/* * SH4 emulation * * Copyright (c) 2005 Samuel Tardieu * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/exec-all.h" #include "exec/log.h" #if !defined(CONFIG_USER_ONLY) #include "hw/sh4/sh_intc.h" #include "sysemu/runstate.h" #endif #define MMU_OK 0 #define MMU_ITLB_MISS (-1) #define MMU_ITLB_MULTIPLE (-2) #define MMU_ITLB_VIOLATION (-3) #define MMU_DTLB_MISS_READ (-4) #define MMU_DTLB_MISS_WRITE (-5) #define MMU_DTLB_INITIAL_WRITE (-6) #define MMU_DTLB_VIOLATION_READ (-7) #define MMU_DTLB_VIOLATION_WRITE (-8) #define MMU_DTLB_MULTIPLE (-9) #define MMU_DTLB_MISS (-10) #define MMU_IADDR_ERROR (-11) #define MMU_DADDR_ERROR_READ (-12) #define MMU_DADDR_ERROR_WRITE (-13) #if defined(CONFIG_USER_ONLY) int cpu_sh4_is_cached(CPUSH4State *env, target_ulong addr) { /* For user mode, only U0 area is cacheable. */ return !(addr & 0x80000000); } #else /* !CONFIG_USER_ONLY */ void superh_cpu_do_interrupt(CPUState *cs) { CPUSH4State *env = cpu_env(cs); int do_irq = cs->interrupt_request & CPU_INTERRUPT_HARD; int do_exp, irq_vector = cs->exception_index; /* prioritize exceptions over interrupts */ do_exp = cs->exception_index != -1; do_irq = do_irq && (cs->exception_index == -1); if (env->sr & (1u << SR_BL)) { if (do_exp && cs->exception_index != 0x1e0) { /* In theory a masked exception generates a reset exception, which in turn jumps to the reset vector. However this only works when using a bootloader. When using a kernel and an initrd, they need to be reloaded and the program counter should be loaded with the kernel entry point. qemu_system_reset_request takes care of that. */ qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); return; } if (do_irq && !env->in_sleep) { return; /* masked */ } } env->in_sleep = 0; if (do_irq) { irq_vector = sh_intc_get_pending_vector(env->intc_handle, (env->sr >> 4) & 0xf); if (irq_vector == -1) { return; /* masked */ } } if (qemu_loglevel_mask(CPU_LOG_INT)) { const char *expname; switch (cs->exception_index) { case 0x0e0: expname = "addr_error"; break; case 0x040: expname = "tlb_miss"; break; case 0x0a0: expname = "tlb_violation"; break; case 0x180: expname = "illegal_instruction"; break; case 0x1a0: expname = "slot_illegal_instruction"; break; case 0x800: expname = "fpu_disable"; break; case 0x820: expname = "slot_fpu"; break; case 0x100: expname = "data_write"; break; case 0x060: expname = "dtlb_miss_write"; break; case 0x0c0: expname = "dtlb_violation_write"; break; case 0x120: expname = "fpu_exception"; break; case 0x080: expname = "initial_page_write"; break; case 0x160: expname = "trapa"; break; default: expname = do_irq ? "interrupt" : "???"; break; } qemu_log("exception 0x%03x [%s] raised\n", irq_vector, expname); log_cpu_state(cs, 0); } env->ssr = cpu_read_sr(env); env->spc = env->pc; env->sgr = env->gregs[15]; env->sr |= (1u << SR_BL) | (1u << SR_MD) | (1u << SR_RB); env->lock_addr = -1; if (env->flags & TB_FLAG_DELAY_SLOT_MASK) { /* Branch instruction should be executed again before delay slot. */ env->spc -= 2; /* Clear flags for exception/interrupt routine. */ env->flags &= ~TB_FLAG_DELAY_SLOT_MASK; } if (do_exp) { env->expevt = cs->exception_index; switch (cs->exception_index) { case 0x000: case 0x020: case 0x140: env->sr &= ~(1u << SR_FD); env->sr |= 0xf << 4; /* IMASK */ env->pc = 0xa0000000; break; case 0x040: case 0x060: env->pc = env->vbr + 0x400; break; case 0x160: env->spc += 2; /* special case for TRAPA */ /* fall through */ default: env->pc = env->vbr + 0x100; break; } return; } if (do_irq) { env->intevt = irq_vector; env->pc = env->vbr + 0x600; return; } } static void update_itlb_use(CPUSH4State * env, int itlbnb) { uint8_t or_mask = 0, and_mask = (uint8_t) - 1; switch (itlbnb) { case 0: and_mask = 0x1f; break; case 1: and_mask = 0xe7; or_mask = 0x80; break; case 2: and_mask = 0xfb; or_mask = 0x50; break; case 3: or_mask = 0x2c; break; } env->mmucr &= (and_mask << 24) | 0x00ffffff; env->mmucr |= (or_mask << 24); } static int itlb_replacement(CPUSH4State * env) { if ((env->mmucr & 0xe0000000) == 0xe0000000) { return 0; } if ((env->mmucr & 0x98000000) == 0x18000000) { return 1; } if ((env->mmucr & 0x54000000) == 0x04000000) { return 2; } if ((env->mmucr & 0x2c000000) == 0x00000000) { return 3; } cpu_abort(env_cpu(env), "Unhandled itlb_replacement"); } /* Find the corresponding entry in the right TLB Return entry, MMU_DTLB_MISS or MMU_DTLB_MULTIPLE */ static int find_tlb_entry(CPUSH4State * env, target_ulong address, tlb_t * entries, uint8_t nbtlb, int use_asid) { int match = MMU_DTLB_MISS; uint32_t start, end; uint8_t asid; int i; asid = env->pteh & 0xff; for (i = 0; i < nbtlb; i++) { if (!entries[i].v) continue; /* Invalid entry */ if (!entries[i].sh && use_asid && entries[i].asid != asid) continue; /* Bad ASID */ start = (entries[i].vpn << 10) & ~(entries[i].size - 1); end = start + entries[i].size - 1; if (address >= start && address <= end) { /* Match */ if (match != MMU_DTLB_MISS) return MMU_DTLB_MULTIPLE; /* Multiple match */ match = i; } } return match; } static void increment_urc(CPUSH4State * env) { uint8_t urb, urc; /* Increment URC */ urb = ((env->mmucr) >> 18) & 0x3f; urc = ((env->mmucr) >> 10) & 0x3f; urc++; if ((urb > 0 && urc > urb) || urc > (UTLB_SIZE - 1)) urc = 0; env->mmucr = (env->mmucr & 0xffff03ff) | (urc << 10); } /* Copy and utlb entry into itlb Return entry */ static int copy_utlb_entry_itlb(CPUSH4State *env, int utlb) { int itlb; tlb_t * ientry; itlb = itlb_replacement(env); ientry = &env->itlb[itlb]; if (ientry->v) { tlb_flush_page(env_cpu(env), ientry->vpn << 10); } *ientry = env->utlb[utlb]; update_itlb_use(env, itlb); return itlb; } /* Find itlb entry Return entry, MMU_ITLB_MISS, MMU_ITLB_MULTIPLE or MMU_DTLB_MULTIPLE */ static int find_itlb_entry(CPUSH4State * env, target_ulong address, int use_asid) { int e; e = find_tlb_entry(env, address, env->itlb, ITLB_SIZE, use_asid); if (e == MMU_DTLB_MULTIPLE) { e = MMU_ITLB_MULTIPLE; } else if (e == MMU_DTLB_MISS) { e = MMU_ITLB_MISS; } else if (e >= 0) { update_itlb_use(env, e); } return e; } /* Find utlb entry Return entry, MMU_DTLB_MISS, MMU_DTLB_MULTIPLE */ static int find_utlb_entry(CPUSH4State * env, target_ulong address, int use_asid) { /* per utlb access */ increment_urc(env); /* Return entry */ return find_tlb_entry(env, address, env->utlb, UTLB_SIZE, use_asid); } /* Match address