/* * HPPA interrupt helper routines * * Copyright (c) 2017 Richard Henderson * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qemu/main-loop.h" #include "qemu/log.h" #include "cpu.h" #include "exec/helper-proto.h" #include "hw/core/cpu.h" #include "hw/hppa/hppa_hardware.h" static void eval_interrupt(HPPACPU *cpu) { CPUState *cs = CPU(cpu); if (cpu->env.cr[CR_EIRR] & cpu->env.cr[CR_EIEM]) { cpu_interrupt(cs, CPU_INTERRUPT_HARD); } else { cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); } } /* Each CPU has a word mapped into the GSC bus. Anything on the GSC bus * can write to this word to raise an external interrupt on the target CPU. * This includes the system controller (DINO) for regular devices, or * another CPU for SMP interprocessor interrupts. */ static uint64_t io_eir_read(void *opaque, hwaddr addr, unsigned size) { HPPACPU *cpu = opaque; /* ??? What does a read of this register over the GSC bus do? */ return cpu->env.cr[CR_EIRR]; } static void io_eir_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { HPPACPU *cpu = opaque; CPUHPPAState *env = &cpu->env; int widthm1 = 31; int le_bit; /* The default PSW.W controls the width of EIRR. */ if (hppa_is_pa20(env) && env->cr[CR_PSW_DEFAULT] & PDC_PSW_WIDE_BIT) { widthm1 = 63; } le_bit = ~data & widthm1; env->cr[CR_EIRR] |= 1ull << le_bit; eval_interrupt(cpu); } const MemoryRegionOps hppa_io_eir_ops = { .read = io_eir_read, .write = io_eir_write, .valid.min_access_size = 4, .valid.max_access_size = 4, .impl.min_access_size = 4, .impl.max_access_size = 4, }; void hppa_cpu_alarm_timer(void *opaque) { /* Raise interrupt 0. */ io_eir_write(opaque, 0, 0, 4); } void HELPER(write_eirr)(CPUHPPAState *env, target_ulong val) { env->cr[CR_EIRR] &= ~val; qemu_mutex_lock_iothread(); eval_interrupt(env_archcpu(env)); qemu_mutex_unlock_iothread(); } void HELPER(write_eiem)(CPUHPPAState *env, target_ulong val) { env->cr[CR_EIEM] = val; qemu_mutex_lock_iothread(); eval_interrupt(env_archcpu(env)); qemu_mutex_unlock_iothread(); } void hppa_cpu_do_interrupt(CPUState *cs) { HPPACPU *cpu = HPPA_CPU(cs); CPUHPPAState *env = &cpu->env; int i = cs->exception_index; uint64_t old_psw; /* As documented in pa2.0 -- interruption handling. */ /* step 1 */ env->cr[CR_IPSW] = old_psw = cpu_hppa_get_psw(env); /* step 2 -- Note PSW_W is masked out again for pa1.x */ cpu_hppa_put_psw(env, (env->cr[CR_PSW_DEFAULT] & PDC_PSW_WIDE_BIT ? PSW_W : 0) | (i == EXCP_HPMC ? PSW_M : 0)); /* step 3 */ /* * For pa1.x, IIASQ is simply a copy of IASQ. * For pa2.0, IIASQ is the top bits of the virtual address, * or zero if translation is disabled. */ if (!hppa_is_pa20(env)) { env->cr[CR_IIASQ] = env->iasq_f >> 32; env->cr_back[0] = env->iasq_b >> 32; } else if (old_psw & PSW_C) { env->cr[CR_IIASQ] = hppa_form_gva_psw(old_psw, env->iasq_f, env->iaoq_f) >> 32; env->cr_back[0] = hppa_form_gva_psw(old_psw, env->iasq_b, env->iaoq_b) >> 32; } else { env->cr[CR_IIASQ] = 0; env->cr_back[0] = 0; } env->cr[CR_IIAOQ] = env->iaoq_f; env->cr_back[1] = env->iaoq_b; if (old_psw & PSW_Q) { /* step 5 */ /* ISR and IOR will be set elsewhere. */ switch (i) { case EXCP_ILL: case EXCP_BREAK: case EXCP_PRIV_REG: case EXCP_PRIV_OPR: /* IIR set via translate.c. */ break; case EXCP_OVERFLOW: case EXCP_COND: case EXCP_ASSIST: case EXCP_DTLB_MISS: case EXCP_NA_ITLB_MISS: case EXCP_NA_DTLB_MISS: case EXCP_DMAR: case EXCP_DMPI: case EXCP_UNALIGN: case EXCP_DMP: case EXCP_DMB: case EXCP_TLB_DIRTY: case EXCP_PAGE_REF: case EXCP_ASSIST_EMU: { /* Avoid reading directly from the virtual address, lest we raise another exception from some sort of TLB issue. */ /* ??? An alternate