */ val &= (~(r->size - 1)) | 1; } else { val &= ~(r->size - 1); val |= r->type; } *(uint32_t *)(d->config + address) = cpu_to_le32(val); pci_update_mappings(d); return; } default_config: /* not efficient, but simple */ addr = address; for(i = 0; i < len; i++) { /* default read/write accesses */ switch(d->config[0x0e]) { case 0x00: case 0x80: switch(addr) { case 0x00: case 0x01: case 0x02: case 0x03: case 0x08: case 0x09: case 0x0a: case 0x0b: case 0x0e: case 0x10 ... 0x27: /* base */ case 0x30 ... 0x33: /* rom */ case 0x3d: can_write = 0; break; default: can_write = 1; break; } break; default: case 0x01: switch(addr) { case 0x00: case 0x01: case 0x02: case 0x03: case 0x08: case 0x09: case 0x0a: case 0x0b: case 0x0e: case 0x38 ... 0x3b: /* rom */ case 0x3d: can_write = 0; break; default: can_write = 1; break; } break; } if (can_write) { d->config[addr] = val; } if (++addr > 0xff) break; val >>= 8; } end = address + len; if (end > PCI_COMMAND && address < (PCI_COMMAND + 2)) { /* if the command register is modified, we must modify the mappings */ pci_update_mappings(d); } } void pci_data_write(void *opaque, uint32_t addr, uint32_t val, int len) { PCIBus *s = opaque; PCIDevice *pci_dev; int config_addr, bus_num; #if defined(DEBUG_PCI) && 0 printf("pci_data_write: addr=%08x val=%08x len=%d\n", addr, val, len); #endif bus_num = (addr >> 16) & 0xff; while (s && s->bus_num != bus_num) s = s->next; if (!s) return; pci_dev = s->devices[(addr >> 8) & 0xff]; if (!pci_dev) return; config_addr = addr & 0xff; #if defined(DEBUG_PCI) printf("pci_config_write: %s: addr=%02x val=%08x len=%d\n", pci_dev->name, config_addr, val, len); #endif pci_dev->config_write(pci_dev, config_addr, val, len); } uint32_t pci_data_read(void *opaque, uint32_t addr, int len) { PCIBus *s = opaque; PCIDevice *pci_dev; int config_addr, bus_num; uint32_t val; bus_num = (addr >> 16) & 0xff; while (s && s->bus_num != bus_num) s= s->next; if (!s) goto fail; pci_dev = s->devices[(addr >> 8) & 0xff]; if (!pci_dev) { fail: switch(len) { case 1: val = 0xff; break; case 2: val = 0xffff; break; default: case 4: val = 0xffffffff; break; } goto the_end; } config_addr = addr & 0xff; val = pci_dev->config_read(pci_dev, config_addr, len); #if defined(DEBUG_PCI) printf("pci_config_read: %s: addr=%02x val=%08x len=%d\n", pci_dev->name, config_addr, val, len); #endif the_end: #if defined(DEBUG_PCI) && 0 printf("pci_data_read: addr=%08x val=%08x len=%d\n", addr, val, len); #endif return val; } /***********************************************************/ /* generic PCI irq support */ /* 0 <= irq_num <= 3. level must be 0 or 1 */ void pci_set_irq(PCIDevice *pci_dev, int irq_num, int level) { PCIBus *bus; int change; change = level - pci_dev->irq_state[irq_num]; if (!change) return; pci_dev->irq_state[irq_num] = level; for (;;) { bus = pci_dev->bus; irq_num = bus->map_irq(pci_dev, irq_num); if (bus->set_irq) break; pci_dev = bus->parent_dev; } bus->irq_count[irq_num] += change; bus->set_irq(bus->irq_opaque, irq_num, bus->irq_count[irq_num] != 0); } /***********************************************************/ /* monitor info on PCI */ typedef struct { uint16_t class; const char *desc; } pci_class_desc; static pci_class_desc pci_class_descriptions[] = { { 0x0100, "SCSI controller"}, { 0x0101, "IDE controller"}, { 0x0200, "Ethernet controller"}, { 0x0300, "VGA controller"}, { 0x0600, "Host bridge"}, { 0x0601, "ISA bridge"}, { 0x0604, "PCI bridge"}, { 0x0c03, "USB controller"}, { 0, NULL} }; static void pci_info_device(PCIDevice *d) { int i, class; PCIIORegion *r; pci_class_desc *desc; term_printf(" Bus %2d, device %3d, function %d:\n", d->bus->bus_num, d->devfn >> 3, d->devfn & 7); class = le16_to_cpu(*((uint16_t *)(d->config + PCI_CLASS_DEVICE))); term_printf(" "); desc = pci_class_descriptions; while (desc->desc && class != desc->class) desc++; if (desc->desc) { term_printf("%s", desc->desc); } else { term_printf("Class %04x", class); } term_printf(": PCI device %04x:%04x\n", le16_to_cpu(*((uint16_t *)(d->config + PCI_VENDOR_ID))), le16_to_cpu(*((uint16_t *)(d->config + PCI_DEVICE_ID)))); if (d->config[PCI_INTERRUPT_PIN] != 0) { term_printf(" IRQ %d.\n", d->config[PCI_INTERRUPT_LINE]); } if (class == 0x0604) { term_printf(" BUS %d.\n", d->config[0x19]); } for(i = 0;i < PCI_NUM_REGIONS; i++) { r = &d->io_regions[i]; if (r->size != 0) { term_printf(" BAR%d: ", i); if (r->type & PCI_ADDRESS_SPACE_IO) { term_printf("I/O at 0x%04x [0x%04x].\n", r->addr, r->addr + r->size - 1); } else { term_printf("32 bit memory at 0x%08x [0x%08x].\n", r->addr, r->addr + r->size - 1); } } } if (class == 0x0604 && d->config[0x19] != 0) { pci_for_each_device(d->config[0x19], pci_info_device); } } void pci_for_each_device(int bus_num, void (*fn)(PCIDevice *d)) { PCIBus *bus = first_bus; PCIDevice *d; int devfn; while (bus && bus->bus_num != bus_num) bus = bus->next; if (bus) { for(devfn = 0; devfn < 256; devfn++) { d = bus->devices[devfn]; if (d) fn(d); } } } void pci_info(void) { pci_for_each_device(0, pci_info_device); } /* Initialize a PCI NIC. */ void pci_nic_init(PCIBus *bus, NICInfo *nd, int devfn) { if (strcmp(nd->model, "ne2k_pci") == 0) { pci_ne2000_init(bus, nd, devfn); } else if (strcmp(nd->model, "i82551") == 0) { pci_i82551_init(bus, nd, devfn); } else if (strcmp(nd->model, "i82557b") == 0) { pci_i82557b_init(bus, nd, devfn); } else if (strcmp(nd->model, "i82559er") == 0) { pci_i82559er_init(bus, nd, devfn); } else if (strcmp(nd->model, "rtl8139") == 0) { pci_rtl8139_init(bus, nd, devfn); } else if (strcmp(nd->model, "pcnet") == 0) { pci_pcnet_init(bus, nd, devfn); } else { fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd->model); exit (1); } } typedef struct { PCIDevice dev; PCIBus *bus; } PCIBridge; void pci_bridge_write_config(PCIDevice *d, uint32_t address, uint32_t val, int len) { PCIBridge *s = (PCIBridge *)d; if (address == 0x19 || (address == 0x18 && len > 1)) { if (address == 0x19) s->bus->bus_num = val & 0xff; else s->bus->bus_num = (val >> 8) & 0xff; #if defined(DEBUG_PCI) printf ("pci-bridge: %s: Assigned bus %d\n", d->name, s->bus->bus_num); #endif } pci_default_write_config(d, address, val, len); } PCIBus *pci_bridge_init(PCIBus *bus, int devfn, uint32_t id, pci_map_irq_fn map_irq, const char *name) { PCIBridge *s; s = (PCIBridge *)pci_register_device(bus, name, sizeof(PCIBridge), devfn, NULL, pci_bridge_write_config); s->dev.config[0x00] = id >> 16; s->dev.config[0x01] = id >> 24; s->dev.config[0x02] = id; // device_id s->dev.config[0x03] = id >> 8; s->dev.config[0x04] = 0x06; // command = bus master, pci mem s->dev.config[0x05] = 0x00; s->dev.config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error s->dev.config[0x07] = 0x00; // status = fast devsel s->dev.config[0x08] = 0x00; // revision s->dev.config[0x09] = 0x00; // programming i/f s->dev.config[0x0A] = 0x04; // class_sub = PCI to PCI bridge s->dev.config[0x0B] = 0x06; // class_base = PCI_bridge s->dev.config[0x0D] = 0x10; // latency_timer s->dev.config[0x0E] = 0x81; // header_type s->dev.config[0x1E] = 0xa0; // secondary status s->bus = pci_register_secondary_bus(&s->dev, map_irq); return s->bus; }