/* * Optimizations for Tiny Code Generator for QEMU * * Copyright (c) 2010 Samsung Electronics. * Contributed by Kirill Batuzov * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "tcg/tcg-op.h" #include "tcg-internal.h" #define CASE_OP_32_64(x) \ glue(glue(case INDEX_op_, x), _i32): \ glue(glue(case INDEX_op_, x), _i64) #define CASE_OP_32_64_VEC(x) \ glue(glue(case INDEX_op_, x), _i32): \ glue(glue(case INDEX_op_, x), _i64): \ glue(glue(case INDEX_op_, x), _vec) typedef struct TempOptInfo { bool is_const; TCGTemp *prev_copy; TCGTemp *next_copy; uint64_t val; uint64_t z_mask; /* mask bit is 0 if and only if value bit is 0 */ } TempOptInfo; typedef struct OptContext { TCGContext *tcg; TCGOp *prev_mb; TCGTempSet temps_used; /* In flight values from optimization. */ uint64_t z_mask; } OptContext; static inline TempOptInfo *ts_info(TCGTemp *ts) { return ts->state_ptr; } static inline TempOptInfo *arg_info(TCGArg arg) { return ts_info(arg_temp(arg)); } static inline bool ts_is_const(TCGTemp *ts) { return ts_info(ts)->is_const; } static inline bool arg_is_const(TCGArg arg) { return ts_is_const(arg_temp(arg)); } static inline bool ts_is_copy(TCGTemp *ts) { return ts_info(ts)->next_copy != ts; } /* Reset TEMP's state, possibly removing the temp for the list of copies. */ static void reset_ts(TCGTemp *ts) { TempOptInfo *ti = ts_info(ts); TempOptInfo *pi = ts_info(ti->prev_copy); TempOptInfo *ni = ts_info(ti->next_copy); ni->prev_copy = ti->prev_copy; pi->next_copy = ti->next_copy; ti->next_copy = ts; ti->prev_copy = ts; ti->is_const = false; ti->z_mask = -1; } static void reset_temp(TCGArg arg) { reset_ts(arg_temp(arg)); } /* Initialize and activate a temporary. */ static void init_ts_info(OptContext *ctx, TCGTemp *ts) { size_t idx = temp_idx(ts); TempOptInfo *ti; if (test_bit(idx, ctx->temps_used.l)) { return; } set_bit(idx, ctx->temps_used.l); ti = ts->state_ptr; if (ti == NULL) { ti = tcg_malloc(sizeof(TempOptInfo)); ts->state_ptr = ti; } ti->next_copy = ts; ti->prev_copy = ts; if (ts->kind == TEMP_CONST) { ti->is_const = true; ti->val = ts->val; ti->z_mask = ts->val; if (TCG_TARGET_REG_BITS > 32 && ts->type == TCG_TYPE_I32) { /* High bits of a 32-bit quantity are garbage. */ ti->z_mask |= ~0xffffffffull; } } else { ti->is_const = false; ti->z_mask = -1; } } static TCGTemp *find_better_copy(TCGContext *s, TCGTemp *ts) { TCGTemp *i, *g, *l; /* If this is already readonly, we can't do better. */ if (temp_readonly(ts)) { return ts; } g = l = NULL; for (i = ts_info(ts)->next_copy; i != ts; i = ts_info(i)->next_copy) { if (temp_readonly(i)) { return i; } else if (i->kind > ts->kind) { if (i->kind == TEMP_GLOBAL) { g = i; } else if (i->kind == TEMP_LOCAL) { l = i; } } } /* If we didn't find a better representation, return the same temp. */ return g ? g : l ? l : ts; } static bool ts_are_copies(TCGTemp *ts1, TCGTemp *ts2) { TCGTemp *i; if (ts1 == ts2) { return true; } if (!ts_is_copy(ts1) || !ts_is_copy(ts2)) { return false; } for (i = ts_info(ts1)->next_copy; i != ts1; i = ts_info(i)->next_copy) { if (i == ts2) { return true; } } return false; } static bool args_are_copies(TCGArg arg1, TCGArg arg2) { return ts_are_copies(arg_temp(arg1), arg_temp(arg2)); } static bool tcg_opt_gen_mov(OptContext *ctx, TCGOp *op, TCGArg dst, TCGArg src) { TCGTemp *dst_ts = arg_temp(dst); TCGTemp *src_ts = arg_temp(src); const TCGOpDef *def; TempOptInfo *di; TempOptInfo *si; uint64_t z_mask; TCGOpcode new_op; if (ts_are_copies(dst_ts, src_ts)) { tcg_op_remove(ctx->tcg, op); return true; } reset_ts(dst_ts); di = ts_info(dst_ts); si = ts_info(src_ts); def = &tcg_op_defs[op->opc]; if (def->flags & TCG_OPF_VECTOR) { new_op = INDEX_op_mov_vec; } else if (def->flags & TCG_OPF_64BIT) { new_op = INDEX_op_mov_i64; } else { new_op = INDEX_op_mov_i32; } op->opc = new_op; /* TCGOP_VECL and TCGOP_VECE remain unchanged. */ op->args[0] = dst; op->args[1] = src; z_mask = si->z_mask; if (TCG_TARGET_REG_BITS > 32 && new_op == INDEX_op_mov_i32) { /* High bits of the destination are now garbage. */ z_mask |= ~0xffffffffull; } di->z_mask = z_mask; if (src_ts->type == dst_ts->type) { TempOptInfo *ni = ts_info(si->next_copy); di->next_copy = si->next_copy; di->prev_copy = src_ts; ni->prev_copy = dst_ts; si->next_copy = dst_ts; di->is_const = si->is_const; di->val = si->val; } return true; } static bool tcg_opt_gen_movi(OptContext *ctx, TCGOp *op, TCGArg dst, uint64_t val) { const TCGOpDef *def = &tcg_op_defs[op->opc]; TCGType type; TCGTemp *tv; if (def->flags & TCG_OPF_VECTOR) { type = TCGOP_VECL(op) + TCG_TYPE_V64; } else if (def->flags & TCG_OPF_64BIT) { type = TCG_TYPE_I64; } else { type = TCG_TYPE_I32; } /* Convert movi to mov with constant temp. */ tv = tcg_constant_internal(type, val); init_ts_info(ctx, tv); return