fool-proof method would be to store the instruction data into the unwind info. That's probably a bit too much in the way of extra storage required. */ vaddr vaddr = env->iaoq_f & -4; hwaddr paddr = vaddr; if (old_psw & PSW_C) { int prot, t; vaddr = hppa_form_gva_psw(old_psw, env->iasq_f, vaddr); t = hppa_get_physical_address(env, vaddr, MMU_KERNEL_IDX, 0, &paddr, &prot, NULL); if (t >= 0) { /* We can't re-load the instruction. */ env->cr[CR_IIR] = 0; break; } } env->cr[CR_IIR] = ldl_phys(cs->as, paddr); } break; default: /* Other exceptions do not set IIR. */ break; } /* step 6 */ env->shadow[0] = env->gr[1]; env->shadow[1] = env->gr[8]; env->shadow[2] = env->gr[9]; env->shadow[3] = env->gr[16]; env->shadow[4] = env->gr[17]; env->shadow[5] = env->gr[24]; env->shadow[6] = env->gr[25]; } /* step 7 */ if (i == EXCP_TOC) { env->iaoq_f = hppa_form_gva(env, 0, FIRMWARE_START); /* help SeaBIOS and provide iaoq_b and iasq_back in shadow regs */ env->gr[24] = env->cr_back[0]; env->gr[25] = env->cr_back[1]; } else { env->iaoq_f = hppa_form_gva(env, 0, env->cr[CR_IVA] + 32 * i); } env->iaoq_b = hppa_form_gva(env, 0, env->iaoq_f + 4); env->iasq_f = 0; env->iasq_b = 0; if (qemu_loglevel_mask(CPU_LOG_INT)) { static const char * const names[] = { [EXCP_HPMC] = "high priority machine check", [EXCP_POWER_FAIL] = "power fail interrupt", [EXCP_RC] = "recovery counter trap", [EXCP_EXT_INTERRUPT] = "external interrupt", [EXCP_LPMC] = "low priority machine check", [EXCP_ITLB_MISS] = "instruction tlb miss fault", [EXCP_IMP] = "instruction memory protection trap", [EXCP_ILL] = "illegal instruction trap", [EXCP_BREAK] = "break instruction trap", [EXCP_PRIV_OPR] = "privileged operation trap", [EXCP_PRIV_REG] = "privileged register trap", [EXCP_OVERFLOW] = "overflow trap", [EXCP_COND] = "conditional trap", [EXCP_ASSIST] = "assist exception trap", [EXCP_DTLB_MISS] = "data tlb miss fault", [EXCP_NA_ITLB_MISS] = "non-access instruction tlb miss", [EXCP_NA_DTLB_MISS] = "non-access data tlb miss", [EXCP_DMP] = "data memory protection trap", [EXCP_DMB] = "data memory break trap", [EXCP_TLB_DIRTY] = "tlb dirty bit trap", [EXCP_PAGE_REF] = "page reference trap", [EXCP_ASSIST_EMU] = "assist emulation trap", [EXCP_HPT] = "high-privilege transfer trap", [EXCP_LPT] = "low-privilege transfer trap", [EXCP_TB] = "taken branch trap", [EXCP_DMAR] = "data memory access rights trap", [EXCP_DMPI] = "data memory protection id trap", [EXCP_UNALIGN] = "unaligned data reference trap", [EXCP_PER_INTERRUPT] = "performance monitor interrupt", [EXCP_SYSCALL] = "syscall", [EXCP_SYSCALL_LWS] = "syscall-lws", [EXCP_TOC] = "TOC (transfer of control)", }; static int count; const char *name = NULL; char unknown[16]; if (i >= 0 && i < ARRAY_SIZE(names)) { name = names[i]; } if (!name) { snprintf(unknown, sizeof(unknown), "unknown %d", i); name = unknown; } qemu_log("INT %6d: %s @ " TARGET_FMT_lx ":" TARGET_FMT_lx " for " TARGET_FMT_lx ":" TARGET_FMT_lx "\n", ++count, name, env->cr[CR_IIASQ], env->cr[CR_IIAOQ], env->cr[CR_ISR], env->cr[CR_IOR]); } cs->exception_index = -1; } bool hppa_cpu_exec_interrupt(CPUState *cs, int interrupt_request) { HPPACPU *cpu = HPPA_CPU(cs); CPUHPPAState *env = &cpu->env; if (interrupt_request & CPU_INTERRUPT_NMI) { /* Raise TOC (NMI) interrupt */ cpu_reset_interrupt(cs, CPU_INTERRUPT_NMI); cs->exception_index = EXCP_TOC; hppa_cpu_do_interrupt(cs); return true; } /* If interrupts are requested and enabled, raise them. */ if ((env->psw & PSW_I) && (interrupt_request & CPU_INTERRUPT_HARD)) { cs->exception_index = EXCP_EXT_INTERRUPT; hppa_cpu_do_interrupt(cs); return true; } return false; }