/* * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator * * PAPR Virtualized Interrupt System, aka ICS/ICP aka xics, in-kernel emulation * * Copyright (c) 2013 David Gibson, IBM Corporation. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ #include "hw/hw.h" #include "trace.h" #include "hw/ppc/spapr.h" #include "hw/ppc/xics.h" #include "kvm_ppc.h" #include "qemu/config-file.h" #include "qemu/error-report.h" #include typedef struct KVMXICSState { XICSState parent_obj; int kernel_xics_fd; } KVMXICSState; /* * ICP-KVM */ static void icp_get_kvm_state(ICPState *ss) { uint64_t state; struct kvm_one_reg reg = { .id = KVM_REG_PPC_ICP_STATE, .addr = (uintptr_t)&state, }; int ret; /* ICP for this CPU thread is not in use, exiting */ if (!ss->cs) { return; } ret = kvm_vcpu_ioctl(ss->cs, KVM_GET_ONE_REG, ®); if (ret != 0) { error_report("Unable to retrieve KVM interrupt controller state" " for CPU %ld: %s", kvm_arch_vcpu_id(ss->cs), strerror(errno)); exit(1); } ss->xirr = state >> KVM_REG_PPC_ICP_XISR_SHIFT; ss->mfrr = (state >> KVM_REG_PPC_ICP_MFRR_SHIFT) & KVM_REG_PPC_ICP_MFRR_MASK; ss->pending_priority = (state >> KVM_REG_PPC_ICP_PPRI_SHIFT) & KVM_REG_PPC_ICP_PPRI_MASK; } static int icp_set_kvm_state(ICPState *ss, int version_id) { uint64_t state; struct kvm_one_reg reg = { .id = KVM_REG_PPC_ICP_STATE, .addr = (uintptr_t)&state, }; int ret; /* ICP for this CPU thread is not in use, exiting */ if (!ss->cs) { return 0; } state = ((uint64_t)ss->xirr << KVM_REG_PPC_ICP_XISR_SHIFT) | ((uint64_t)ss->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT) | ((uint64_t)ss->pending_priority << KVM_REG_PPC_ICP_PPRI_SHIFT); ret = kvm_vcpu_ioctl(ss->cs, KVM_SET_ONE_REG, ®); if (ret != 0) { error_report("Unable to restore KVM interrupt controller state (0x%" PRIx64 ") for CPU %ld: %s", state, kvm_arch_vcpu_id(ss->cs), strerror(errno)); return ret; } return 0; } static void icp_kvm_reset(DeviceState *dev) { ICPState *icp = ICP(dev); icp->xirr = 0; icp->pending_priority = 0xff; icp->mfrr = 0xff; /* Make all outputs are deasserted */ qemu_set_irq(icp->output, 0); icp_set_kvm_state(icp, 1); } static void icp_kvm_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); ICPStateClass *icpc = ICP_CLASS(klass); dc->reset = icp_kvm_reset; icpc->pre_save = icp_get_kvm_state; icpc->post_load = icp_set_kvm_state; } static const TypeInfo icp_kvm_info = { .name = TYPE_KVM_ICP, .parent = TYPE_ICP, .instance_size = sizeof(ICPState), .class_init = icp_kvm_class_init, .class_size = sizeof(ICPStateClass), }; /* * ICS-KVM */ static void ics_get_kvm_state(ICSState *ics) { KVMXICSState *icpkvm = KVM_XICS(ics->icp); uint64_t state; struct kvm_device_attr attr = { .flags = 0, .group = KVM_DEV_XICS_GRP_SOURCES, .addr = (uint64_t)(uintptr_t)&state, }; int i; for (i = 0; i < ics->nr_irqs; i++) { ICSIRQState *irq = &ics->irqs[i]; int ret; attr.attr = i + ics->offset; ret = ioctl(icpkvm->kernel_xics_fd, KVM_GET_DEVICE_ATTR, &attr); if (ret != 0) { error_report("Unable to retrieve KVM interrupt controller state" " for IRQ %d: %s", i + ics->offset, strerror(errno)); exit(1); } irq->server = state & KVM_XICS_DESTINATION_MASK; irq->saved_priority = (state >> KVM_XICS_PRIORITY_SHIFT) & KVM_XICS_PRIORITY_MASK; /* * To be consistent with the software emulation in xics.c, we * split out the masked state + priority that we get from the * kernel into 'current priority' (0xff if masked) and * 'saved priority' (if masked, this is the priority the * interrupt had before it was masked). Masking and unmasking * are done with the ibm,int-off and ibm,int-on RTAS calls. */ if (state & KVM_XICS_MASKED) { irq->priority = 0xff; } else { irq->priority = irq->saved_priority; } if (state & KVM_XICS_PENDING) { if (state & KVM_XICS_LEVEL_SENSITIVE) { irq->status |= XICS_STATUS_ASSERTED; } else { /* * A pending edge-triggered interrupt (or MSI) * must have been rejected previously when we * first detected it and tried to deliver it, * so mark it as pending and previously rejected * for consistency with how xics.c works. */ irq->status |= XICS_STATUS_MASKED_PENDING | XICS_STATUS_REJECTED; } } } } static int ics_set_kvm_state(ICSState *ics, int version_id) { KVMXICSState *icpkvm = KVM_XICS(ics->icp); uint64_t state; struct kvm_device_attr attr = { .flags = 0, .group = KVM_DEV_XICS_GRP_SOURCES, .addr = (uint64_t)(uintptr_t)&state, }; int i; for (i = 0; i < ics->nr_irqs; i++) { ICSIRQState *irq = &ics->irqs[i]; int ret; attr.attr = i + ics->offset; state = irq->server; state |= (uint64_t)(irq->saved_priority & KVM_XICS_PRIORITY_MASK) << KVM_XICS_PRIORITY_SHIFT; if (irq->priority != irq->saved_priority) { assert(irq->priority == 0xff); state |= KVM_XICS_MASKED; } if (ics->islsi[i]) { state |= KVM_XICS_LEVEL_SENSITIVE; if (irq->status & XICS_STATUS_ASSERTED) { state |= KVM_XICS_PENDING; } } else { if (irq->status & XICS_STATUS_MASKED_PENDING) { state |= KVM_XICS_PENDING; } } ret = ioctl(icpkvm->kernel_xics_fd, KVM_SET_DEVICE_ATTR, &attr); if (ret != 0) { error_report("Unable to restore KVM interrupt controller state" " for IRQs %d: %s", i + ics->offset, strerror(errno)); return ret; } } return 0; } static void ics_kvm_set_irq(void *opaque, int srcno, int val) { ICSState *ics = opaque; struct kvm_irq_level args; int rc; args.irq = srcno + ics->offset; if (!ics->islsi[srcno]) { if (!val) { return; } args.level = KVM_INTERRUPT_SET; } else { args.level = val ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET; } rc = kvm_vm_ioctl(kvm_state, KVM_IRQ_LINE, &args); if (rc < 0) { perror("kvm_irq_line"); } } static void ics_kvm_reset(DeviceState *dev) { ICSState *ics = ICS(dev); int i; memset(ics->irqs, 0, sizeof(ICSIRQState) * ics->nr_irqs); for (i = 0; i < ics->nr_irqs; i++) { ics->irqs[i].priority = 0xff; ics->irqs[i].saved_priority = 0xff; } ics_set_kvm_state(ics, 1); } static void ics_kvm_realize(DeviceState *dev, Error **errp) { ICSState *ics = ICS(dev); if (!ics->nr_irqs) { error_setg(errp, "Number of interrupts needs to be greater 0"); return; } ics->irqs = g_malloc0(ics->nr_irqs * sizeof(ICSIRQState)); ics->islsi = g_malloc0(ics->nr_irqs * sizeof(bool)); ics->qirqs = qemu_allocate_irqs(ics_kvm_set_irq, ics, ics->nr_irqs); } static void ics_kvm_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); ICSStateClass *icsc = ICS_CLASS(klass); dc->realize = ics_kvm_realize; dc->reset = ics_kvm_reset; icsc->pre_save = ics_get_kvm_state; icsc->post_load = ics_set_kvm_state; } static const TypeInfo ics_kvm_info = { .name = TYPE_KVM_ICS, .parent = TYPE_ICS, .instance_size = sizeof(ICSState), .class_init = ics_kvm_class_init, }; /* * XICS-KVM */ static void xics_kvm_cpu_setup(XICSState *icp, PowerPCCPU *cpu) { CPUState *cs; ICPState *ss; KVMXICSState *icpkvm = KVM_XICS(icp); cs = CPU(cpu); ss = &icp->ss[cs->cpu_index]; assert(cs->cpu_index < icp->nr_servers); if (icpkvm->kernel_xics_fd == -1) { abort(); } if (icpkvm->kernel_xics_fd != -1) { int ret; ss->cs = cs; ret = kvm_vcpu_enable_cap(cs, KVM_CAP_IRQ_XICS, 0, icpkvm->kernel_xics_fd, kvm_arch_vcpu_id(cs)); if (ret < 0) { error_report("Unable to connect CPU%ld to kernel XICS: %s", kvm_arch_vcpu_id(cs), strerror(errno)); exit(1); } } } static void xics_kvm_set_nr_irqs(XICSState *icp, uint32_t nr_irqs, Error **errp) { icp->nr_irqs = icp->ics->nr_irqs = nr_irqs; } static void xics_kvm_set_nr_servers(XICSState *icp, uint32_t nr_servers, Error **errp) { int i; icp->nr_servers = nr_servers; icp->ss = g_malloc0(icp->nr_servers*sizeof(ICPState)); for (i = 0; i < icp->nr_servers; i++) { char buffer[32]; object_initialize(&icp->ss[i], sizeof(icp->ss[i]), TYPE_KVM_ICP); snprintf(buffer, sizeof(buffer), "icp[%d]", i); object_property_add_child(OBJECT(icp), buffer, OBJECT(&icp->ss[i]), errp); } } static void rtas_dummy(PowerPCCPU *cpu, sPAPREnvironment *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { error_report("pseries: %s must never be called for in-kernel XICS", __func__); } static void xics_kvm_realize(DeviceState *dev, Error **errp) { KVMXICSState *icpkvm = KVM_XICS(dev); XICSState *icp = XICS_COMMON(dev); int i, rc; Error *error = NULL; struct kvm_create_device xics_create_device = { .type = KVM_DEV_TYPE_XICS, .flags = 0, }; if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_IRQ_XICS)) { error_setg(errp, "KVM and IRQ_XICS capability must be present for in-kernel XICS"); goto fail; } spapr_rtas_register(RTAS_IBM_SET_XIVE, "ibm,set-xive", rtas_dummy); spapr_rtas_register(RTAS_IBM_GET_XIVE, "ibm,get-xive", rtas_dummy); spapr_rtas_register(RTAS_IBM_INT_OFF, "ibm,int-off", rtas_dummy); spapr_rtas_register(RTAS_IBM_INT_ON, "ibm,int-on", rtas_dummy); rc = kvmppc_define_rtas_kernel_token(RTAS_IBM_SET_XIVE, "ibm,set-xive"); if (rc < 0) { error_setg(errp, "kvmppc_define_rtas_kernel_token: ibm,set-xive"); goto fail; } rc = kvmppc_define_rtas_kernel_token(RTAS_IBM_GET_XIVE, "ibm,get-xive"); if (rc < 0) { error_setg(errp, "kvmppc_define_rtas_kernel_token: ibm,get-xive"); goto fail; } rc = kvmppc_define_rtas_kernel_token(RTAS_IBM_INT_ON, "ibm,int-on"); if (rc < 0) { error_setg(errp, "kvmppc_define_rtas_kernel_token: ibm,int-on"); goto fail; } rc = kvmppc_define_rtas_kernel_token(RTAS_IBM_INT_OFF, "ibm,int-off"); if (rc < 0) { error_setg(errp, "kvmppc_define_rtas_kernel_token: ibm,int-off"); goto fail; } /* Create the kernel ICP */ rc = kvm_vm_ioctl(kvm_state, KVM_CREATE_DEVICE, &xics_create_device); if (rc < 0) { error_setg_errno(errp, -rc, "Error on KVM_CREATE_DEVICE for XICS"); goto fail; } icpkvm->kernel_xics_fd = xics_create_device.fd; object_property_set_bool(OBJECT(icp->ics), true, "realized", &error); if (error) { error_propagate(errp, error); goto fail; } assert(icp->nr_servers); for (i = 0; i < icp->nr_servers; i++) { object_property_set_bool(OBJECT(&icp->ss[i]), true, "realized", &error); if (error) { error_propagate(errp, error); goto fail; } } kvm_kernel_irqchip = true; kvm_irqfds_allowed = true; kvm_msi_via_irqfd_allowed = true; kvm_gsi_direct_mapping = true; return; fail: kvmppc_define_rtas_kernel_token(0, "ibm,set-xive"); kvmppc_define_rtas_kernel_token(0, "ibm,get-xive"); kvmppc_define_rtas_kernel_token(0, "ibm,int-on"); kvmppc_define_rtas_kernel_token(0, "ibm,int-off"); } static void xics_kvm_initfn(Object *obj) { XICSState *xics = XICS_COMMON(obj); xics->ics = ICS(object_new(TYPE_KVM_ICS)); object_property_add_child(obj, "ics", OBJECT(xics->ics), NULL); xics->ics->icp = xics; } static void xics_kvm_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); XICSStateClass *xsc = XICS_COMMON_CLASS(oc); dc->realize = xics_kvm_realize; xsc->cpu_setup = xics_kvm_cpu_setup; xsc->set_nr_irqs = xics_kvm_set_nr_irqs; xsc->set_nr_servers = xics_kvm_set_nr_servers; } static const TypeInfo xics_kvm_info = { .name = TYPE_KVM_XICS, .parent = TYPE_XICS_COMMON, .instance_size = sizeof(KVMXICSState), .class_init = xics_kvm_class_init, .instance_init = xics_kvm_initfn, }; static void xics_kvm_register_types(void) { type_register_static(&xics_kvm_info); type_register_static(&ics_kvm_info); type_register_static(&icp_kvm_info); } type_init(xics_kvm_register_types)