tcg_opt_gen_mov(ctx, op, dst, temp_arg(tv)); } static uint64_t do_constant_folding_2(TCGOpcode op, uint64_t x, uint64_t y) { uint64_t l64, h64; switch (op) { CASE_OP_32_64(add): return x + y; CASE_OP_32_64(sub): return x - y; CASE_OP_32_64(mul): return x * y; CASE_OP_32_64(and): return x & y; CASE_OP_32_64(or): return x | y; CASE_OP_32_64(xor): return x ^ y; case INDEX_op_shl_i32: return (uint32_t)x << (y & 31); case INDEX_op_shl_i64: return (uint64_t)x << (y & 63); case INDEX_op_shr_i32: return (uint32_t)x >> (y & 31); case INDEX_op_shr_i64: return (uint64_t)x >> (y & 63); case INDEX_op_sar_i32: return (int32_t)x >> (y & 31); case INDEX_op_sar_i64: return (int64_t)x >> (y & 63); case INDEX_op_rotr_i32: return ror32(x, y & 31); case INDEX_op_rotr_i64: return ror64(x, y & 63); case INDEX_op_rotl_i32: return rol32(x, y & 31); case INDEX_op_rotl_i64: return rol64(x, y & 63); CASE_OP_32_64(not): return ~x; CASE_OP_32_64(neg): return -x; CASE_OP_32_64(andc): return x & ~y; CASE_OP_32_64(orc): return x | ~y; CASE_OP_32_64(eqv): return ~(x ^ y); CASE_OP_32_64(nand): return ~(x & y); CASE_OP_32_64(nor): return ~(x | y); case INDEX_op_clz_i32: return (uint32_t)x ? clz32(x) : y; case INDEX_op_clz_i64: return x ? clz64(x) : y; case INDEX_op_ctz_i32: return (uint32_t)x ? ctz32(x) : y; case INDEX_op_ctz_i64: return x ? ctz64(x) : y; case INDEX_op_ctpop_i32: return ctpop32(x); case INDEX_op_ctpop_i64: return ctpop64(x); CASE_OP_32_64(ext8s): return (int8_t)x; CASE_OP_32_64(ext16s): return (int16_t)x; CASE_OP_32_64(ext8u): return (uint8_t)x; CASE_OP_32_64(ext16u): return (uint16_t)x; CASE_OP_32_64(bswap16): x = bswap16(x); return y & TCG_BSWAP_OS ? (int16_t)x : x; CASE_OP_32_64(bswap32): x = bswap32(x); return y & TCG_BSWAP_OS ? (int32_t)x : x; case INDEX_op_bswap64_i64: return bswap64(x); case INDEX_op_ext_i32_i64: case INDEX_op_ext32s_i64: return (int32_t)x; case INDEX_op_extu_i32_i64: case INDEX_op_extrl_i64_i32: case INDEX_op_ext32u_i64: return (uint32_t)x; case INDEX_op_extrh_i64_i32: return (uint64_t)x >> 32; case INDEX_op_muluh_i32: return ((uint64_t)(uint32_t)x * (uint32_t)y) >> 32; case INDEX_op_mulsh_i32: return ((int64_t)(int32_t)x * (int32_t)y) >> 32; case INDEX_op_muluh_i64: mulu64(&l64, &h64, x, y); return h64; case INDEX_op_mulsh_i64: muls64(&l64, &h64, x, y); return h64; case INDEX_op_div_i32: /* Avoid crashing on divide by zero, otherwise undefined. */ return (int32_t)x / ((int32_t)y ? : 1); case INDEX_op_divu_i32: return (uint32_t)x / ((uint32_t)y ? : 1); case INDEX_op_div_i64: return (int64_t)x / ((int64_t)y ? : 1); case INDEX_op_divu_i64: return (uint64_t)x / ((uint64_t)y ? : 1); case INDEX_op_rem_i32: return (int32_t)x % ((int32_t)y ? : 1); case INDEX_op_remu_i32: return (uint32_t)x % ((uint32_t)y ? : 1); case INDEX_op_rem_i64: return (int64_t)x % ((int64_t)y ? : 1); case INDEX_op_remu_i64: return (uint64_t)x % ((uint64_t)y ? : 1); default: fprintf(stderr, "Unrecognized operation %d in do_constant_folding.\n", op); tcg_abort(); } } static uint64_t do_constant_folding(TCGOpcode op, uint64_t x, uint64_t y) { const TCGOpDef *def = &tcg_op_defs[op]; uint64_t res = do_constant_folding_2(op, x, y); if (!(def->flags & TCG_OPF_64BIT)) { res = (int32_t)res; } return res; } static bool do_constant_folding_cond_32(uint32_t x, uint32_t y, TCGCond c) { switch (c) { case TCG_COND_EQ: return x == y; case TCG_COND_NE: return x != y; case TCG_COND_LT: return (int32_t)x < (int32_t)y; case TCG_COND_GE: return (int32_t)x >= (int32_t)y; case TCG_COND_LE: return (int32_t)x <= (int32_t)y; case TCG_COND_GT: return (int32_t)x > (int32_t)y; case TCG_COND_LTU: return x < y; case TCG_COND_GEU: return x >= y; case TCG_COND_LEU: return x <= y; case TCG_COND_GTU: return x > y; default: tcg_abort(); } } static bool do_constant_folding_cond_64(uint64_t x, uint64_t y, TCGCond c) { switch (c) { case TCG_COND_EQ: return x == y; case TCG_COND_NE: return x != y; case TCG_COND_LT: return (int64_t)x < (int64_t)y; case TCG_COND_GE: return (int64_t)x >= (int64_t)y; case TCG_COND_LE: return (int64_t)x <= (int64_t)y; case TCG_COND_GT: return (int64_t)x > (int64_t)y; case TCG_COND_LTU: return x < y; case TCG_COND_GEU: return x >= y; case TCG_COND_LEU: return x <= y; case TCG_COND_GTU: return x > y; default: tcg_abort(); } } static bool do_constant_folding_cond_eq(TCGCond c) { switch (c) { case TCG_COND_GT: case TCG_COND_LTU: case TCG_COND_LT: case TCG_COND_GTU: case TCG_COND_NE: return 0; case TCG_COND_GE: case TCG_COND_GEU: case TCG_COND_LE: case TCG_COND_LEU: case TCG_COND_EQ: return 1; default: tcg_abort(); } } /* * Return -1 if the condition can't be simplified, * and the result of the condition (0 or 1) if it can. */ static int do_constant_folding_cond(TCGOpcode op, TCGArg x, TCGArg y, TCGCond c) { uint64_t xv = arg_info(x)->val; uint64_t yv = arg_info(y)->val; if (arg_is_const(x) && arg_is_const(y)) { const TCGOpDef *def = &tcg_op_defs[op]; tcg_debug_assert(!