against MMU Return MMU_OK, MMU_DTLB_MISS_READ, MMU_DTLB_MISS_WRITE, MMU_DTLB_INITIAL_WRITE, MMU_DTLB_VIOLATION_READ, MMU_DTLB_VIOLATION_WRITE, MMU_ITLB_MISS, MMU_ITLB_MULTIPLE, MMU_ITLB_VIOLATION, MMU_IADDR_ERROR, MMU_DADDR_ERROR_READ, MMU_DADDR_ERROR_WRITE. */ static int get_mmu_address(CPUSH4State * env, target_ulong * physical, int *prot, target_ulong address, MMUAccessType access_type) { int use_asid, n; tlb_t *matching = NULL; use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD)); if (access_type == MMU_INST_FETCH) { n = find_itlb_entry(env, address, use_asid); if (n >= 0) { matching = &env->itlb[n]; if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) { n = MMU_ITLB_VIOLATION; } else { *prot = PAGE_EXEC; } } else { n = find_utlb_entry(env, address, use_asid); if (n >= 0) { n = copy_utlb_entry_itlb(env, n); matching = &env->itlb[n]; if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) { n = MMU_ITLB_VIOLATION; } else { *prot = PAGE_READ | PAGE_EXEC; if ((matching->pr & 1) && matching->d) { *prot |= PAGE_WRITE; } } } else if (n == MMU_DTLB_MULTIPLE) { n = MMU_ITLB_MULTIPLE; } else if (n == MMU_DTLB_MISS) { n = MMU_ITLB_MISS; } } } else { n = find_utlb_entry(env, address, use_asid); if (n >= 0) { matching = &env->utlb[n]; if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) { n = (access_type == MMU_DATA_STORE) ? MMU_DTLB_VIOLATION_WRITE : MMU_DTLB_VIOLATION_READ; } else if ((access_type == MMU_DATA_STORE) && !(matching->pr & 1)) { n = MMU_DTLB_VIOLATION_WRITE; } else if ((access_type == MMU_DATA_STORE) && !matching->d) { n = MMU_DTLB_INITIAL_WRITE; } else { *prot = PAGE_READ; if ((matching->pr & 1) && matching->d) { *prot |= PAGE_WRITE; } } } else if (n == MMU_DTLB_MISS) { n = (access_type == MMU_DATA_STORE) ? MMU_DTLB_MISS_WRITE : MMU_DTLB_MISS_READ; } } if (n >= 0) { n = MMU_OK; *physical = ((matching->ppn << 10) & ~(matching->size - 1)) | (address & (matching->size - 1)); } return n; } static int get_physical_address(CPUSH4State * env, target_ulong * physical, int *prot, target_ulong address, MMUAccessType access_type) { /* P1, P2 and P4 areas do not use translation */ if ((address >= 0x80000000 && address < 0xc0000000) || address >= 0xe0000000) { if (!(env->sr & (1u << SR_MD)) && (address < 0xe0000000 || address >= 0xe4000000)) { /* Unauthorized access in user mode (only store queues are available) */ qemu_log_mask(LOG_GUEST_ERROR, "Unauthorized access\n"); if (access_type == MMU_DATA_LOAD) { return MMU_DADDR_ERROR_READ; } else if (access_type == MMU_DATA_STORE) { return MMU_DADDR_ERROR_WRITE; } else { return MMU_IADDR_ERROR; } } if (address >= 0x80000000 && address < 0xc0000000) { /* Mask upper 3 bits for P1 and P2 areas */ *physical = address & 0x1fffffff; } else { *physical = address; } *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; return MMU_OK; } /* If MMU is disabled, return the corresponding physical page */ if (!