/* * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the Open Source and Linux Lab nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "cpu.h" #include "exec/exec-all.h" #include "exec/gdbstub.h" #include "qemu/host-utils.h" #if !defined(CONFIG_USER_ONLY) #include "hw/loader.h" #endif static struct XtensaConfigList *xtensa_cores; static void xtensa_core_class_init(ObjectClass *oc, void *data) { CPUClass *cc = CPU_CLASS(oc); XtensaCPUClass *xcc = XTENSA_CPU_CLASS(oc); const XtensaConfig *config = data; xcc->config = config; /* Use num_core_regs to see only non-privileged registers in an unmodified * gdb. Use num_regs to see all registers. gdb modification is required * for that: reset bit 0 in the 'flags' field of the registers definitions * in the gdb/xtensa-config.c inside gdb source tree or inside gdb overlay. */ cc->gdb_num_core_regs = config->gdb_regmap.num_regs; } void xtensa_finalize_config(XtensaConfig *config) { unsigned i, n = 0; if (config->gdb_regmap.num_regs) { return; } for (i = 0; config->gdb_regmap.reg[i].targno >= 0; ++i) { n += (config->gdb_regmap.reg[i].type != 6); } config->gdb_regmap.num_regs = n; } void xtensa_register_core(XtensaConfigList *node) { TypeInfo type = { .parent = TYPE_XTENSA_CPU, .class_init = xtensa_core_class_init, .class_data = (void *)node->config, }; node->next = xtensa_cores; xtensa_cores = node; type.name = g_strdup_printf("%s-" TYPE_XTENSA_CPU, node->config->name); type_register(&type); g_free((gpointer)type.name); } static uint32_t check_hw_breakpoints(CPUXtensaState *env) { unsigned i; for (i = 0; i < env->config->ndbreak; ++i) { if (env->cpu_watchpoint[i] && env->cpu_watchpoint[i]->flags & BP_WATCHPOINT_HIT) { return DEBUGCAUSE_DB | (i << DEBUGCAUSE_DBNUM_SHIFT); } } return 0; } void xtensa_breakpoint_handler(CPUState *cs) { XtensaCPU *cpu = XTENSA_CPU(cs); CPUXtensaState *env = &cpu->env; if (cs->watchpoint_hit) { if (cs->watchpoint_hit->flags & BP_CPU) { uint32_t cause; cs->watchpoint_hit = NULL; cause = check_hw_breakpoints(env); if (cause) { debug_exception_env(env, cause); } cpu_resume_from_signal(cs, NULL); } } } XtensaCPU *cpu_xtensa_init(const char *cpu_model) { ObjectClass *oc; XtensaCPU *cpu; CPUXtensaState *env; oc = cpu_class_by_name(TYPE_XTENSA_CPU, cpu_model); if (oc == NULL) { return NULL; } cpu = XTENSA_CPU(object_new(object_class_get_name(oc))); env = &cpu->env; xtensa_irq_init(env); object_property_set_bool(OBJECT(cpu), true, "realized", NULL); return cpu; } void xtensa_cpu_list(FILE *f, fprintf_function cpu_fprintf) { XtensaConfigList *core = xtensa_cores; cpu_fprintf(f, "Available CPUs:\n"); for (; core; core = core->next) { cpu_fprintf(f, " %s\n", core->config->name); } } hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) { XtensaCPU *cpu = XTENSA_CPU(cs); uint32_t paddr; uint32_t page_size; unsigned access; if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0, &paddr, &page_size, &access) == 0) { return paddr; } if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0, &paddr, &page_size, &access) == 0) { return paddr; } return ~0; } static uint32_t relocated_vector(CPUXtensaState *env, uint32_t vector) { if (xtensa_option_enabled(env->config, XTENSA_OPTION_RELOCATABLE_VECTOR)) { return vector - env->config->vecbase + env->sregs[VECBASE]; } else { return vector; } } /*! * Handle penging IRQ. * For the high priority interrupt jump to the corresponding interrupt vector. * For the level-1 interrupt convert it to either user, kernel or double * exception with the 'level-1 interrupt' exception cause. */ static void handle_interrupt(CPUXtensaState *env) { int level = env->pending_irq_level; if (level > xtensa_get_cintlevel(env) && level <= env->config->nlevel && (env->config->level_mask[level] & env->sregs[INTSET] & env->sregs[INTENABLE])) { CPUState *cs = CPU(xtensa_env_get_cpu(env)); if (level > 1) { env->sregs[EPC1 + level - 1] = env->pc; env->sregs[EPS2 + level - 2] = env->sregs[PS]; env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | level | PS_EXCM; env->pc = relocated_vector(env, env->config->interrupt_vector[level]); } else { env->sregs[EXCCAUSE] = LEVEL1_INTERRUPT_CAUSE; if (env->sregs[PS] & PS_EXCM) { if (env->config->ndepc) { env->sregs[DEPC] = env->pc; } else { env->sregs[EPC1] = env->pc; } cs->exception_index = EXC_DOUBLE; } else { env->sregs[EPC1] = env->pc; cs->exception_index = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL; } env->sregs[PS] |= PS_EXCM; } env->exception_taken = 1; } } void xtensa_cpu_do_interrupt(CPUState *cs) { XtensaCPU *cpu = XTENSA_CPU(cs); CPUXtensaState *env = &cpu->env; if (cs->exception_index == EXC_IRQ) { qemu_log_mask(CPU_LOG_INT, "%s(EXC_IRQ) level = %d, cintlevel = %d, " "pc = %08x, a0 = %08x, ps = %08x, " "intset = %08x, intenable = %08x, " "ccount = %08x\n", __func__, env->pending_irq_level, xtensa_get_cintlevel(env), env->pc, env->regs[0], env->sregs[PS], env->sregs[INTSET], env->sregs[INTENABLE], env->sregs[CCOUNT]); handle_interrupt(env); } switch (cs->exception_index) { case EXC_WINDOW_OVERFLOW4: case EXC_WINDOW_UNDERFLOW4: case EXC_WINDOW_OVERFLOW8: case EXC_WINDOW_UNDERFLOW8: case EXC_WINDOW_OVERFLOW12: case EXC_WINDOW_UNDERFLOW12: case EXC_KERNEL: case EXC_USER: case EXC_DOUBLE: case EXC_DEBUG: qemu_log_mask(CPU_LOG_INT, "%s(%d) " "pc = %08x, a0 = %08x, ps = %08x, ccount = %08x\n", __func__, cs->exception_index, env->pc, env->regs[0], env->sregs[PS], env->sregs[CCOUNT]); if (env->config->exception_vector[cs->exception_index]) { env->pc = relocated_vector(env, env->config->exception_vector[cs->exception_index]); env->exception_taken = 1; } else { qemu_log_mask(CPU_LOG_INT, "%s(pc = %08x) bad exception_index: %d\n", __func__, env->pc, cs->exception_index); } break; case EXC_IRQ: break; default: qemu_log("%s(pc = %08x) unknown exception_index: %d\n", __func__, env->pc, cs->exception_index); break; } check_interrupts(env); } bool xtensa_cpu_exec_interrupt(CPUState *cs, int interrupt_request) { if (interrupt_request & CPU_INTERRUPT_HARD) { cs->exception_index = EXC_IRQ; xtensa_cpu_do_interrupt(cs); return true; } return false; } static void reset_tlb_mmu_all_ways(CPUXtensaState *env, const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE]) { unsigned wi, ei; for (wi = 0; wi < tlb->nways; ++wi) { for (ei = 0; ei < tlb->way_size[wi]; ++ei) { entry[wi][ei].asid = 0; entry[wi][ei].variable = true; } } } static void reset_tlb_mmu_ways56(CPUXtensaState *env, const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE]) { if (!tlb->varway56) { static const xtensa_tlb_entry way5[] = { { .vaddr = 0xd0000000, .paddr = 0, .asid = 1, .attr = 7, .variable = false, }, { .vaddr = 0xd8000000, .paddr = 0, .asid = 1, .attr = 3, .variable = false, } }; static const xtensa_tlb_entry way6[] = { { .vaddr = 0xe0000000, .paddr = 0xf0000000, .asid = 1, .attr = 7, .variable = false, }, { .vaddr = 0xf0000000, .paddr = 0xf0000000, .asid = 1, .attr = 3, .variable = false, } }; memcpy(entry[5], way5, sizeof(way5)); memcpy(entry[6], way6, sizeof(way6)); } else { uint32_t ei; for (ei = 0; ei < 8; ++ei) { entry[6][ei].vaddr = ei << 29; entry[6][ei].paddr = ei << 29; entry[6][ei].asid = 1; entry[6][ei].attr = 3; } } } static void reset_tlb_region_way0(CPUXtensaState *env, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE]) { unsigned ei; for (ei = 0; ei < 8; ++ei) { entry[0][ei].vaddr = ei << 29; entry[0][ei].paddr = ei << 29; entry[0][ei].asid = 1; entry[0][ei].attr = 2; entry[0][ei].variable = true; } } void reset_mmu(CPUXtensaState *env) { if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { env->sregs[RASID] = 0x04030201; env->sregs[ITLBCFG] = 0; env->sregs[DTLBCFG] = 0; env->autorefill_idx = 0; reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb); reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb); reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb); reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb); } else { reset_tlb_region_way0(env, env->itlb); reset_tlb_region_way0(env, env->dtlb); } } static unsigned get_ring(const CPUXtensaState *env, uint8_t asid) { unsigned i; for (i = 0; i < 4; ++i) { if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) { return i; } } return 0xff; } /*! * Lookup xtensa TLB for the given virtual address. * See ISA, 4.6.2.2 * * \param pwi: [out] way index * \param pei: [out] entry index * \param pring: [out] access ring * \return 0 if