/* * QEMU NE2000 emulation * * Copyright (c) 2003-2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "vl.h" /* debug NE2000 card */ //#define DEBUG_NE2000 #define MAX_ETH_FRAME_SIZE 1514 #define E8390_CMD 0x00 /* The command register (for all pages) */ /* Page 0 register offsets. */ #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */ #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */ #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */ #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */ #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */ #define EN0_TSR 0x04 /* Transmit status reg RD */ #define EN0_TPSR 0x04 /* Transmit starting page WR */ #define EN0_NCR 0x05 /* Number of collision reg RD */ #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */ #define EN0_FIFO 0x06 /* FIFO RD */ #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */ #define EN0_ISR 0x07 /* Interrupt status reg RD WR */ #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */ #define EN0_RSARLO 0x08 /* Remote start address reg 0 */ #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */ #define EN0_RSARHI 0x09 /* Remote start address reg 1 */ #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */ #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */ #define EN0_RSR 0x0c /* rx status reg RD */ #define EN0_RXCR 0x0c /* RX configuration reg WR */ #define EN0_TXCR 0x0d /* TX configuration reg WR */ #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */ #define EN0_DCFG 0x0e /* Data configuration reg WR */ #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */ #define EN0_IMR 0x0f /* Interrupt mask reg WR */ #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */ #define EN1_PHYS 0x11 #define EN1_CURPAG 0x17 #define EN1_MULT 0x18 /* Register accessed at EN_CMD, the 8390 base addr. */ #define E8390_STOP 0x01 /* Stop and reset the chip */ #define E8390_START 0x02 /* Start the chip, clear reset */ #define E8390_TRANS 0x04 /* Transmit a frame */ #define E8390_RREAD 0x08 /* Remote read */ #define E8390_RWRITE 0x10 /* Remote write */ #define E8390_NODMA 0x20 /* Remote DMA */ #define E8390_PAGE0 0x00 /* Select page chip registers */ #define E8390_PAGE1 0x40 /* using the two high-order bits */ #define E8390_PAGE2 0x80 /* Page 3 is invalid. */ /* Bits in EN0_ISR - Interrupt status register */ #define ENISR_RX 0x01 /* Receiver, no error */ #define ENISR_TX 0x02 /* Transmitter, no error */ #define ENISR_RX_ERR 0x04 /* Receiver, with error */ #define ENISR_TX_ERR 0x08 /* Transmitter, with error */ #define ENISR_OVER 0x10 /* Receiver overwrote the ring */ #define ENISR_COUNTERS 0x20 /* Counters need emptying */ #define ENISR_RDC 0x40 /* remote dma complete */ #define ENISR_RESET 0x80 /* Reset completed */ #define ENISR_ALL 0x3f /* Interrupts we will enable */ /* Bits in received packet status byte and EN0_RSR*/ #define ENRSR_RXOK 0x01 /* Received a good packet */ #define ENRSR_CRC 0x02 /* CRC error */ #define ENRSR_FAE 0x04 /* frame alignment error */ #define ENRSR_FO 0x08 /* FIFO overrun */ #define ENRSR_MPA 0x10 /* missed pkt */ #define ENRSR_PHY 0x20 /* physical/multicast address */ #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */ #define ENRSR_DEF 0x80 /* deferring */ /* Transmitted packet status, EN0_TSR. */ #define ENTSR_PTX 0x01 /* Packet transmitted without error */ #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */ #define ENTSR_COL 0x04 /* The transmit collided at least once. */ #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */ #define ENTSR_CRS 0x10 /* The carrier sense was lost. */ #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */ #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */ #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */ #define NE2000_MEM_SIZE 32768 typedef struct NE2000State { uint8_t cmd; uint32_t start; uint32_t stop; uint8_t boundary; uint8_t tsr; uint8_t tpsr; uint16_t tcnt; uint16_t rcnt; uint32_t rsar; uint8_t isr; uint8_t dcfg; uint8_t imr; uint8_t phys[6]; /* mac address */ uint8_t curpag; uint8_t mult[8]; /* multicast mask array */ int irq; NetDriverState *nd; uint8_t mem[NE2000_MEM_SIZE]; } NE2000State; static void ne2000_reset(NE2000State *s) { int i; s->isr = ENISR_RESET; memcpy(s->mem, s->nd->macaddr, 6); s->mem[14] = 0x57; s->mem[15] = 0x57; /* duplicate prom data */ for(i = 15;i >= 0; i--) { s->mem[2 * i] = s->mem[i]; s->mem[2 * i + 1] = s->mem[i]; } } static void ne2000_update_irq(NE2000State *s) { int isr; isr = s->isr & s->imr; if (isr) pic_set_irq(s->irq, 1); else pic_set_irq(s->irq, 0); } /* return the max buffer size if the NE2000 can receive more data */ static int ne2000_can_receive(void *opaque) { NE2000State *s = opaque; int avail, index, boundary; if (s->cmd & E8390_STOP) return 0; index = s->curpag << 8; boundary = s->boundary << 8; if (index < boundary) avail = boundary - index; else avail = (s->stop - s->start) - (index - boundary); if (avail < (MAX_ETH_FRAME_SIZE + 4)) return 0; return MAX_ETH_FRAME_SIZE; } #define MIN_BUF_SIZE 60 static void ne2000_receive(void *opaque, const uint8_t *buf, int size) { NE2000State *s = opaque; uint8_t *p; int total_len, next, avail, len, index; uint8_t buf1[60]; #if defined(DEBUG_NE2000) printf("NE2000: received len=%d\n", size); #endif /* if too small buffer, then expand it */ if (size < MIN_BUF_SIZE) { memcpy(buf1, buf, size); memset(buf1 + size, 0, MIN_BUF_SIZE - size); buf = buf1; size = MIN_BUF_SIZE; } index = s->curpag << 8; /* 4 bytes for header */ total_len = size + 4; /* address for next packet (4 bytes for CRC) */ next = index + ((total_len + 4 + 255) & ~0xff); if (next >= s->stop) next -= (s->stop - s->start); /* prepare packet header */ p = s->mem + index; p[0] = ENRSR_RXOK; /* receive status */ p[1] = next >> 8; p[2] = total_len; p[3] = total_len >> 8; index += 4; /* write packet data */ while (size > 0) { avail = s->stop - index; len = size; if (len > avail) len = avail; memcpy(s->mem + index, buf, len); buf += len; index += len; if (index == s->stop) index = s->start; size -= len; } s->curpag = next >> 8; /* now we can signal we have receive something */ s->isr |= ENISR_RX; ne2000_update_irq(s); } static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val) { NE2000State *s = opaque; int offset, page; addr &= 0xf; #ifdef DEBUG_NE2000 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val); #endif if (addr == E8390_CMD) { /* control register */ s->cmd = val; if (val & E8390_START) { /* test specific case: zero length transfert */ if ((val & (E8390_RREAD | E8390_RWRITE)) && s->rcnt == 0) { s->isr |= ENISR_RDC; ne2000_update_irq(s); } if (val & E8390_TRANS) { net_send_packet(s->nd, s->mem + (s->tpsr << 8), s->tcnt); /* signal end of transfert */ s->tsr = ENTSR_PTX; s->isr |= ENISR_TX; ne2000_update_irq(s); } } } else { page = s->cmd >> 6; offset = addr | (page << 4); switch(offset) { case EN0_STARTPG: s->start = val << 8; break; case EN0_STOPPG: s->stop = val << 8; break; case EN0_BOUNDARY: s->boundary = val; break; case EN0_IMR: s->imr = val; ne2000_update_irq(s); break; case EN0_TPSR: s->tpsr = val; break; case EN0_TCNTLO: s->tcnt = (s->tcnt & 0xff00) | val; break; case EN0_TCNTHI: s->tcnt = (s->tcnt & 0x00ff) | (val << 8); break; case EN0_RSARLO: s->rsar = (s->rsar & 0xff00) | val; break; case EN0_RSARHI: s->rsar = (s->rsar & 0x00ff) | (val << 8); break; case EN0_RCNTLO: s->rcnt = (s->rcnt & 0xff00) | val; break; case EN0_RCNTHI: s->rcnt = (s->rcnt & 0x00ff) | (val << 8); break; case EN0_DCFG: s->dcfg = val; break; case EN0_ISR: s->isr &= ~val; ne2000_update_irq(s); break; case EN1_PHYS ... EN1_PHYS + 5: s->phys[offset - EN1_PHYS] = val; break; case EN1_CURPAG: s->curpag = val; break; case EN1_MULT ... EN1_MULT + 7: s->mult[offset - EN1_MULT] = val; break; } } } static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr) { NE2000State *s = opaque; int offset, page, ret; addr &= 0xf; if (addr == E8390_CMD) { ret = s->cmd; } else { page = s->cmd >> 6; offset = addr | (page << 4); switch(offset) { case EN0_TSR: ret = s->tsr; break; case EN0_BOUNDARY: ret = s->boundary; break; case EN0_ISR: ret = s->isr; break; case EN1_PHYS ... EN1_PHYS + 5: ret = s->phys[offset - EN1_PHYS]; break; case EN1_CURPAG: ret = s->curpag; break; case EN1_MULT ... EN1_MULT + 7: ret = s->mult[offset - EN1_MULT]; break; default: ret = 0x00; break; } } #ifdef DEBUG_NE2000 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret); #endif return ret; } static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val) { NE2000State *s = opaque; uint8_t *p; #ifdef DEBUG_NE2000 printf("NE2000: asic write val=0x%04x\n", val); #endif p = s->mem + s->rsar; if (s->dcfg & 0x01) { /* 16 bit access */ p[0] = val; p[1] = val >> 8; s->rsar += 2; s->rcnt -= 2; } else { /* 8 bit access */ p[0] = val; s->rsar++; s->rcnt--; } /* wrap */ if (s->rsar == s->stop) s->rsar = s->start; if (s->rcnt == 0) { /* signal end of transfert */ s->isr |= ENISR_RDC; ne2000_update_irq(s); } } static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr) { NE2000State *s = opaque; uint8_t *p; int ret; p = s->mem + s->rsar; if (s->dcfg & 0x01) { /* 16 bit access */ ret = p[0] | (p[1] << 8); s->rsar += 2; s->rcnt -= 2; } else { /* 8 bit access */ ret = p[0]; s->rsar++; s->rcnt--; } /* wrap */ if (s->rsar == s->stop) s->rsar = s->start; if (s->rcnt == 0) { /* signal end of transfert */ s->isr |= ENISR_RDC; ne2000_update_irq(s); } #ifdef DEBUG_NE2000 printf("NE2000: asic read val=0x%04x\n", ret); #endif return ret; } static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val) { /* nothing to do (end of reset pulse) */ } static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr) { NE2000State *s = opaque; ne2000_reset(s); return 0; } void ne2000_init(int base, int irq, NetDriverState *nd) { NE2000State *s; s = qemu_mallocz(sizeof(NE2000State)); if (!s) return; register_ioport_write(base, 16, 1, ne2000_ioport_write, s); register_ioport_read(base, 16, 1, ne2000_ioport_read, s); register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s); register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s); register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s); register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s); register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s); register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s); s->irq = irq; s->nd = nd; ne2000_reset(s); qemu_add_fd_read_handler(nd->fd, ne2000_can_receive, ne2000_receive, s); }