(env->mmucr & MMUCR_AT)) { *physical = address & 0x1FFFFFFF; *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; return MMU_OK; } /* We need to resort to the MMU */ return get_mmu_address(env, physical, prot, address, access_type); } hwaddr superh_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) { target_ulong physical; int prot; if (get_physical_address(cpu_env(cs), &physical, &prot, addr, MMU_DATA_LOAD) == MMU_OK) { return physical; } return -1; } void cpu_load_tlb(CPUSH4State * env) { CPUState *cs = env_cpu(env); int n = cpu_mmucr_urc(env->mmucr); tlb_t * entry = &env->utlb[n]; if (entry->v) { /* Overwriting valid entry in utlb. */ target_ulong address = entry->vpn << 10; tlb_flush_page(cs, address); } /* Take values into cpu status from registers. */ entry->asid = (uint8_t)cpu_pteh_asid(env->pteh); entry->vpn = cpu_pteh_vpn(env->pteh); entry->v = (uint8_t)cpu_ptel_v(env->ptel); entry->ppn = cpu_ptel_ppn(env->ptel); entry->sz = (uint8_t)cpu_ptel_sz(env->ptel); switch (entry->sz) { case 0: /* 00 */ entry->size = 1024; /* 1K */ break; case 1: /* 01 */ entry->size = 1024 * 4; /* 4K */ break; case 2: /* 10 */ entry->size = 1024 * 64; /* 64K */ break; case 3: /* 11 */ entry->size = 1024 * 1024; /* 1M */ break; default: cpu_abort(cs, "Unhandled load_tlb"); break; } entry->sh = (uint8_t)cpu_ptel_sh(env->ptel); entry->c = (uint8_t)cpu_ptel_c(env->ptel); entry->pr = (uint8_t)cpu_ptel_pr(env->ptel); entry->d = (uint8_t)cpu_ptel_d(env->ptel); entry->wt = (uint8_t)cpu_ptel_wt(env->ptel); entry->sa = (uint8_t)cpu_ptea_sa(env->ptea); entry->tc = (uint8_t)cpu_ptea_tc(env->ptea); } void cpu_sh4_invalidate_tlb(CPUSH4State *s) { int i; /* UTLB */ for (i = 0; i < UTLB_SIZE; i++) { tlb_t * entry = &s->utlb[i]; entry->v = 0; } /* ITLB */ for (i = 0; i < ITLB_SIZE; i++) { tlb_t * entry = &s->itlb[i]; entry->v = 0; } tlb_flush(env_cpu(s)); } uint32_t cpu_sh4_read_mmaped_itlb_addr(CPUSH4State *s, hwaddr addr) { int index = (addr & 0x00000300) >> 8; tlb_t * entry = &s->itlb[index]; return (entry->vpn << 10) | (entry->v << 8) | (entry->asid); } void cpu_sh4_write_mmaped_itlb_addr(CPUSH4State *s, hwaddr addr, uint32_t mem_value) { uint32_t vpn = (mem_value & 0xfffffc00) >> 10; uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8); uint8_t asid = (uint8_t)(mem_value & 0x000000ff); int index = (addr & 0x00000300) >> 8; tlb_t * entry = &s->itlb[index]; if (entry->v) { /* Overwriting valid entry in itlb. */ target_ulong address = entry->vpn << 10; tlb_flush_page(env_cpu(s), address); } entry->asid = asid; entry->vpn = vpn; entry->v = v; } uint32_t cpu_sh4_read_mmaped_itlb_data(CPUSH4State *s, hwaddr addr) { int array = (addr & 0x00800000) >> 23; int index = (addr & 0x00000300) >> 8; tlb_t * entry = &s->itlb[index]; if (array == 0) { /* ITLB Data Array 1 */ return (entry->ppn << 10) | (entry->v << 8) | (entry->pr << 5) | ((entry->sz & 1) << 6) | ((entry->sz & 2) << 4) | (entry->c << 3) | (entry->sh << 1); } else { /* ITLB Data Array 2 */ return (entry->tc << 1) | (entry->sa); } } void cpu_sh4_write_mmaped_itlb_data(CPUSH4State *s, hwaddr addr, uint32_t mem_value) { int array = (addr & 0x00800000) >> 23; int index = (addr & 0x00000300) >> 8; tlb_t * entry = &s->itlb[index]; if (array == 0) { /* ITLB Data Array 1 */ if (entry->v) { /* Overwriting valid entry in utlb. */ target_ulong address = entry->vpn << 10; tlb_flush_page(env_cpu(s), address); } entry->ppn = (mem_value & 0x1ffffc00) >> 