/* This is the Linux kernel elf-loading code, ported into user space */ #include <stdio.h> #include <sys/types.h> #include <fcntl.h> #include <errno.h> #include <unistd.h> #include <sys/mman.h> #include <stdlib.h> #include <string.h> #include "qemu.h" #include "disas.h" #ifdef _ARCH_PPC64 #undef ARCH_DLINFO #undef ELF_PLATFORM #undef ELF_HWCAP #undef ELF_CLASS #undef ELF_DATA #undef ELF_ARCH #endif /* from personality.h */ /* * Flags for bug emulation. * * These occupy the top three bytes. */ enum { ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to descriptors * (signal handling) */ MMAP_PAGE_ZERO = 0x0100000, ADDR_COMPAT_LAYOUT = 0x0200000, READ_IMPLIES_EXEC = 0x0400000, ADDR_LIMIT_32BIT = 0x0800000, SHORT_INODE = 0x1000000, WHOLE_SECONDS = 0x2000000, STICKY_TIMEOUTS = 0x4000000, ADDR_LIMIT_3GB = 0x8000000, }; /* * Personality types. * * These go in the low byte. Avoid using the top bit, it will * conflict with error returns. */ enum { PER_LINUX = 0x0000, PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, PER_BSD = 0x0006, PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, PER_LINUX32 = 0x0008, PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ PER_RISCOS = 0x000c, PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, PER_OSF4 = 0x000f, /* OSF/1 v4 */ PER_HPUX = 0x0010, PER_MASK = 0x00ff, }; /* * Return the base personality without flags. */ #define personality(pers) (pers & PER_MASK) /* this flag is uneffective under linux too, should be deleted */ #ifndef MAP_DENYWRITE #define MAP_DENYWRITE 0 #endif /* should probably go in elf.h */ #ifndef ELIBBAD #define ELIBBAD 80 #endif #ifdef TARGET_I386 #define ELF_PLATFORM get_elf_platform() static const char *get_elf_platform(void) { static char elf_platform[] = "i386"; int family = (thread_env->cpuid_version >> 8) & 0xff; if (family > 6) family = 6; if (family >= 3) elf_platform[1] = '0' + family; return elf_platform; } #define ELF_HWCAP get_elf_hwcap() static uint32_t get_elf_hwcap(void) { return thread_env->cpuid_features; } #ifdef TARGET_X86_64 #define ELF_START_MMAP 0x2aaaaab000ULL #define elf_check_arch(x) ( ((x) == ELF_ARCH) ) #define ELF_CLASS ELFCLASS64 #define ELF_DATA ELFDATA2LSB #define ELF_ARCH EM_X86_64 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { regs->rax = 0; regs->rsp = infop->start_stack; regs->rip = infop->entry; if (bsd_type == target_freebsd) { regs->rdi = infop->start_stack; } } #else #define ELF_START_MMAP 0x80000000 /* * This is used to ensure we don't load something for the wrong architecture. */ #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) /* * These are used to set parameters in the core dumps. */ #define ELF_CLASS ELFCLASS32 #define ELF_DATA ELFDATA2LSB #define ELF_ARCH EM_386 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { regs->esp = infop->start_stack; regs->eip = infop->entry; /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program starts %edx contains a pointer to a function which might be registered using `atexit'. This provides a mean for the dynamic linker to call DT_FINI functions for shared libraries that have been loaded before the code runs. A value of 0 tells we have no such handler. */ regs->edx = 0; } #endif #define USE_ELF_CORE_DUMP #define ELF_EXEC_PAGESIZE 4096 #endif #ifdef TARGET_ARM #define ELF_START_MMAP 0x80000000 #define elf_check_arch(x) ( (x) == EM_ARM ) #define ELF_CLASS ELFCLASS32 #ifdef TARGET_WORDS_BIGENDIAN #define ELF_DATA ELFDATA2MSB #else #define ELF_DATA ELFDATA2LSB #endif #define ELF_ARCH EM_ARM static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { abi_long stack = infop->start_stack; memset(regs, 0, sizeof(*regs)); regs->ARM_cpsr = 0x10; if (infop->entry & 1) regs->ARM_cpsr |= CPSR_T; regs->ARM_pc = infop->entry & 0xfffffffe; regs->ARM_sp = infop->start_stack; /* FIXME - what to for failure of get_user()? */ get_user_ual(regs->ARM_r2, stack + 8); /* envp */ get_user_ual(regs->ARM_r1, stack + 4); /* envp */ /* XXX: it seems that r0 is zeroed after ! */ regs->ARM_r0 = 0; /* For uClinux PIC binaries. */ /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ regs->ARM_r10 = infop->start_data; } #define USE_ELF_CORE_DUMP #define ELF_EXEC_PAGESIZE 4096 enum { ARM_HWCAP_ARM_SWP = 1 << 0, ARM_HWCAP_ARM_HALF = 1 << 1, ARM_HWCAP_ARM_THUMB = 1 << 2, ARM_HWCAP_ARM_26BIT = 1 << 3, ARM_HWCAP_ARM_FAST_MULT = 1 << 4, ARM_HWCAP_ARM_FPA = 1 << 5, ARM_HWCAP_ARM_VFP = 1 << 6, ARM_HWCAP_ARM_EDSP = 1 << 7, }; #define ELF_HWCAP (ARM_HWCAP_ARM_SWP | ARM_HWCAP_ARM_HALF \ | ARM_HWCAP_ARM_THUMB | ARM_HWCAP_ARM_FAST_MULT \ | ARM_HWCAP_ARM_FPA | ARM_HWCAP_ARM_VFP) #endif #ifdef TARGET_SPARC #ifdef TARGET_SPARC64 #define ELF_START_MMAP 0x80000000 #ifndef TARGET_ABI32 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) #else #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) #endif #define ELF_CLASS ELFCLASS64 #define ELF_DATA ELFDATA2MSB #define ELF_ARCH EM_SPARCV9 #define STACK_BIAS 2047 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { #ifndef TARGET_ABI32 regs->tstate = 0; #endif regs->pc = infop->entry; regs->npc = regs->pc + 4; regs->y = 0; #ifdef TARGET_ABI32 regs->u_regs[14] = infop->start_stack - 16 * 4; #else if (personality(infop->personality) == PER_LINUX32) regs->u_regs[14] = infop->start_stack - 16 * 4; else { regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; if (bsd_type == target_freebsd) { regs->u_regs[8] = infop->start_stack; regs->u_regs[11] = infop->start_stack; } } #endif } #else #define ELF_START_MMAP 0x80000000 #define elf_check_arch(x) ( (x) == EM_SPARC ) #define ELF_CLASS ELFCLASS32 #define ELF_DATA ELFDATA2MSB #define ELF_ARCH EM_SPARC static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { regs->psr = 0; regs->pc = infop->entry; regs->npc = regs->pc + 4; regs->y = 0; regs->u_regs[14] = infop->start_stack - 16 * 4; } #endif #endif #ifdef TARGET_PPC #define ELF_START_MMAP 0x80000000 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) #define elf_check_arch(x) ( (x) == EM_PPC64 ) #define ELF_CLASS ELFCLASS64 #else #define elf_check_arch(x) ( (x) == EM_PPC ) #define ELF_CLASS ELFCLASS32 #endif #ifdef TARGET_WORDS_BIGENDIAN #define ELF_DATA ELFDATA2MSB #else #define ELF_DATA ELFDATA2LSB #endif #define ELF_ARCH EM_PPC /* * We need to put in some extra aux table entries to tell glibc what * the cache block size is, so it can use the dcbz instruction safely. */ #define AT_DCACHEBSIZE 19 #define AT_ICACHEBSIZE 20 #define AT_UCACHEBSIZE 21 /* A special ignored type value for PPC, for glibc compatibility. */ #define AT_IGNOREPPC 22 /* * The requirements here are: * - keep the final alignment of sp (sp & 0xf) * - make sure the 32-bit value at the first 16 byte aligned position of * AUXV is greater than 16 for glibc compatibility. * AT_IGNOREPPC is used for that. * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. */ #define DLINFO_ARCH_ITEMS 5 #define ARCH_DLINFO \ do { \ NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \ NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \ NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ /* \ * Now handle glibc compatibility. \ */ \ NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ } while (0) static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) { abi_ulong pos = infop->start_stack; abi_ulong tmp; #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) abi_ulong entry, toc; #endif _regs->gpr[1] = infop->start_stack; #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) entry = ldq_raw(infop->entry) + infop->load_addr; toc = ldq_raw(infop->entry + 8) + infop->load_addr; _regs->gpr[2] = toc; infop->entry = entry; #endif _regs->nip = infop->entry; /* Note that isn't exactly what regular kernel does * but this is what the ABI wants and is needed to allow * execution of PPC BSD programs. */ /* FIXME - what to for failure of get_user()? */ get_user_ual(_regs->gpr[3], pos); pos += sizeof(abi_ulong); _regs->gpr[4] = pos; for (tmp = 1; tmp != 0; pos += sizeof(abi_ulong)) tmp = ldl(pos); _regs->gpr[5] = pos; } #define USE_ELF_CORE_DUMP #define ELF_EXEC_PAGESIZE 4096 #endif #ifdef TARGET_MIPS #define ELF_START_MMAP 0x80000000 #define elf_check_arch(x) ( (x) == EM_MIPS ) #ifdef TARGET_MIPS64 #define ELF_CLASS ELFCLASS64 #else #define ELF_CLASS ELFCLASS32 #endif #ifdef TARGET_WORDS_BIGENDIAN #define ELF_DATA ELFDATA2MSB #else #define ELF_DATA ELFDATA2LSB #endif #define ELF_ARCH EM_MIPS static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { regs->cp0_status = 2 << CP0St_KSU; regs->cp0_epc = infop->entry; regs->regs[29] = infop->start_stack; } #define USE_ELF_CORE_DUMP #define ELF_EXEC_PAGESIZE 4096 #endif /* TARGET_MIPS */ #ifdef TARGET_SH4 #define ELF_START_MMAP 0x80000000 #define elf_check_arch(x) ( (x) == EM_SH ) #define ELF_CLASS ELFCLASS32 #define ELF_DATA ELFDATA2LSB #define ELF_ARCH EM_SH static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { /* Check other registers XXXXX */ regs->pc = infop->entry; regs->regs[15] = infop->start_stack; } #define USE_ELF_CORE_DUMP #define ELF_EXEC_PAGESIZE 4096 #endif #ifdef