ok, exception cause code otherwise */ int xtensa_tlb_lookup(const CPUXtensaState *env, uint32_t addr, bool dtlb, uint32_t *pwi, uint32_t *pei, uint8_t *pring) { const xtensa_tlb *tlb = dtlb ? &env->config->dtlb : &env->config->itlb; const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ? env->dtlb : env->itlb; int nhits = 0; unsigned wi; for (wi = 0; wi < tlb->nways; ++wi) { uint32_t vpn; uint32_t ei; split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei); if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) { unsigned ring = get_ring(env, entry[wi][ei].asid); if (ring < 4) { if (++nhits > 1) { return dtlb ? LOAD_STORE_TLB_MULTI_HIT_CAUSE : INST_TLB_MULTI_HIT_CAUSE; } *pwi = wi; *pei = ei; *pring = ring; } } } return nhits ? 0 : (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE); } /*! * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask. * See ISA, 4.6.5.10 */ static unsigned mmu_attr_to_access(uint32_t attr) { unsigned access = 0; if (attr < 12) { access |= PAGE_READ; if (attr & 0x1) { access |= PAGE_EXEC; } if (attr & 0x2) { access |= PAGE_WRITE; } switch (attr & 0xc) { case 0: access |= PAGE_CACHE_BYPASS; break; case 4: access |= PAGE_CACHE_WB; break; case 8: access |= PAGE_CACHE_WT; break; } } else if (attr == 13) { access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE; } return access; } /*! * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask. * See ISA, 4.6.3.3 */ static unsigned region_attr_to_access(uint32_t attr) { static const unsigned access[16] = { [0] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_WT, [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT, [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS, [3] = PAGE_EXEC | PAGE_CACHE_WB, [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB, [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB, [14] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE, }; return access[attr & 0xf]; } /*! * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask. * See ISA, A.2.14 The Cache Attribute Register */ static unsigned cacheattr_attr_to_access(uint32_t attr) { static const unsigned access[16] = { [0] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_WT, [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT, [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS, [3] = PAGE_EXEC | PAGE_CACHE_WB, [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB, [14] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE, }; return access[attr & 0xf]; } static bool is_access_granted(unsigned access, int is_write) { switch (is_write) { case 0: return access & PAGE_READ; case 1: return access & PAGE_WRITE; case 2: return access & PAGE_EXEC; default: return 0; } } static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte); static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb, uint32_t vaddr, int is_write, int mmu_idx, uint32_t *paddr, uint32_t *page_size, unsigned *access, bool may_lookup_pt) { bool dtlb = is_write != 2; uint32_t wi; uint32_t ei; uint8_t ring; uint32_t vpn; uint32_t pte; const xtensa_tlb_entry *entry = NULL; xtensa_tlb_entry tmp_entry; int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring); if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) && may_lookup_pt && get_pte(env, vaddr, &pte) == 0) { ring = (pte >> 4) & 0x3; wi = 0; split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei); if (update_tlb) { wi = ++env->autorefill_idx & 0x3; xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte); env->sregs[EXCVADDR] = vaddr; qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n", __func__, vaddr, vpn, pte); } else { xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte); entry = &tmp_entry; } ret = 0; } if (ret != 0) { return ret; } if (entry == NULL) { entry = xtensa_tlb_get_entry(env, dtlb, wi, ei); } if (ring < mmu_idx) { return dtlb ? LOAD_STORE_PRIVILEGE_CAUSE : INST_FETCH_PRIVILEGE_CAUSE; } *access = mmu_attr_to_access(entry->attr) & ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE); if (!is_access_granted(*access, is_write)) { return dtlb ? (is_write ? STORE_PROHIBITED_CAUSE : LOAD_PROHIBITED_CAUSE) : INST_FETCH_PROHIBITED_CAUSE; } *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi)); *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1; return 0; } static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte) { CPUState *cs = CPU(xtensa_env_get_cpu(env)); uint32_t paddr; uint32_t page_size; unsigned access; uint32_t pt_vaddr = (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc; int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0, &paddr, &page_size, &access, false); qemu_log_mask(CPU_LOG_MMU, "%s: trying autorefill(%08x) -> %08x\n", __func__, vaddr, ret ? ~0 : paddr); if (ret == 0) { *pte = ldl_phys(cs->as, paddr); } return ret; } static int get_physical_addr_region(CPUXtensaState *env, uint32_t vaddr, int is_write, int mmu_idx, uint32_t *paddr, uint32_t *page_size, unsigned *access) { bool dtlb = is_write != 2; uint32_t wi = 0; uint32_t ei = (vaddr >> 29) & 0x7; const xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei); *access = region_attr_to_access(entry->attr); if (!is_access_granted(*access, is_write)) { return dtlb ? (is_write ? STORE_PROHIBITED_CAUSE : LOAD_PROHIBITED_CAUSE) : INST_FETCH_PROHIBITED_CAUSE; } *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK); *page_size = ~REGION_PAGE_MASK + 1; return 0; } /*! * Convert virtual address to physical addr. * MMU may issue pagewalk and change xtensa autorefill TLB way entry. * * \return 0 if ok, exception cause code otherwise */ int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb, uint32_t vaddr, int is_write, int mmu_idx, uint32_t *paddr, uint32_t *page_size, unsigned *access) { if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { return get_physical_addr_mmu(env, update_tlb, vaddr, is_write, mmu_idx, paddr, page_size, access, true); } else if (xtensa_option_bits_enabled(env->config, XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) | XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) { return get_physical_addr_region(env, vaddr, is_write, mmu_idx, paddr, page_size, access); } else { *paddr = vaddr; *page_size = TARGET_PAGE_SIZE; *access = cacheattr_attr_to_access( env->sregs[CACHEATTR] >> ((vaddr & 0xe0000000) >> 27)); return 0; } } static void dump_tlb(FILE *f, fprintf_function cpu_fprintf, CPUXtensaState *env, bool dtlb) { unsigned wi, ei; const xtensa_tlb *conf = dtlb ? &env->config->dtlb : &env->config->itlb; unsigned (*attr_to_access)(uint32_t) = xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ? mmu_attr_to_access : region_attr_to_access; for (wi = 0; wi < conf->nways; ++wi) { uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1; const char *sz_text; bool print_header = true; if (sz >= 0x100000) { sz >>= 20; sz_text = "MB"; } else { sz >>= 10; sz_text = "KB"; } for (ei = 0; ei < conf->way_size[wi]; ++ei) { const xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei); if (entry->asid) { static const char * const cache_text[8] = { [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass", [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT", [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB", [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate", }; unsigned access = attr_to_access(entry->attr); unsigned cache_idx = (access & PAGE_CACHE_MASK) >> PAGE_CACHE_SHIFT; if (print_header) { print_header = false; cpu_fprintf(f, "Way %u (%d %s)\n", wi, sz, sz_text); cpu_fprintf(f, "\tVaddr Paddr ASID Attr RWX Cache\n" "\t---------- ---------- ---- ---- --- -------\n"); } cpu_fprintf(f, "\t0x%08x 0x%08x 0x%02x 0x%02x %c%c%c %-7s\n", entry->vaddr, entry->paddr, entry->asid, entry->attr, (access & PAGE_READ) ? 'R' : '-', (access & PAGE_WRITE) ? 'W' : '-', (access & PAGE_EXEC) ? 'X' : '-', cache_text[cache_idx] ? cache_text[cache_idx] : "Invalid"); } } } } void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUXtensaState *env) { if (xtensa_option_bits_enabled(env->config, XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) | XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) | XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) { cpu_fprintf(f, "ITLB:\n"); dump_tlb(f, cpu_fprintf, env, false); cpu_fprintf(f, "\nDTLB:\n"); dump_tlb(f, cpu_fprintf, env, true); } else { cpu_fprintf(f, "No TLB for this CPU core\n"); } }