10; entry->v = (mem_value & 0x00000100) >> 8; entry->sz = (mem_value & 0x00000080) >> 6 | (mem_value & 0x00000010) >> 4; entry->pr = (mem_value & 0x00000040) >> 5; entry->c = (mem_value & 0x00000008) >> 3; entry->sh = (mem_value & 0x00000002) >> 1; } else { /* ITLB Data Array 2 */ entry->tc = (mem_value & 0x00000008) >> 3; entry->sa = (mem_value & 0x00000007); } } uint32_t cpu_sh4_read_mmaped_utlb_addr(CPUSH4State *s, hwaddr addr) { int index = (addr & 0x00003f00) >> 8; tlb_t * entry = &s->utlb[index]; increment_urc(s); /* per utlb access */ return (entry->vpn << 10) | (entry->v << 8) | (entry->asid); } void cpu_sh4_write_mmaped_utlb_addr(CPUSH4State *s, hwaddr addr, uint32_t mem_value) { int associate = addr & 0x0000080; uint32_t vpn = (mem_value & 0xfffffc00) >> 10; uint8_t d = (uint8_t)((mem_value & 0x00000200) >> 9); uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8); uint8_t asid = (uint8_t)(mem_value & 0x000000ff); int use_asid = !(s->mmucr & MMUCR_SV) || !(s->sr & (1u << SR_MD)); if (associate) { int i; tlb_t * utlb_match_entry = NULL; int needs_tlb_flush = 0; /* search UTLB */ for (i = 0; i < UTLB_SIZE; i++) { tlb_t * entry = &s->utlb[i]; if (!entry->v) continue; if (entry->vpn == vpn && (!use_asid || entry->asid == asid || entry->sh)) { if (utlb_match_entry) { CPUState *cs = env_cpu(s); /* Multiple TLB Exception */ cs->exception_index = 0x140; s->tea = addr; break; } if (entry->v && !v) needs_tlb_flush = 1; entry->v = v; entry->d = d; utlb_match_entry = entry; } increment_urc(s); /* per utlb access */ } /* search ITLB */ for (i = 0; i < ITLB_SIZE; i++) { tlb_t * entry = &s->itlb[i]; if (entry->vpn == vpn && (!use_asid || entry->asid == asid || entry->sh)) { if (entry->v && !v) needs_tlb_flush = 1; if (utlb_match_entry) *entry = *utlb_match_entry; else entry->v = v; break; } } if (needs_tlb_flush) { tlb_flush_page(env_cpu(s), vpn << 10); } } else { int index = (addr & 0x00003f00) >> 8; tlb_t * entry = &s->utlb[index]; if (entry->v) { CPUState *cs = env_cpu(s); /* Overwriting valid entry in utlb. */ target_ulong address = entry->vpn << 10; tlb_flush_page(cs, address); } entry->asid = asid; entry->vpn = vpn; entry->d = d; entry->v = v; increment_urc(s); } } uint32_t cpu_sh4_read_mmaped_utlb_data(CPUSH4State *s, hwaddr addr) { int array = (addr & 0x00800000) >> 23; int index = (addr & 0x00003f00) >> 8; tlb_t * entry = &s->utlb[index]; increment_urc(s); /* per utlb access */ if (array == 0) { /* ITLB Data Array 1 */ return (entry->ppn << 10) | (entry->v << 8) | (entry->pr << 5) | ((entry->sz & 1) << 6) | ((entry->sz & 2) << 4) | (entry->c << 3) | (entry->d << 2) | (entry->sh << 1) | (entry->wt); } else { /* ITLB Data Array 2 */ return (entry->tc << 1) | (entry->sa); } } void cpu_sh4_write_mmaped_utlb_data(CPUSH4State *s, hwaddr addr, uint32_t mem_value) { int array = (addr & 0x00800000) >> 23; int index = (addr & 0x00003f00) >> 8; tlb_t * entry = &s->utlb[index]; increment_urc(s); /* per utlb access */ if (array == 0) { /* UTLB Data Array 1 */ if (entry->v) { /* Overwriting valid entry in utlb. */ target_ulong address = entry->vpn << 10; tlb_flush_page(env_cpu(s), address); } entry->ppn = (mem_value & 0x1ffffc00) >> 10; entry->v = (mem_value & 0x00000100) >> 8; entry->sz = (mem_value & 0x00000080) >> 6 | (mem_value & 0x00000010) >> 4; entry->pr = (mem_value & 0x00000060) >> 5; entry->c = (mem_value & 0x00000008) >> 3; entry->d = (mem_value & 0x00000004) >> 2; entry->sh = (mem_value & 0x00000002) >> 1; entry->wt = (mem_value & 0x00000001); } else { /* UTLB Data Array 2 */ entry->tc = (mem_value & 0x00000008) >> 3; entry->sa = (mem_value & 0x00000007); } } int cpu_sh4_is_cached(CPUSH4State * env, target_ulong addr) { int n; int use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD)); /* check area */ if (env->sr & (1u << SR_MD)) { /* For privileged mode, P2 and P4 area is not cacheable. */ if ((0xA0000000 <= addr && addr < 0xC0000000) || 0xE0000000 <= addr) return 0; } else { /* For user mode, only U0 area is cacheable. */ if (0x80000000 <= addr) return 0; } /* * TODO : Evaluate CCR and check if the cache is on or off. * Now CCR is not in CPUSH4State, but in SH7750State. * When you move the ccr into CPUSH4State, the code will be * as follows. */ #if 0 /* check if operand cache is enabled or not. */ if (!(env->ccr & 1)) return 0; #endif /* if MMU is off, no check for TLB. */ if (env->mmucr & MMUCR_AT) return 1; /* check TLB */ n = find_tlb_entry(env, addr, env->itlb, ITLB_SIZE, use_asid); if (n >= 0) return env->itlb[n].c; n = find_tlb_entry(env, addr, env->utlb, UTLB_SIZE, use_asid); if (n >= 0) return env->utlb[n].c; return 0; } bool superh_cpu_exec_interrupt(CPUState *cs, int interrupt_request) { if (interrupt_request & CPU_INTERRUPT_HARD) { /* Delay slots are indivisible, ignore interrupts */ if (cpu_env(cs)->flags & TB_FLAG_DELAY_SLOT_MASK) { return false; } else { superh_cpu_do_interrupt(cs); return true; } } return false; } bool superh_cpu_tlb_fill(CPUState *cs, vaddr address, int size, MMUAccessType access_type, int mmu_idx, bool probe, uintptr_t retaddr) { CPUSH4State *env = cpu_env(cs); int ret; target_ulong physical; int prot; ret = get_physical_address(env, &physical, &prot, address, access_type); if (ret == MMU_OK) { address &= TARGET_PAGE_MASK; physical &= TARGET_PAGE_MASK; tlb_set_page(cs, address, physical, prot, mmu_idx, TARGET_PAGE_SIZE); return true; } if (probe) { return false; } if (ret != MMU_DTLB_MULTIPLE && ret != MMU_ITLB_MULTIPLE) { env->pteh = (env->pteh & PTEH_ASID_MASK) | (address & PTEH_VPN_MASK); } env->tea = address; switch (ret) { case MMU_ITLB_MISS: case MMU_DTLB_MISS_READ: cs->exception_index = 0x040; break; case MMU_DTLB_MULTIPLE: case MMU_ITLB_MULTIPLE: cs->exception_index = 0x140; break; case MMU_ITLB_VIOLATION: cs->exception_index = 0x0a0; break; case MMU_DTLB_MISS_WRITE: cs->exception_index = 0x060; break; case MMU_DTLB_INITIAL_WRITE: cs->exception_index = 0x080; break; case MMU_DTLB_VIOLATION_READ: cs->exception_index = 0x0a0; break; case MMU_DTLB_VIOLATION_WRITE: cs->exception_index = 0x0c0; break; case MMU_IADDR_ERROR: case MMU_DADDR_ERROR_READ: cs->exception_index = 0x0e0; break; case MMU_DADDR_ERROR_WRITE: cs->exception_index = 0x100; break; default: cpu_abort(cs, "Unhandled MMU fault"); } cpu_loop_exit_restore(cs, retaddr); } #endif /* !CONFIG_USER_ONLY */