TARGET_CRIS #define ELF_START_MMAP 0x80000000 #define elf_check_arch(x) ( (x) == EM_CRIS ) #define ELF_CLASS ELFCLASS32 #define ELF_DATA ELFDATA2LSB #define ELF_ARCH EM_CRIS static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { regs->erp = infop->entry; } #define USE_ELF_CORE_DUMP #define ELF_EXEC_PAGESIZE 8192 #endif #ifdef TARGET_M68K #define ELF_START_MMAP 0x80000000 #define elf_check_arch(x) ( (x) == EM_68K ) #define ELF_CLASS ELFCLASS32 #define ELF_DATA ELFDATA2MSB #define ELF_ARCH EM_68K /* ??? Does this need to do anything? #define ELF_PLAT_INIT(_r) */ static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { regs->usp = infop->start_stack; regs->sr = 0; regs->pc = infop->entry; } #define USE_ELF_CORE_DUMP #define ELF_EXEC_PAGESIZE 8192 #endif #ifdef TARGET_ALPHA #define ELF_START_MMAP (0x30000000000ULL) #define elf_check_arch(x) ( (x) == ELF_ARCH ) #define ELF_CLASS ELFCLASS64 #define ELF_DATA ELFDATA2MSB #define ELF_ARCH EM_ALPHA static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { regs->pc = infop->entry; regs->ps = 8; regs->usp = infop->start_stack; regs->unique = infop->start_data; /* ? */ printf("Set unique value to " TARGET_FMT_lx " (" TARGET_FMT_lx ")\n", regs->unique, infop->start_data); } #define USE_ELF_CORE_DUMP #define ELF_EXEC_PAGESIZE 8192 #endif /* TARGET_ALPHA */ #ifndef ELF_PLATFORM #define ELF_PLATFORM (NULL) #endif #ifndef ELF_HWCAP #define ELF_HWCAP 0 #endif #ifdef TARGET_ABI32 #undef ELF_CLASS #define ELF_CLASS ELFCLASS32 #undef bswaptls #define bswaptls(ptr) bswap32s(ptr) #endif #include "elf.h" struct exec { unsigned int a_info; /* Use macros N_MAGIC, etc for access */ unsigned int a_text; /* length of text, in bytes */ unsigned int a_data; /* length of data, in bytes */ unsigned int a_bss; /* length of uninitialized data area, in bytes */ unsigned int a_syms; /* length of symbol table data in file, in bytes */ unsigned int a_entry; /* start address */ unsigned int a_trsize; /* length of relocation info for text, in bytes */ unsigned int a_drsize; /* length of relocation info for data, in bytes */ }; #define N_MAGIC(exec) ((exec).a_info & 0xffff) #define OMAGIC 0407 #define NMAGIC 0410 #define ZMAGIC 0413 #define QMAGIC 0314 /* max code+data+bss space allocated to elf interpreter */ #define INTERP_MAP_SIZE (32 * 1024 * 1024) /* max code+data+bss+brk space allocated to ET_DYN executables */ #define ET_DYN_MAP_SIZE (128 * 1024 * 1024) /* Necessary parameters */ #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1)) #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) #define INTERPRETER_NONE 0 #define INTERPRETER_AOUT 1 #define INTERPRETER_ELF 2 #define DLINFO_ITEMS 12 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) { memcpy(to, from, n); } static int load_aout_interp(void * exptr, int interp_fd); #ifdef BSWAP_NEEDED static void bswap_ehdr(struct elfhdr *ehdr) { bswap16s(&ehdr->e_type); /* Object file type */ bswap16s(&ehdr->e_machine); /* Architecture */ bswap32s(&ehdr->e_version); /* Object file version */ bswaptls(&ehdr->e_entry); /* Entry point virtual address */ bswaptls(&ehdr->e_phoff); /* Program header table file offset */ bswaptls(&ehdr->e_shoff); /* Section header table file offset */ bswap32s(&ehdr->e_flags); /* Processor-specific flags */ bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ bswap16s(&ehdr->e_phnum); /* Program header table entry count */ bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ bswap16s(&ehdr->e_shnum); /* Section header table entry count */ bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ } static void bswap_phdr(struct elf_phdr *phdr) { bswap32s(&phdr->p_type); /* Segment type */ bswaptls(&phdr->p_offset); /* Segment file offset */ bswaptls(&phdr->p_vaddr); /* Segment virtual address */ bswaptls(&phdr->p_paddr); /* Segment physical address */ bswaptls(&phdr->p_filesz); /* Segment size in file */ bswaptls(&phdr->p_memsz); /* Segment size in memory */ bswap32s(&phdr->p_flags); /* Segment flags */ bswaptls(&phdr->p_align); /* Segment alignment */ } static void bswap_shdr(struct elf_shdr *shdr) { bswap32s(&shdr->sh_name); bswap32s(&shdr->sh_type); bswaptls(&shdr->sh_flags); bswaptls(&shdr->sh_addr); bswaptls(&shdr->sh_offset); bswaptls(&shdr->sh_size); bswap32s(&shdr->sh_link); bswap32s(&shdr->sh_info); bswaptls(&shdr->sh_addralign); bswaptls(&shdr->sh_entsize); } static void bswap_sym(struct elf_sym *sym) { bswap32s(&sym->st_name); bswaptls(&sym->st_value); bswaptls(&sym->st_size); bswap16s(&sym->st_shndx); } #endif /* * 