(def->flags & TCG_OPF_VECTOR)); if (def->flags & TCG_OPF_64BIT) { return do_constant_folding_cond_64(xv, yv, c); } else { return do_constant_folding_cond_32(xv, yv, c); } } else if (args_are_copies(x, y)) { return do_constant_folding_cond_eq(c); } else if (arg_is_const(y) && yv == 0) { switch (c) { case TCG_COND_LTU: return 0; case TCG_COND_GEU: return 1; default: return -1; } } return -1; } /* * Return -1 if the condition can't be simplified, * and the result of the condition (0 or 1) if it can. */ static int do_constant_folding_cond2(TCGArg *p1, TCGArg *p2, TCGCond c) { TCGArg al = p1[0], ah = p1[1]; TCGArg bl = p2[0], bh = p2[1]; if (arg_is_const(bl) && arg_is_const(bh)) { tcg_target_ulong blv = arg_info(bl)->val; tcg_target_ulong bhv = arg_info(bh)->val; uint64_t b = deposit64(blv, 32, 32, bhv); if (arg_is_const(al) && arg_is_const(ah)) { tcg_target_ulong alv = arg_info(al)->val; tcg_target_ulong ahv = arg_info(ah)->val; uint64_t a = deposit64(alv, 32, 32, ahv); return do_constant_folding_cond_64(a, b, c); } if (b == 0) { switch (c) { case TCG_COND_LTU: return 0; case TCG_COND_GEU: return 1; default: break; } } } if (args_are_copies(al, bl) && args_are_copies(ah, bh)) { return do_constant_folding_cond_eq(c); } return -1; } static bool swap_commutative(TCGArg dest, TCGArg *p1, TCGArg *p2) { TCGArg a1 = *p1, a2 = *p2; int sum = 0; sum += arg_is_const(a1); sum -= arg_is_const(a2); /* Prefer the constant in second argument, and then the form op a, a, b, which is better handled on non-RISC hosts. */ if (sum > 0 || (sum == 0 && dest == a2)) { *p1 = a2; *p2 = a1; return true; } return false; } static bool swap_commutative2(TCGArg *p1, TCGArg *p2) { int sum = 0; sum += arg_is_const(p1[0]); sum += arg_is_const(p1[1]); sum -= arg_is_const(p2[0]); sum -= arg_is_const(p2[1]); if (sum > 0) { TCGArg t; t = p1[0], p1[0] = p2[0], p2[0] = t; t = p1[1], p1[1] = p2[1], p2[1] = t; return true; } return false; } static void init_arguments(OptContext *ctx, TCGOp *op, int nb_args) { for (int i = 0; i < nb_args; i++) { TCGTemp *ts = arg_temp(op->args[i]); if (ts) { init_ts_info(ctx, ts); } } } static void copy_propagate(OptContext *ctx, TCGOp *op, int nb_oargs, int nb_iargs) { TCGContext *s = ctx->tcg; for (int i = nb_oargs; i < nb_oargs + nb_iargs; i++) { TCGTemp *ts = arg_temp(op->args[i]); if (ts && ts_is_copy(ts)) { op->args[i] = temp_arg(find_better_copy(s, ts)); } } } static void finish_folding(OptContext *ctx, TCGOp *op) { const TCGOpDef *def = &tcg_op_defs[op->opc]; int i, nb_oargs; /* * For an opcode that ends a BB, reset all temp data. * We do no cross-BB optimization. */ if (def->flags & TCG_OPF_BB_END) { memset(&ctx->temps_used, 0, sizeof(ctx->temps_used)); ctx->prev_mb = NULL; return; } nb_oargs = def->nb_oargs; for (i = 0; i < nb_oargs; i++) { reset_temp(op->args[i]); /* * Save the corresponding known-zero bits mask for the * first output argument (only one supported so far). */ if (i == 0) { arg_info(op->args[i])->z_mask = ctx->z_mask; } } } /* * The fold_* functions return true when processing is complete, * usually by folding the operation to a constant or to a copy, * and calling tcg_opt_gen_{mov,movi}. They may do other things, * like collect information about the value produced, for use in * optimizing a subsequent operation. * * These first fold_* functions are all helpers, used by other * folders for more specific operations. */ static bool fold_const1(OptContext *ctx, TCGOp *op) { if (arg_is_const(op->args[1])) { uint64_t t; t = arg_info(op->args[1])->val; t = do_constant_folding(op->opc, t, 0); return tcg_opt_gen_movi(ctx, op, op->args[0], t); } return false; } static bool fold_const2(OptContext *ctx, TCGOp *op) { if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { uint64_t t1 = arg_info(op->args[1])->val; uint64_t t2 = arg_info(op->args[2])->val; t1 = do_constant_folding(op->opc, t1, t2); return tcg_opt_gen_movi(ctx, op, op->args[0], t1); } return false; } /* * These outermost fold_ functions are sorted alphabetically. */ static bool fold_add(OptContext *ctx, TCGOp *op) { return fold_const2(ctx, op); } static bool fold_and(OptContext *ctx, TCGOp *op) { return fold_const2(ctx, op); } static bool fold_andc(OptContext *ctx, TCGOp *op) { return fold_const2(ctx, op); } static bool fold_brcond(OptContext *ctx, TCGOp *op) { TCGCond cond = op->args[2]; int i = do_constant_folding_cond(op->opc, op->args[0], op->args[1], cond); if (i == 0) { tcg_op_remove(ctx->tcg, op); return true; } if (i > 0) { op->opc = INDEX_op_br; op->args[0] = op->args[3]; } return false; } static bool fold_brcond2(OptContext *ctx, TCGOp *op) { TCGCond cond = op->args[4]; int i = do_constant_folding_cond2(&op->args[0], &op->args[2], cond); TCGArg label = op->args[5]; int inv = 0; if (i >= 0) { goto do_brcond_const; } switch (cond) { case TCG_COND_LT: case TCG_COND_GE: /* * Simplify LT/GE comparisons vs zero to a single compare * vs the high word of the input. */ if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == 0 && arg_is_const(op->args[3]) && arg_info(op->args[3])->val == 0) { goto do_brcond_high; } break; case TCG_COND_NE: inv = 1; QEMU_FALLTHROUGH; case TCG_COND_EQ: /* * Simplify EQ/NE comparisons where one of the pairs * can be simplified. */ i = do_constant_folding_cond(INDEX_op_brcond_i32, op->args[0], op->args[2], cond); switch (i ^ inv) { case 0: goto do_brcond_const; case 1: goto do_brcond_high; } i = do_constant_folding_cond(INDEX_op_brcond_i32, op->args[1], op->args[3], cond); switch (i ^ inv) { case 0: goto do_brcond_const; case 1: op->opc = INDEX_op_brcond_i32; op->args[1] = op->args[2]; op->args[2] = cond; op->args[3] = label; break; } break; default: break; do_brcond_high: op->opc = INDEX_op_brcond_i32; op->args[0] = op->args[1]; op->args[1] = op->args[3]; op->args[2] = cond; op->args[3] = label; break; do_brcond_const: if (i == 0) { tcg_op_remove(ctx->tcg, op); return true; } op->opc = INDEX_op_br; op->args[0] = label; break; } return false; } static bool fold_call(OptContext *ctx, TCGOp *op) { TCGContext *s = ctx->tcg; int nb_oargs = TCGOP_CALLO(op); int nb_iargs = TCGOP_CALLI(op); int flags, i; init_arguments(ctx, op, nb_oargs + nb_iargs); copy_propagate(ctx, op, nb_oargs, nb_iargs); /* If the function reads or writes globals, reset temp data. */ flags = tcg_call_flags(op); if (!(flags & (TCG_CALL_NO_READ_GLOBALS | TCG_CALL_NO_WRITE_GLOBALS))) { int nb_globals = s->nb_globals; for (i = 0; i < nb_globals; i++) { if (test_bit(i, ctx->temps_used.l)) { reset_ts(&ctx->tcg->temps[i]); } } } /* Reset temp data for outputs. */ for (i = 0; i < nb_oargs; i++) { reset_temp(op->args[i]); } /* Stop optimizing MB across calls. */ ctx->prev_mb = NULL; return true; } static bool fold_ctpop(OptContext *ctx, TCGOp *op) { return fold_const1(ctx, op); } static bool fold_divide(OptContext *ctx, TCGOp *op) { return fold_const2(ctx, op); } static bool fold_eqv(OptContext *ctx, TCGOp *op) { return fold_const2(ctx, op); } static bool fold_exts(OptContext *ctx, TCGOp *op) { return fold_const1(ctx, op); } static bool fold_extu(OptContext *ctx, TCGOp *op) { return fold_const1(ctx, op); } static bool fold_mb(OptContext *ctx, TCGOp *op) { /* Eliminate duplicate and redundant fence instructions. */ if (ctx->prev_mb) { /* * Merge two barriers of the same type into one, * or a weaker barrier into a stronger one, * or two weaker barriers into a stronger one. * mb X; mb Y => mb X|Y * mb; strl => mb; st * ldaq; mb => ld; mb * ldaq; strl => ld; mb; st * Other combinations are also merged into a strong * barrier. This is stricter than specified but for * the purposes of TCG is better than not optimizing. */ ctx->prev_mb->args[0] |= op->args[0]; tcg_op_remove(ctx->tcg, op); } else { ctx->prev_mb = op; } return true; } static bool fold_mul(OptContext *ctx, TCGOp *op) { return fold_const2(ctx, op); } static bool fold_mul_highpart(OptContext *ctx, TCGOp *op) { return fold_const2(ctx, op); } static bool fold_mulu2_i32(OptContext *ctx, TCGOp *op) { if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { uint32_t a = arg_info(op->args[2])->val; uint32_t b = arg_info(op->args[3])->val; uint64_t r = (uint64_t)a * b; TCGArg rl, rh; TCGOp *op2 = tcg_op_insert_before(ctx->tcg, op, INDEX_op_mov_i32); rl = op->args[0]; rh = op->args[1]; tcg_opt_gen_movi(ctx, op, rl, (int32_t)r); tcg_opt_gen_movi(ctx, op2, rh, (int32_t)(r >> 32)); return true; } return false; } static bool fold_nand(OptContext *ctx, TCGOp *op) { return fold_const2(ctx, op); } static bool fold_neg(OptContext *ctx, TCGOp *op) { return fold_const1(ctx, op); } static bool fold_nor(OptContext *ctx, TCGOp *op) { return fold_const2(ctx, op); } static bool fold_not(OptContext *ctx, TCGOp *op) { return fold_const1(ctx, op); } static bool fold_or(OptContext *ctx, TCGOp *op) { return fold_const2(ctx, op); } static bool fold_orc(OptContext *ctx, TCGOp *op) { return fold_const2(ctx, op); } static bool fold_qemu_ld(OptContext *ctx, TCGOp *op) { /* Opcodes that touch guest memory stop the mb optimization. */ ctx->prev_mb = NULL; return false; } static bool fold_qemu_st(OptContext *ctx, TCGOp *op) { /* Opcodes that touch guest memory stop the mb optimization. */ ctx->prev_mb = NULL; return false; } static bool fold_remainder(OptContext *ctx, TCGOp *op) { return fold_const2(ctx, op); } static bool fold_setcond(OptContext *ctx, TCGOp *op) { TCGCond cond = op->args[3]; int i = do_constant_folding_cond(op->opc, op->args[1], op->args[2], cond); if (i >= 0) { return