/* * ARM kernel loader. * * Copyright (c) 2006-2007 CodeSourcery. * Written by Paul Brook * * This code is licenced under the GPL. */ #include "hw.h" #include "arm-misc.h" #include "sysemu.h" #define KERNEL_ARGS_ADDR 0x100 #define KERNEL_LOAD_ADDR 0x00010000 #define INITRD_LOAD_ADDR 0x00800000 /* The worlds second smallest bootloader. Set r0-r2, then jump to kernel. */ static uint32_t bootloader[] = { 0xe3a00000, /* mov r0, #0 */ 0xe3a01000, /* mov r1, #0x?? */ 0xe3811c00, /* orr r1, r1, #0x??00 */ 0xe59f2000, /* ldr r2, [pc, #0] */ 0xe59ff000, /* ldr pc, [pc, #0] */ 0, /* Address of kernel args. Set by integratorcp_init. */ 0 /* Kernel entry point. Set by integratorcp_init. */ }; /* Entry point for secondary CPUs. Enable interrupt controller and Issue WFI until start address is written to system controller. */ static uint32_t smpboot[] = { 0xe3a00201, /* mov r0, #0x10000000 */ 0xe3800601, /* orr r0, r0, #0x001000000 */ 0xe3a01001, /* mov r1, #1 */ 0xe5801100, /* str r1, [r0, #0x100] */ 0xe3a00201, /* mov r0, #0x10000000 */ 0xe3800030, /* orr r0, #0x30 */ 0xe320f003, /* wfi */ 0xe5901000, /* ldr r1, [r0] */ 0xe3110003, /* tst r1, #3 */ 0x1afffffb, /* bne <wfi> */ 0xe12fff11 /* bx r1 */ }; static void main_cpu_reset(void *opaque) { CPUState *env = opaque; cpu_reset(env); if (env->kernel_filename) arm_load_kernel(env, env->ram_size, env->kernel_filename, env->kernel_cmdline, env->initrd_filename, env->board_id, env->loader_start); /* TODO: Reset secondary CPUs. */ } static void set_kernel_args(uint32_t ram_size, int initrd_size, const char *kernel_cmdline, target_phys_addr_t loader_start) { uint32_t *p; p = (uint32_t *)(phys_ram_base + KERNEL_ARGS_ADDR); /* ATAG_CORE */ stl_raw(p++, 5); stl_raw(p++, 0x54410001); stl_raw(p++, 1); stl_raw(p++, 0x1000); stl_raw(p++, 0); /* ATAG_MEM */ stl_raw(p++, 4); stl_raw(p++, 0x54410002); stl_raw(p++, ram_size); stl_raw(p++, loader_start); if (initrd_size) { /* ATAG_INITRD2 */ stl_raw(p++, 4); stl_raw(p++, 0x54420005); stl_raw(p++, loader_start + INITRD_LOAD_ADDR); stl_raw(p++, initrd_size); } if (kernel_cmdline && *kernel_cmdline) { /* ATAG_CMDLINE */ int cmdline_size; cmdline_size = strlen(kernel_cmdline); memcpy (p + 2, kernel_cmdline, cmdline_size + 1); cmdline_size = (cmdline_size >> 2) + 1; stl_raw(p++, cmdline_size + 2); stl_raw(p++, 0x54410009); p += cmdline_size; } /* ATAG_END */ stl_raw(p++, 0); stl_raw(p++, 0); } static void set_kernel_args_old(uint32_t ram_size, int initrd_size, const char *kernel_cmdline, target_phys_addr_t loader_start) { uint32_t *p; unsigned char *s; /* see linux/include/asm-arm/setup.h */ p = (uint32_t *)(phys_ram_base + KERNEL_ARGS_ADDR); /* page_size */ stl_raw(p++, 4096); /* nr_pages */ stl_raw(p++, ram_size / 4096); /* ramdisk_size */ stl_raw(p++, 0); #define FLAG_READONLY 1 #define FLAG_RDLOAD 4 #define FLAG_RDPROMPT 8 /* flags */ stl_raw(p++, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT); /* rootdev */ stl_raw(p++, (31 << 8) | 0); /* /dev/mtdblock0 */ /* video_num_cols */ stl_raw(p++, 0); /* video_num_rows */ stl_raw(p++, 0); /* video_x */ stl_raw(p++, 0); /* video_y */ stl_raw(p++, 0); /* memc_control_reg */ stl_raw(p++, 0); /* unsigned char sounddefault */ /* unsigned char adfsdrives */ /* unsigned char bytes_per_char_h */ /* unsigned char bytes_per_char_v */ stl_raw(p++, 0); /* pages_in_bank[4] */ stl_raw(p++, 0); stl_raw(p++, 0); stl_raw(p++, 0); stl_raw(p++, 0); /* pages_in_vram */ stl_raw(p++, 0); /* initrd_start */ if (initrd_size) stl_raw(p++, loader_start + INITRD_LOAD_ADDR); else stl_raw(p++, 0); /* initrd_size */ stl_raw(p++, initrd_size); /* rd_start */ stl_raw(p++, 0); /* system_rev */ stl_raw(p++, 0); /* system_serial_low */ stl_raw(p++, 0); /* system_serial_high */ stl_raw(p++, 0); /* mem_fclk_21285 */ stl_raw(p++, 0); /* zero unused fields */ memset(p, 0, 256 + 1024 - (p - ((uint32_t *)(phys_ram_base + KERNEL_ARGS_ADDR)))); s = phys_ram_base + KERNEL_ARGS_ADDR + 256 + 1024; if (kernel_cmdline) strcpy (s, kernel_cmdline); else stb_raw(s, 0); } void arm_load_kernel(CPUState *env, int ram_size, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, int board_id, target_phys_addr_t loader_start) { int kernel_size; int initrd_size; int n; int is_linux = 0; uint64_t elf_entry; target_ulong entry; /* Load the kernel. */ if (!kernel_filename) { fprintf(stderr, "Kernel image must be specified\n"); exit(1); } if (!env->kernel_filename) { env->ram_size = ram_size; env->kernel_filename = kernel_filename; env->kernel_cmdline = kernel_cmdline; env->initrd_filename = initrd_filename; env->board_id = board_id; env->loader_start = loader_start; qemu_register_reset(main_cpu_reset, env); } /* Assume that raw images are linux kernels, and ELF images are not. */ kernel_size = load_elf(kernel_filename, 0, &elf_entry, NULL, NULL); entry = elf_entry; if (kernel_size < 0) { kernel_size = load_uboot(kernel_filename, &entry, &is_linux); } if (kernel_size < 0) { kernel_size = load_image(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR); entry = loader_start + KERNEL_LOAD_ADDR; is_linux = 1; } if (kernel_size < 0) { fprintf(stderr, "qemu: could not load kernel '%s'\n", kernel_filename); exit(1); } if (!is_linux) { /* Jump to the entry point. */ env->regs[15] = entry & 0xfffffffe; env->thumb = entry & 1; } else { if (initrd_filename) { initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR); if (initrd_size < 0) { fprintf(stderr, "qemu: could not load initrd '%s'\n", initrd_filename); exit(1); } } else { initrd_size = 0; } bootloader[1] |= board_id & 0xff; bootloader[2] |= (board_id >> 8) & 0xff; bootloader[5] = loader_start + KERNEL_ARGS_ADDR; bootloader[6] = entry; for (n = 0; n < sizeof(bootloader) / 4; n++) stl_raw(phys_ram_base + (n * 4), bootloader[n]); for (n = 0; n < sizeof(smpboot) / 4; n++) stl_raw(phys_ram_base + ram_size + (n * 4), smpboot[n]); if (old_param) set_kernel_args_old(ram_size, initrd_size, kernel_cmdline, loader_start); else set_kernel_args(ram_size, initrd_size, kernel_cmdline, loader_start); } }