'copy_elf_strings()' copies argument/envelope strings from user * memory to free pages in kernel mem. These are in a format ready * to be put directly into the top of new user memory. * */ static abi_ulong copy_elf_strings(int argc,char ** argv, void **page, abi_ulong p) { char *tmp, *tmp1, *pag = NULL; int len, offset = 0; if (!p) { return 0; /* bullet-proofing */ } while (argc-- > 0) { tmp = argv[argc]; if (!tmp) { fprintf(stderr, "VFS: argc is wrong"); exit(-1); } tmp1 = tmp; while (*tmp++); len = tmp - tmp1; if (p < len) { /* this shouldn't happen - 128kB */ return 0; } while (len) { --p; --tmp; --len; if (--offset < 0) { offset = p % TARGET_PAGE_SIZE; pag = (char *)page[p/TARGET_PAGE_SIZE]; if (!pag) { pag = (char *)malloc(TARGET_PAGE_SIZE); memset(pag, 0, TARGET_PAGE_SIZE); page[p/TARGET_PAGE_SIZE] = pag; if (!pag) return 0; } } if (len == 0 || offset == 0) { *(pag + offset) = *tmp; } else { int bytes_to_copy = (len > offset) ? offset : len; tmp -= bytes_to_copy; p -= bytes_to_copy; offset -= bytes_to_copy; len -= bytes_to_copy; memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1); } } } return p; } static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm, struct image_info *info) { abi_ulong stack_base, size, error; int i; /* Create enough stack to hold everything. If we don't use * it for args, we'll use it for something else... */ size = x86_stack_size; if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) size = MAX_ARG_PAGES*TARGET_PAGE_SIZE; error = target_mmap(0, size + qemu_host_page_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); if (error == -1) { perror("stk mmap"); exit(-1); } /* we reserve one extra page at the top of the stack as guard */ target_mprotect(error + size, qemu_host_page_size, PROT_NONE); stack_base = error + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE; p += stack_base; for (i = 0 ; i < MAX_ARG_PAGES ; i++) { if (bprm->page[i]) { info->rss++; /* FIXME - check return value of memcpy_to_target() for failure */ memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE); free(bprm->page[i]); } stack_base += TARGET_PAGE_SIZE; } return p; } static void set_brk(abi_ulong start, abi_ulong end) { /* page-align the start and end addresses... */ start = HOST_PAGE_ALIGN(start); end = HOST_PAGE_ALIGN(end); if (end <= start) return; if(target_mmap(start, end - start, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) { perror("cannot mmap brk"); exit(-1); } } /* We need to explicitly zero any fractional pages after the data section (i.e. bss). This would contain the junk from the file that should not be in memory. */ static void padzero(abi_ulong elf_bss, abi_ulong last_bss) { abi_ulong nbyte; if (elf_bss >= last_bss) return; /* XXX: this is really a hack : if the real host page size is smaller than the target page size, some pages after the end of the file may not be mapped. A better fix would be to patch target_mmap(), but it is more complicated as the file size must be known */ if (qemu_real_host_page_size < qemu_host_page_size) { abi_ulong end_addr, end_addr1; end_addr1 = (elf_bss + qemu_real_host_page_size - 1) & ~(qemu_real_host_page_size - 1); end_addr = HOST_PAGE_ALIGN(elf_bss); if (end_addr1 < end_addr) { mmap((void *)g2h(end_addr1), end_addr - end_addr1, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_FIXED|MAP_PRIVATE|MAP_ANON, -1, 0); } } nbyte = elf_bss & (qemu_host_page_size-1); if (nbyte) { nbyte = qemu_host_page_size - nbyte; do { /* FIXME - what to do if put_user() fails? */ put_user_u8(0, elf_bss); elf_bss++; } while (--nbyte); } } static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, struct elfhdr * exec, abi_ulong load_addr, abi_ulong load_bias, abi_ulong interp_load_addr, int ibcs, struct image_info *info) { abi_ulong sp; int size; abi_ulong u_platform; const char *k_platform; const int n = sizeof(elf_addr_t); sp = p; u_platform = 0; k_platform = ELF_PLATFORM; if (k_platform) { size_t len = strlen(k_platform) + 1; sp -= (len + n - 1) & ~(n - 1); u_platform = sp; /* FIXME - check return value of memcpy_to_target() for failure */ memcpy_to_target(sp, k_platform, len); } /* * Force 16 byte _final_ alignment here for generality. */ sp = sp &~ (abi_ulong)15; size = (DLINFO_ITEMS + 1) * 2; if (k_platform) size += 2; #ifdef DLINFO_ARCH_ITEMS size += DLINFO_ARCH_ITEMS * 2; #endif size += envc + argc + 2; size += (!ibcs ? 