tcg_opt_gen_movi(ctx, op, op->args[0], i); } return false; } static bool fold_setcond2(OptContext *ctx, TCGOp *op) { TCGCond cond = op->args[5]; int i = do_constant_folding_cond2(&op->args[1], &op->args[3], cond); int inv = 0; if (i >= 0) { goto do_setcond_const; } switch (cond) { case TCG_COND_LT: case TCG_COND_GE: /* * Simplify LT/GE comparisons vs zero to a single compare * vs the high word of the input. */ if (arg_is_const(op->args[3]) && arg_info(op->args[3])->val == 0 && arg_is_const(op->args[4]) && arg_info(op->args[4])->val == 0) { goto do_setcond_high; } break; case TCG_COND_NE: inv = 1; QEMU_FALLTHROUGH; case TCG_COND_EQ: /* * Simplify EQ/NE comparisons where one of the pairs * can be simplified. */ i = do_constant_folding_cond(INDEX_op_setcond_i32, op->args[1], op->args[3], cond); switch (i ^ inv) { case 0: goto do_setcond_const; case 1: goto do_setcond_high; } i = do_constant_folding_cond(INDEX_op_setcond_i32, op->args[2], op->args[4], cond); switch (i ^ inv) { case 0: goto do_setcond_const; case 1: op->args[2] = op->args[3]; op->args[3] = cond; op->opc = INDEX_op_setcond_i32; break; } break; default: break; do_setcond_high: op->args[1] = op->args[2]; op->args[2] = op->args[4]; op->args[3] = cond; op->opc = INDEX_op_setcond_i32; break; } return false; do_setcond_const: return tcg_opt_gen_movi(ctx, op, op->args[0], i); } static bool fold_shift(OptContext *ctx, TCGOp *op) { return fold_const2(ctx, op); } static bool fold_sub(OptContext *ctx, TCGOp *op) { return fold_const2(ctx, op); } static bool fold_xor(OptContext *ctx, TCGOp *op) { return fold_const2(ctx, op); } /* Propagate constants and copies, fold constant expressions. */ void tcg_optimize(TCGContext *s) { int nb_temps, i; TCGOp *op, *op_next; OptContext ctx = { .tcg = s }; /* Array VALS has an element for each temp. If this temp holds a constant then its value is kept in VALS' element. If this temp is a copy of other ones then the other copies are available through the doubly linked circular list. */ nb_temps = s->nb_temps; for (i = 0; i < nb_temps; ++i) { s->temps[i].state_ptr = NULL; } QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { uint64_t z_mask, partmask, affected, tmp; TCGOpcode opc = op->opc; const TCGOpDef *def; bool done = false; /* Calls are special. */ if (opc == INDEX_op_call) { fold_call(&ctx, op); continue; } def = &tcg_op_defs[opc]; init_arguments(&ctx, op, def->nb_oargs + def->nb_iargs); copy_propagate(&ctx, op, def->nb_oargs, def->nb_iargs); /* For commutative operations make constant second argument */ switch (opc) { CASE_OP_32_64_VEC(add): CASE_OP_32_64_VEC(mul): CASE_OP_32_64_VEC(and): CASE_OP_32_64_VEC(or): CASE_OP_32_64_VEC(xor): CASE_OP_32_64(eqv): CASE_OP_32_64(nand): CASE_OP_32_64(nor): CASE_OP_32_64(muluh): CASE_OP_32_64(mulsh): swap_commutative(op->args[0], &op->args[1], &op->args[2]); break; CASE_OP_32_64(brcond): if (swap_commutative(-1, &op->args[0], &op->args[1])) { op->args[2] = tcg_swap_cond(op->args[2]); } break; CASE_OP_32_64(setcond): if (swap_commutative(op->args[0], &op->args[1], &op->args[2])) { op->args[3] = tcg_swap_cond(op->args[3]); } break; CASE_OP_32_64(movcond): if (swap_commutative(-1, &op->args[1], &op->args[2])) { op->args[5] = tcg_swap_cond(op->args[5]); } /* For movcond, we canonicalize the "false" input reg to match the destination reg so that the tcg backend can implement a "move if true" operation. */ if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { op->args[5] = tcg_invert_cond(op->args[5]); } break; CASE_OP_32_64(add2): swap_commutative(op->args[0], &op->args[2], &op->args[4]); swap_commutative(op->args[1], &op->args[3], &op->args[5]); break; CASE_OP_32_64(mulu2): CASE_OP_32_64(muls2): swap_commutative(op->args[0], &op->args[2], &op->args[3]); break; case INDEX_op_brcond2_i32: if (swap_commutative2(&op->args[0], &op->args[2])) { op->args[4] = tcg_swap_cond(op->args[4]); } break; case INDEX_op_setcond2_i32: if (swap_commutative2(&op->args[1], &op->args[3])) { op->args[5] = tcg_swap_cond(op->args[5]); } break; default: break; } /* Simplify expressions for "shift/rot r, 0, a => movi r, 0", and "sub r, 0, a => neg r, a" case. */ switch (opc) { CASE_OP_32_64(shl): CASE_OP_32_64(shr): CASE_OP_32_64(sar): CASE_OP_32_64(rotl): CASE_OP_32_64(rotr): if (arg_is_const(op->args[1]) && arg_info(op->args[1])->val == 0) { tcg_opt_gen_movi(&ctx, op, op->args[0], 0); continue; } break; CASE_OP_32_64_VEC(sub): { TCGOpcode neg_op; bool have_neg; if (arg_is_const(op->args[2])) { /* Proceed with possible constant folding. */ break; } if (opc == INDEX_op_sub_i32) { neg_op = INDEX_op_neg_i32; have_neg = TCG_TARGET_HAS_neg_i32; } else if (opc == INDEX_op_sub_i64) { neg_op = INDEX_op_neg_i64; have_neg = TCG_TARGET_HAS_neg_i64; } else if (TCG_TARGET_HAS_neg_vec) { TCGType type = TCGOP_VECL(op) + TCG_TYPE_V64; unsigned vece = TCGOP_VECE(op); neg_op = INDEX_op_neg_vec; have_neg = tcg_can_emit_vec_op(neg_op, type, vece) > 0; } else { break; } if (!have_neg) { break; } if (arg_is_const(op->args[1]) && arg_info(op->args[1])->val == 0) { op->opc = neg_op; reset_temp(op->args[0]); op->args[1] = op->args[2]; continue; } } break; CASE_OP_32_64_VEC(xor): CASE_OP_32_64(nand): if (!arg_is_const(op->args[1]) && arg_is_const(op->args[2]) && arg_info(op->args[2])->val == -1) { i = 1; goto try_not; } break; CASE_OP_32_64(nor): if (!arg_is_const(op->args[1]) && arg_is_const(op->args[2]) && arg_info(op->args[2])->val == 0) { i = 1; goto try_not; } break; CASE_OP_32_64_VEC(andc): if (!arg_is_const(op->args[2]) && arg_is_const(op->args[1]) && arg_info(op->args[1])->val == -1) { i = 2; goto try_not; } break; CASE_OP_32_64_VEC(orc): CASE_OP_32_64(eqv): if (!arg_is_const(op->args[2]) && arg_is_const(op->args[1]) && arg_info(op->args[1])->val == 0) { i = 2; goto try_not; } break; try_not: { TCGOpcode not_op; bool have_not; if (def->flags & TCG_OPF_VECTOR) { not_op = INDEX_op_not_vec; have_not = TCG_TARGET_HAS_not_vec; } else if (def->flags & TCG_OPF_64BIT) { not_op = INDEX_op_not_i64; have_not = TCG_TARGET_HAS_not_i64; } else { not_op = INDEX_op_not_i32; have_not = TCG_TARGET_HAS_not_i32; } if (!have_not) { break; } op->opc = not_op; reset_temp(op->args[0]); op->args[1] = op->args[i]; continue; } default: break; } /* Simplify expression for "op r, a, const => mov r, a" cases */ switch (opc) { CASE_OP_32_64_VEC(add): CASE_OP_32_64_VEC(sub): CASE_OP_32_64_VEC(or): CASE_OP_32_64_VEC(xor): CASE_OP_32_64_VEC(andc): CASE_OP_32_64(shl): CASE_OP_32_64(shr): CASE_OP_32_64(sar): CASE_OP_32_64(rotl): CASE_OP_32_64(rotr): if (!arg_is_const(op->args[1]) && arg_is_const(op->args[2]) && arg_info(op->args[2])->val == 0) { tcg_opt_gen_mov(&ctx, op, op->args[0], op->args[1]); continue; } break; CASE_OP_32_64_VEC(and): CASE_OP_32_64_VEC(orc): CASE_OP_32_64(eqv): if (!arg_is_const(op->args[1]) && arg_is_const(op->args[2]) && arg_info(op->args[2])->val == -1) { tcg_opt_gen_mov(&ctx, op, op->args[0], op->args[1]); continue; } break; default: break; } /* Simplify using known-zero bits. Currently only ops with a single output argument is supported. */ z_mask = -1; affected = -1; switch (opc) { CASE_OP_32_64(ext8s): if ((arg_info(op->args[1])->z_mask & 0x80) != 0) { break; } QEMU_FALLTHROUGH; CASE_OP_32_64(ext8u): z_mask = 0xff; goto and_const; CASE_OP_32_64(ext16s): if ((arg_info(op->args[1])->z_mask & 0x8000) != 0) { break; } QEMU_FALLTHROUGH; CASE_OP_32_64(ext16u): z_mask = 0xffff; goto and_const; case INDEX_op_ext32s_i64: if ((arg_info(op->args[1])->z_mask & 0x80000000) != 0) { break; } QEMU_FALLTHROUGH; case INDEX_op_ext32u_i64: z_mask = 0xffffffffU; goto and_const; CASE_OP_32_64(and): z_mask = arg_info(op->args[2])->z_mask; if (arg_is_const(op->args[2])) { and_const: affected = arg_info(op->args[1])->z_mask & ~z_mask; } z_mask = arg_info(op->args[1])->z_mask & z_mask; break; case INDEX_op_ext_i32_i64: if ((arg_info(op->args[1])->z_mask & 0x80000000) != 0) { break; } QEMU_FALLTHROUGH; case INDEX_op_extu_i32_i64: /* We do not compute affected as it is a size changing op. */ z_mask = (uint32_t)arg_info(op->args[1])->z_mask; break; CASE_OP_32_64(andc): /* Known-zeros does not imply known-ones. Therefore unless op->args[2] is constant, we can't infer anything from it. */ if (arg_is_const(op->args[2])) { z_mask = ~arg_info(op->args[2])->z_mask; goto and_const; } /* But we certainly know nothing outside args[1] may be set. */ z_mask = arg_info(op->args[1])->z_mask; break; case INDEX_op_sar_i32: if (arg_is_const(op->args[2])) { tmp = arg_info(op->args[2])->val & 31; z_mask = (int32_t)arg_info(op->args[1])->z_mask >> tmp; } break; case INDEX_op_sar_i64: if (arg_is_const(op->args[2])) { tmp = arg_info(op->args[2])->val & 63; z_mask = (int64_t)arg_info(op->args[1])->z_mask >> tmp; } break; case INDEX_op_shr_i32: if (arg_is_const(op->args[2])) { tmp = arg_info(op->args[2])->val & 31; z_mask = (uint32_t)arg_info(op->args[1])->z_mask >> tmp; } break; case INDEX_op_shr_i64: if (arg_is_const(op->args[2])) { tmp = arg_info(op->args[2])->val & 63; z_mask = (uint64_t)arg_info(op->args[1])->z_mask >> tmp; } break; case INDEX_op_extrl_i64_i32: z_mask = (uint32_t)arg_info(op->args[1])->z_mask; break; case INDEX_op_extrh_i64_i32: z_mask = (uint64_t)arg_info(op->args[1])->z_mask >> 32; break; CASE_OP_32_64(shl): if (arg_is_const(op->args[2])) { tmp = arg_info(op->args[2])->val & (TCG_TARGET_REG_BITS - 1); z_mask = arg_info(op->args[1])->z_mask << tmp; } break; CASE_OP_32_64(neg): /* Set to 1 all bits to the left of the rightmost. */ z_mask = -(arg_info(op->args[1])->z_mask & -arg_info(op->args[1])->z_mask); break; CASE_OP_32_64(deposit): z_mask = deposit64(arg_info(op->args[1])->z_mask, op->args[3], op->args[4], arg_info(op->args[2])->z_mask); break; CASE_OP_32_64(extract): z_mask = extract64(arg_info(op->args[1])->z_mask, op->args[2], op->args[3]); if (op->args[2] == 0) { affected = arg_info(op->args[1])->z_mask & ~z_mask; } break; CASE_OP_32_64(sextract): z_mask = sextract64(arg_info(op->args[1])->z_mask, op->args[2], op->args[3]); if (op->args[2] == 0 && (tcg_target_long)z_mask >= 0) { affected = arg_info(op->args[1])->z_mask & ~z_mask; } break; CASE_OP_32_64(or): CASE_OP_32_64(xor): z_mask = arg_info(op->args[1])->z_mask | arg_info(op->args[2])->z_mask; break; case INDEX_op_clz_i32: case INDEX_op_ctz_i32: z_mask = arg_info(op->args[2])->z_mask | 31; break; case INDEX_op_clz_i64: case INDEX_op_ctz_i64: z_mask = arg_info(op->args[2])->z_mask | 63; break; case INDEX_op_ctpop_i32: z_mask = 32 | 31; break; case INDEX_op_ctpop_i64: z_mask = 64 | 63; break; CASE_OP_32_64(setcond): case INDEX_op_setcond2_i32: z_mask = 1; break; CASE_OP_32_64(movcond): z_mask = arg_info(op->args[3])->z_mask | arg_info(op->args[4])->z_mask; break; CASE_OP_32_64(ld8u): z_mask = 0xff; break; CASE_OP_32_64(ld16u): z_mask = 0xffff; break; case INDEX_op_ld32u_i64: z_mask = 0xffffffffu; break; CASE_OP_32_64(qemu_ld): { MemOpIdx oi = op->args[def->nb_oargs + def->nb_iargs]; MemOp mop = get_memop(oi); if (!(mop & MO_SIGN)) { z_mask = (2ULL << ((8 << (mop & MO_SIZE)) - 1)) - 1; } } break; CASE_OP_32_64(bswap16): z_mask = arg_info(op->args[1])->z_mask; if (z_mask <= 0xffff) { op->args[2] |= TCG_BSWAP_IZ; } z_mask = bswap16(z_mask); switch (op->args[2] & (TCG_BSWAP_OZ | TCG_BSWAP_OS)) { case TCG_BSWAP_OZ: break; case TCG_BSWAP_OS: z_mask = (int16_t)z_mask; break; default: /* undefined high bits */ z_mask |= MAKE_64BIT_MASK(16, 48); break; } break; case INDEX_op_bswap32_i64: z_mask = arg_info(op->args[1])->z_mask; if (z_mask <= 0xffffffffu) { op->args[2] |= TCG_BSWAP_IZ; } z_mask = bswap32(z_mask); switch (op->args[2] & (TCG_BSWAP_OZ | TCG_BSWAP_OS)) { case TCG_BSWAP_OZ: break; case TCG_BSWAP_OS: z_mask = (int32_t)z_mask; break; default: /* undefined high bits */ z_mask |= MAKE_64BIT_MASK(32, 32); break; } break; default: break; } /* 32-bit ops generate 32-bit results. For the result is zero test below, we can ignore high bits, but for further optimizations we need to record that the high bits contain garbage. */ partmask = z_mask; if (!(def->flags & TCG_OPF_64BIT)) { z_mask |= ~(tcg_target_ulong)0xffffffffu; partmask &= 0xffffffffu; affected &= 0xffffffffu; } ctx.z_mask = z_mask; if (partmask == 0) { tcg_opt_gen_movi(&ctx, op, op->args[0], 0); continue; } if (affected == 0) { tcg_opt_gen_mov(&ctx, op, op->args[0], op->args[1]); continue; } /* Simplify expression for "op r, a, 0 => movi r, 0" cases */ switch (opc) { CASE_OP_32_64_VEC(and): CASE_OP_32_64_VEC(mul): CASE_OP_32_64(muluh): CASE_OP_32_64(mulsh): if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == 0) { tcg_opt_gen_movi(&ctx, op, op->args[0], 0); continue; } break; default: break; } /* Simplify expression for "op r, a, a => mov r, a" cases */ switch (opc) { CASE_OP_32_64_VEC(or): CASE_OP_32_64_VEC(and): if (args_are_copies(op->args[1], op->args[2])) { tcg_opt_gen_mov(&ctx, op, op->args[0], op->args[1]); continue; } break; default: break; } /* Simplify expression for "op r, a, a => movi r, 0" cases */ switch (opc) { CASE_OP_32_64_VEC(andc): CASE_OP_32_64_VEC(sub): CASE_OP_32_64_VEC(xor): if (args_are_copies(op->args[1], op->args[2])) { tcg_opt_gen_movi(&ctx, op, op->args[0], 0); continue; } break; default: break; } /* Propagate constants through copy operations and do constant folding. Constants will be substituted to arguments by register allocator where needed and possible. Also detect copies. */ switch (opc) { CASE_OP_32_64_VEC(mov): done = tcg_opt_gen_mov(&ctx, op, op->args[0], op->args[1]); break; case INDEX_op_dup_vec: if (arg_is_const(op->args[1])) { tmp = arg_info(op->args[1])->val; tmp = dup_const(TCGOP_VECE(op), tmp); tcg_opt_gen_movi(&ctx, op, op->args[0], tmp); continue; } break; case INDEX_op_dup2_vec: assert(TCG_TARGET_REG_BITS == 32); if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { tcg_opt_gen_movi(&ctx, op, op->args[0], deposit64(arg_info(op->args[1])->val, 32, 32, arg_info(op->args[2])->val)); continue; } else if (args_are_copies(op->args[1], op->args[2])) { op->opc = INDEX_op_dup_vec; TCGOP_VECE(op) = MO_32; } break; CASE_OP_32_64(bswap16): CASE_OP_32_64(bswap32): case INDEX_op_bswap64_i64: if (arg_is_const(op->args[1])) { tmp = do_constant_folding(opc, arg_info(op->args[1])->val, op->args[2]); tcg_opt_gen_movi(&ctx, op, op->args[0], tmp); continue; } break; CASE_OP_32_64(clz): CASE_OP_32_64(ctz): if (arg_is_const(op->args[1])) { TCGArg v = arg_info(op->args[1])->val; if (v != 0) { tmp = do_constant_folding(opc, v, 0); tcg_opt_gen_movi(&ctx, op, op->args[0], tmp); } else { tcg_opt_gen_mov(&ctx, op, op->args[0], op->args[2]); } continue; } break; CASE_OP_32_64(deposit): if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { tmp = deposit64(arg_info(op->args[1])->val, op->args[3], op->args[4], arg_info(op->args[2])->val); tcg_opt_gen_movi(&ctx, op, op->args[0], tmp); continue; } break; CASE_OP_32_64(extract): if (arg_is_const(op->args[1])) { tmp = extract64(arg_info(op->args[1])->val, op->args[2], op->args[3]); tcg_opt_gen_movi(&ctx, op, op->args[0], tmp); continue; } break; CASE_OP_32_64(sextract): if (arg_is_const(op->args[1])) { tmp = sextract64(arg_info(op->args[1])->val, op->args[2], op->args[3]); tcg_opt_gen_movi(&ctx, op, op->args[0], tmp); continue; } break; CASE_OP_32_64(extract2): if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { uint64_t v1 = arg_info(op->args[1])->val; uint64_t v2 = arg_info(op->args[2])->val; int shr = op->args[3]; if (opc == INDEX_op_extract2_i64) { tmp = (v1 >> shr) | (v2 << (64 - shr)); } else { tmp = (int32_t)(((uint32_t)v1 >> shr) | ((uint32_t)v2 << (32 - shr))); } tcg_opt_gen_movi(&ctx, op, op->args[0], tmp); continue; } break; CASE_OP_32_64(movcond): i = do_constant_folding_cond(opc, op->args[1], op->args[2], op->args[5]); if (i >= 0) { tcg_opt_gen_mov(&ctx, op, op->args[0], op->args[4 - i]); continue; } if (arg_is_const(op->args[3]) && arg_is_const(op->args[4])) { uint64_t tv = arg_info(op->args[3])->val; uint64_t fv = arg_info(op->args[4])->val; TCGCond cond = op->args[5]; if (fv == 1 && tv == 0) { cond = tcg_invert_cond(cond); } else if (!(tv == 1 && fv == 0)) { break; } op->args[3] = cond; op->opc = opc = (opc == INDEX_op_movcond_i32 ? INDEX_op_setcond_i32 : INDEX_op_setcond_i64); } break; case INDEX_op_add2_i32: case INDEX_op_sub2_i32: if (arg_is_const(op->args[2]) && arg_is_const(op->args[3]) && arg_is_const(op->args[4]) && arg_is_const(op->args[5])) { uint32_t al = arg_info(op->args[2])->val; uint32_t ah = arg_info(op->args[3])->val; uint32_t bl = arg_info(op->args[4])->val; uint32_t bh = arg_info(op->args[5])->val; uint64_t a = ((uint64_t)ah << 32) | al; uint64_t b = ((uint64_t)bh << 32) | bl; TCGArg rl, rh; TCGOp *op2 = tcg_op_insert_before(s, op, INDEX_op_mov_i32); if (opc == INDEX_op_add2_i32) { a += b; } else { a -= b; } rl = op->args[0]; rh = op->args[1]; tcg_opt_gen_movi(&ctx, op, rl, (int32_t)a); tcg_opt_gen_movi(&ctx, op2, rh, (int32_t)(a >> 32)); continue; } break; default: break; /* ---------------------------------------------------------- */ /* Sorted alphabetically by opcode as much as possible. */ CASE_OP_32_64_VEC(add): done = fold_add(&ctx, op); break; CASE_OP_32_64_VEC(and): done = fold_and(&ctx, op); break; CASE_OP_32_64_VEC(andc): done = fold_andc(&ctx, op); break; CASE_OP_32_64(brcond): done = fold_brcond(&ctx, op); break; case INDEX_op_brcond2_i32: done = fold_brcond2(&ctx, op); break; CASE_OP_32_64(ctpop): done = fold_ctpop(&ctx, op); break; CASE_OP_32_64(div): CASE_OP_32_64(divu): done = fold_divide(&ctx, op); break; CASE_OP_32_64(eqv): done = fold_eqv(&ctx, op); break; CASE_OP_32_64(ext8s): CASE_OP_32_64(ext16s): case INDEX_op_ext32s_i64: case INDEX_op_ext_i32_i64: done = fold_exts(&ctx, op); break; CASE_OP_32_64(ext8u): CASE_OP_32_64(ext16u): case INDEX_op_ext32u_i64: case INDEX_op_extu_i32_i64: case INDEX_op_extrl_i64_i32: case INDEX_op_extrh_i64_i32: done = fold_extu(&ctx, op); break; case INDEX_op_mb: done = fold_mb(&ctx, op); break; CASE_OP_32_64(mul): done = fold_mul(&ctx, op); break; CASE_OP_32_64(mulsh): CASE_OP_32_64(muluh): done = fold_mul_highpart(&ctx, op); break; case INDEX_op_mulu2_i32: done = fold_mulu2_i32(&ctx, op); break; CASE_OP_32_64(nand): done = fold_nand(&ctx, op); break; CASE_OP_32_64(neg): done = fold_neg(&ctx, op); break; CASE_OP_32_64(nor): done = fold_nor(&ctx, op); break; CASE_OP_32_64_VEC(not): done = fold_not(&ctx, op); break; CASE_OP_32_64_VEC(or): done = fold_or(&ctx, op); break; CASE_OP_32_64_VEC(orc): done = fold_orc(&ctx, op); break; case INDEX_op_qemu_ld_i32: case INDEX_op_qemu_ld_i64: done = fold_qemu_ld(&ctx, op); break; case INDEX_op_qemu_st_i32: case INDEX_op_qemu_st8_i32: case INDEX_op_qemu_st_i64: done = fold_qemu_st(&ctx, op); break; CASE_OP_32_64(rem): CASE_OP_32_64(remu): done = fold_remainder(&ctx, op); break; CASE_OP_32_64(rotl): CASE_OP_32_64(rotr): CASE_OP_32_64(sar): CASE_OP_32_64(shl): CASE_OP_32_64(shr): done = fold_shift(&ctx, op); break; CASE_OP_32_64(setcond): done = fold_setcond(&ctx, op); break; case INDEX_op_setcond2_i32: done = fold_setcond2(&ctx, op); break; CASE_OP_32_64_VEC(sub): done = fold_sub(&ctx, op); break; CASE_OP_32_64_VEC(xor): done = fold_xor(&ctx, op); break; } if (!done) { finish_folding(&ctx, op); } } }