3 : 1); /* argc itself */ size *= n; if (size & 15) sp -= 16 - (size & 15); /* This is correct because Linux defines * elf_addr_t as Elf32_Off / Elf64_Off */ #define NEW_AUX_ENT(id, val) do { \ sp -= n; put_user_ual(val, sp); \ sp -= n; put_user_ual(id, sp); \ } while(0) NEW_AUX_ENT (AT_NULL, 0); /* There must be exactly DLINFO_ITEMS entries here. */ NEW_AUX_ENT(AT_PHDR, (abi_ulong)(load_addr + exec->e_phoff)); NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_load_addr)); NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); NEW_AUX_ENT(AT_ENTRY, load_bias + exec->e_entry); NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); if (k_platform) NEW_AUX_ENT(AT_PLATFORM, u_platform); #ifdef ARCH_DLINFO /* * ARCH_DLINFO must come last so platform specific code can enforce * special alignment requirements on the AUXV if necessary (eg. PPC). */ ARCH_DLINFO; #endif #undef NEW_AUX_ENT sp = loader_build_argptr(envc, argc, sp, p, !ibcs); return sp; } static abi_ulong load_elf_interp(struct elfhdr * interp_elf_ex, int interpreter_fd, abi_ulong *interp_load_addr) { struct elf_phdr *elf_phdata = NULL; struct elf_phdr *eppnt; abi_ulong load_addr = 0; int load_addr_set = 0; int retval; abi_ulong last_bss, elf_bss; abi_ulong error; int i; elf_bss = 0; last_bss = 0; error = 0; #ifdef BSWAP_NEEDED bswap_ehdr(interp_elf_ex); #endif /* First of all, some simple consistency checks */ if ((interp_elf_ex->e_type != ET_EXEC && interp_elf_ex->e_type != ET_DYN) || !elf_check_arch(interp_elf_ex->e_machine)) { return ~((abi_ulong)0UL); } /* Now read in all of the header information */ if (sizeof(struct elf_phdr) * interp_elf_ex->e_phnum > TARGET_PAGE_SIZE) return ~(abi_ulong)0UL; elf_phdata = (struct elf_phdr *) malloc(sizeof(struct elf_phdr) * interp_elf_ex->e_phnum); if (!elf_phdata) return ~((abi_ulong)0UL); /* * If the size of this structure has changed, then punt, since * we will be doing the wrong thing. */ if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) { free(elf_phdata); return ~((abi_ulong)0UL); } retval = lseek(interpreter_fd, interp_elf_ex->e_phoff, SEEK_SET); if(retval >= 0) { retval = read(interpreter_fd, (char *) elf_phdata, sizeof(struct elf_phdr) * interp_elf_ex->e_phnum); } if (retval < 0) { perror("load_elf_interp"); exit(-1); free (elf_phdata); return retval; } #ifdef BSWAP_NEEDED eppnt = elf_phdata; for (i=0; i<interp_elf_ex->e_phnum; i++, eppnt++) { bswap_phdr(eppnt); } #endif if (interp_elf_ex->e_type == ET_DYN) { /* in order to avoid hardcoding the interpreter load address in qemu, we allocate a big enough memory zone */ error = target_mmap(0, INTERP_MAP_SIZE, PROT_NONE, MAP_PRIVATE | MAP_ANON, -1, 0); if (error == -1) { perror("mmap"); exit(-1); } load_addr = error; load_addr_set = 1; } eppnt = elf_phdata; for(i=0; i<interp_elf_ex->e_phnum; i++, eppnt++) if (eppnt->p_type == PT_LOAD) { int elf_type = MAP_PRIVATE | MAP_DENYWRITE; int elf_prot = 0; abi_ulong vaddr = 0; abi_ulong k; if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) { elf_type |= MAP_FIXED; vaddr = eppnt->p_vaddr; } error = target_mmap(load_addr+TARGET_ELF_PAGESTART(vaddr), eppnt->p_filesz + TARGET_ELF_PAGEOFFSET(eppnt->p_vaddr), elf_prot, elf_type, interpreter_fd, eppnt->p_offset - TARGET_ELF_PAGEOFFSET(eppnt->p_vaddr)); if (error == -1) { /* Real error */ close(interpreter_fd); free(elf_phdata); return ~((abi_ulong)0UL); } if (!load_addr_set && interp_elf_ex->e_type == ET_DYN) { load_addr = error; load_addr_set = 1; } /* * Find the end of the file mapping for this phdr, and keep * track of the largest address we see for this. */ k = load_addr + eppnt->p_vaddr + eppnt->p_filesz; if (k > elf_bss) elf_bss = k; /* * Do the same thing for the memory mapping - between * elf_bss and last_bss is the bss section. */ k = load_addr + eppnt->p_memsz + eppnt->p_vaddr; if (k > last_bss) last_bss = k; } /* Now use mmap to map the library into memory. */ close(interpreter_fd); /* * Now fill out the bss section. First pad the last page up * to the page boundary, and then perform a mmap to make sure * that there are zeromapped pages up to and including the last * bss page. */ padzero(elf_bss, last_bss); elf_bss = TARGET_ELF_PAGESTART(elf_bss + qemu_host_page_size - 1); /* What we have mapped so far */ /* Map the last of the bss segment */ if (last_bss > elf_bss) { target_mmap(elf_bss, last_bss-elf_bss, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_FIXED|MAP_PRIVATE|MAP_ANON, -1, 0); } free(elf_phdata); *interp_load_addr = load_addr; return ((abi_ulong) interp_elf_ex->e_entry) + load_addr; } static int symfind(const void *s0, const void *s1) { struct elf_sym *key = (struct elf_sym *)s0; struct elf_sym *sym = (struct elf_sym *)s1; int result = 0; if (key->st_value < sym->st_value) { result = -1; } else if (key->st_value > sym->st_value + sym->st_size) { result = 1; } return result; } static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) { #if ELF_CLASS == ELFCLASS32 struct elf_sym *syms = s->disas_symtab.elf32; #else struct elf_sym *syms = s->disas_symtab.elf64; #endif // binary search struct elf_sym key; struct elf_sym *sym; key.st_value = orig_addr; sym = bsearch(&key, syms, s->disas_num_syms, sizeof(*syms), symfind); if (sym != NULL) { return s->disas_strtab + sym->st_name; } return ""; } /* FIXME: This should use elf_ops.h */ static int symcmp(const void *s0, const void *s1) { struct elf_sym *sym0 = (struct elf_sym *)s0; struct elf_sym *sym1 = (struct elf_sym *)s1; return (sym0->st_value < sym1->st_value) ? -1 : ((sym0->st_value > sym1->st_value) ? 1 : 0); } /* Best attempt to load symbols from this ELF object. */ static void load_symbols(struct elfhdr *hdr, int fd) { unsigned int i, nsyms; struct elf_shdr sechdr, symtab, strtab; char *strings; struct syminfo *s; struct elf_sym *syms, *new_syms; lseek(fd, hdr->e_shoff, SEEK_SET); for (i = 0; i < hdr->e_shnum; i++) { if (read(fd, &sechdr, sizeof(sechdr)) != sizeof(sechdr)) return; #ifdef BSWAP_NEEDED bswap_shdr(&sechdr); #endif if (sechdr.sh_type == SHT_SYMTAB) { symtab = sechdr; lseek(fd, hdr->e_shoff + sizeof(sechdr) * sechdr.sh_link, SEEK_SET); if (read(fd, &strtab, sizeof(strtab)) != sizeof(strtab)) return; #ifdef BSWAP_NEEDED bswap_shdr(&strtab); #endif goto found; } } return; /* Shouldn't happen... */ found: /* Now know where the strtab and symtab are. Snarf them. */ s = malloc(sizeof(*s)); syms = malloc(symtab.sh_size); if (!syms) { free(s); return; } s->disas_strtab = strings = malloc(strtab.sh_size); if (!s->disas_strtab) { free(s); free(syms); return; } lseek(fd, symtab.sh_offset, SEEK_SET); if (read(fd, syms, symtab.sh_size) != symtab.sh_size) { free(s); free(syms); free(strings); return; } nsyms = symtab.sh_size / sizeof(struct elf_sym); i = 0; while (i < nsyms) { #ifdef BSWAP_NEEDED bswap_sym(syms + i); #endif // Throw away entries which we do not need. if (syms[i].st_shndx == SHN_UNDEF || syms[i].st_shndx >= SHN_LORESERVE || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { nsyms--; if (i < nsyms) { syms[i] = syms[nsyms]; } continue; } #if defined(TARGET_ARM) || defined (TARGET_MIPS) /* The bottom address bit marks a Thumb or MIPS16 symbol. */ syms[i].st_value &= ~(target_ulong)1; #endif i++; } /* Attempt to free the storage associated with the local symbols that we threw away. Whether or not this has any effect on the memory allocation depends on the malloc implementation and how many symbols we managed to discard. */ new_syms = realloc(syms, nsyms * sizeof(*syms)); if (new_syms == NULL) { free(s); free(syms); free(strings); return; } syms = new_syms; qsort(syms, nsyms, sizeof(*syms), symcmp); lseek(fd, strtab.sh_offset, SEEK_SET); if (read(fd, strings, strtab.sh_size) != strtab.sh_size) { free(s); free(syms); free(strings); return; } s->disas_num_syms = nsyms; #if ELF_CLASS == ELFCLASS32 s->disas_symtab.elf32 = syms; s->lookup_symbol = (lookup_symbol_t)lookup_symbolxx; #else s->disas_symtab.elf64 = syms; s->lookup_symbol = (lookup_symbol_t)lookup_symbolxx; #endif s->next = syminfos; syminfos = s; } int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, struct image_info * info) { struct elfhdr elf_ex; struct elfhdr interp_elf_ex; struct exec interp_ex; int interpreter_fd = -1; /* avoid warning */ abi_ulong load_addr, load_bias; int load_addr_set = 0; unsigned int interpreter_type = INTERPRETER_NONE; unsigned char ibcs2_interpreter; int i; abi_ulong mapped_addr; struct elf_phdr * elf_ppnt; struct elf_phdr *elf_phdata; abi_ulong elf_bss, k, elf_brk; int retval; char * elf_interpreter; abi_ulong elf_entry, interp_load_addr = 0; int status; abi_ulong start_code, end_code, start_data, end_data; abi_ulong reloc_func_desc = 0; abi_ulong elf_stack; char passed_fileno[6]; ibcs2_interpreter = 0; status = 0; load_addr = 0; load_bias = 0; elf_ex = *((struct elfhdr *) bprm->buf); /* exec-header */ #ifdef BSWAP_NEEDED bswap_ehdr(&elf_ex); #endif /* First of all, some simple consistency checks */ if ((elf_ex.e_type != ET_EXEC && elf_ex.e_type != ET_DYN) || (! elf_check_arch(elf_ex.e_machine))) { return -ENOEXEC; } bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p); bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p); bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p); if (!bprm->p) { retval = -E2BIG; } /* Now read in all of the header information */ elf_phdata = (struct elf_phdr *)malloc(elf_ex.e_phentsize*elf_ex.e_phnum); if (elf_phdata == NULL) { return -ENOMEM; } retval = lseek(bprm->fd, elf_ex.e_phoff, SEEK_SET); if(retval > 0) { retval = read(bprm->fd, (char *) elf_phdata, elf_ex.e_phentsize * elf_ex.e_phnum); } if (retval < 0) { perror("load_elf_binary"); exit(-1); free (elf_phdata); return -errno; } #ifdef BSWAP_NEEDED elf_ppnt = elf_phdata; for (i=0; i<elf_ex.e_phnum; i++, elf_ppnt++) { bswap_phdr(elf_ppnt); } #endif elf_ppnt = elf_phdata; elf_bss = 0; elf_brk = 0; elf_stack = ~((abi_ulong)0UL); elf_interpreter = NULL; start_code = ~((abi_ulong)0UL); end_code = 0; start_data = 0; end_data = 0; interp_ex.a_info = 0; for(i=0;i < elf_ex.e_phnum; i++) { if (elf_ppnt->p_type == PT_INTERP) { if ( elf_interpreter != NULL ) { free (elf_phdata); free(elf_interpreter); close(bprm->fd); return -EINVAL; } /* This is the program interpreter used for * shared libraries - for now assume that this * is an a.out format binary */ elf_interpreter = (char *)malloc(elf_ppnt->p_filesz); if (elf_interpreter == NULL) { free (elf_phdata); close(bprm->fd); return -ENOMEM; } retval = lseek(bprm->fd, elf_ppnt->p_offset, SEEK_SET); if(retval >= 0) { retval = read(bprm->fd, elf_interpreter, elf_ppnt->p_filesz); } if(retval < 0) { perror("load_elf_binary2"); exit(-1); } /* If the program interpreter is one of these two, then assume an iBCS2 image. Otherwise assume a native linux image. */ /* JRP - Need to add X86 lib dir stuff here... */ if (strcmp(elf_interpreter,"/usr/lib/libc.so.1") == 0 || strcmp(elf_interpreter,"/usr/lib/ld.so.1") == 0) { ibcs2_interpreter = 1; } #if 0 printf("Using ELF interpreter %s\n", path(elf_interpreter)); #endif if (retval >= 0) { retval = open(path(elf_interpreter), O_RDONLY); if(retval >= 0) { interpreter_fd = retval; } else { perror(elf_interpreter); exit(-1); /* retval = -errno; */ } } if (retval >= 0) { retval = lseek(interpreter_fd, 0, SEEK_SET); if(retval >= 0) { retval = read(interpreter_fd,bprm->buf,128); } } if (retval >= 0) { interp_ex = *((struct exec *) bprm->buf); /* aout exec-header */ interp_elf_ex = *((struct elfhdr *) bprm->buf); /* elf exec-header */ } if (retval < 0) { perror("load_elf_binary3"); exit(-1); free (elf_phdata); free(elf_interpreter); close(bprm->fd); return retval; } } elf_ppnt++; } /* Some simple consistency checks for the interpreter */ if (elf_interpreter){ interpreter_type = INTERPRETER_ELF | INTERPRETER_AOUT; /* Now figure out which format our binary is */ if ((N_MAGIC(interp_ex) != OMAGIC) && (N_MAGIC(interp_ex) != ZMAGIC) && (N_MAGIC(interp_ex) != QMAGIC)) { interpreter_type = INTERPRETER_ELF; } if (interp_elf_ex.e_ident[0] != 0x7f || strncmp((char *)&interp_elf_ex.e_ident[1], "ELF",3) != 0) { interpreter_type &= ~INTERPRETER_ELF; } if (!interpreter_type) { free(elf_interpreter); free(elf_phdata); close(bprm->fd); return -ELIBBAD; } } /* OK, we are done with that, now set up the arg stuff, and then start this sucker up */ { char * passed_p; if (interpreter_type == INTERPRETER_AOUT) { snprintf(passed_fileno, sizeof(passed_fileno), "%d", bprm->fd); passed_p = passed_fileno; if (elf_interpreter) { bprm->p = copy_elf_strings(1,&passed_p,bprm->page,bprm->p); bprm->argc++; } } if (!bprm->p) { if (elf_interpreter) { free(elf_interpreter); } free (elf_phdata); close(bprm->fd); return -E2BIG; } } /* OK, This is the point of no return */ info->end_data = 0; info->end_code = 0; info->start_mmap = (abi_ulong)ELF_START_MMAP; info->mmap = 0; elf_entry = (abi_ulong) elf_ex.e_entry; #if defined(CONFIG_USE_GUEST_BASE) /* * In case where user has not explicitly set the guest_base, we * probe here that should we set it automatically. */ if (!have_guest_base) { /* * Go through ELF program header table and find out whether * any of the segments drop below our current mmap_min_addr and * in that case set guest_base to corresponding address. */ for (i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum; i++, elf_ppnt++) { if (elf_ppnt->p_type != PT_LOAD) continue; if (HOST_PAGE_ALIGN(elf_ppnt->p_vaddr) < mmap_min_addr) { guest_base = HOST_PAGE_ALIGN(mmap_min_addr); break; } } } #endif /* CONFIG_USE_GUEST_BASE */ /* Do this so that we can load the interpreter, if need be. We will change some of these later */ info->rss = 0; bprm->p = setup_arg_pages(bprm->p, bprm, info); info->start_stack = bprm->p; /* Now we do a little grungy work by mmaping the ELF image into * the correct location in memory. At this point, we assume that * the image should be loaded at fixed address, not at a variable * address. */ for(i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum; i++, elf_ppnt++) { int elf_prot = 0; int elf_flags = 0; abi_ulong error; if (elf_ppnt->p_type != PT_LOAD) continue; if (elf_ppnt->p_flags & PF_R) elf_prot |= PROT_READ; if (elf_ppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; if (elf_ppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; elf_flags = MAP_PRIVATE | MAP_DENYWRITE; if (elf_ex.e_type == ET_EXEC || load_addr_set) { elf_flags |= MAP_FIXED; } else if (elf_ex.e_type == ET_DYN) { /* Try and get dynamic programs out of the way of the default mmap base, as well as whatever program they might try to exec. This is because the brk will follow the loader, and is not movable. */ /* NOTE: for qemu, we do a big mmap to get enough space without hardcoding any address */ error = target_mmap(0, ET_DYN_MAP_SIZE, PROT_NONE, MAP_PRIVATE | MAP_ANON, -1, 0); if (error == -1) { perror("mmap"); exit(-1); } load_bias = TARGET_ELF_PAGESTART(error - elf_ppnt->p_vaddr); } error = target_mmap(TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr), (elf_ppnt->p_filesz + TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)), elf_prot, (MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE), bprm->fd, (elf_ppnt->p_offset - TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr))); if (error == -1) { perror("mmap"); exit(-1); } #ifdef LOW_ELF_STACK if (TARGET_ELF_PAGESTART(elf_ppnt->p_vaddr) < elf_stack) elf_stack = TARGET_ELF_PAGESTART(elf_ppnt->p_vaddr); #endif if (!load_addr_set) { load_addr_set = 1; load_addr = elf_ppnt->p_vaddr - elf_ppnt->p_offset; if (elf_ex.e_type == ET_DYN) { load_bias += error - TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr); load_addr += load_bias; reloc_func_desc = load_bias; } } k = elf_ppnt->p_vaddr; if (k < start_code) start_code = k; if (start_data < k) start_data = k; k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; if (k > elf_bss) elf_bss = k; if ((elf_ppnt->p_flags & PF_X) && end_code < k) end_code = k; if (end_data < k) end_data = k; k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; if (k > elf_brk) elf_brk = k; } elf_entry += load_bias; elf_bss += load_bias; elf_brk += load_bias; start_code += load_bias; end_code += load_bias; start_data += load_bias; end_data += load_bias; if (elf_interpreter) { if (interpreter_type & 1) { elf_entry = load_aout_interp(&interp_ex, interpreter_fd); } else if (interpreter_type & 2) { elf_entry = load_elf_interp(&interp_elf_ex, interpreter_fd, &interp_load_addr); } reloc_func_desc = interp_load_addr; close(interpreter_fd); free(elf_interpreter); if (elf_entry == ~((abi_ulong)0UL)) { printf("Unable to load interpreter\n"); free(elf_phdata); exit(-1); return 0; } } free(elf_phdata); if (qemu_log_enabled()) load_symbols(&elf_ex, bprm->fd); if (interpreter_type != INTERPRETER_AOUT) close(bprm->fd); info->personality = (ibcs2_interpreter ? PER_SVR4 : PER_LINUX); #ifdef LOW_ELF_STACK info->start_stack = bprm->p = elf_stack - 4; #endif bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, load_addr, load_bias, interp_load_addr, (interpreter_type == INTERPRETER_AOUT ? 0 : 1), info); info->load_addr = reloc_func_desc; info->start_brk = info->brk = elf_brk; info->end_code = end_code; info->start_code = start_code; info->start_data = start_data; info->end_data = end_data; info->start_stack = bprm->p; /* Calling set_brk effectively mmaps the pages that we need for the bss and break sections */ set_brk(elf_bss, elf_brk); padzero(elf_bss, elf_brk); #if 0 printf("(start_brk) %x\n" , info->start_brk); printf("(end_code) %x\n" , info->end_code); printf("(start_code) %x\n" , info->start_code); printf("(end_data) %x\n" , info->end_data); printf("(start_stack) %x\n" , info->start_stack); printf("(brk) %x\n" , info->brk); #endif if ( info->personality == PER_SVR4 ) { /* Why this, you ask??? Well SVr4 maps page 0 as read-only, and some applications "depend" upon this behavior. Since we do not have the power to recompile these, we emulate the SVr4 behavior. Sigh. */ mapped_addr = target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, MAP_FIXED | MAP_PRIVATE, -1, 0); } info->entry = elf_entry; return 0; } static int load_aout_interp(void * exptr, int interp_fd) { printf("a.out interpreter not yet supported\n"); return(0); } void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) { init_thread(regs, infop); }