/* * ARM GICv3 emulation: Distributor * * Copyright (c) 2015 Huawei. * Copyright (c) 2016 Linaro Limited. * Written by Shlomo Pongratz, Peter Maydell * * This code is licensed under the GPL, version 2 or (at your option) * any later version. */ #include "qemu/osdep.h" #include "qemu/log.h" #include "trace.h" #include "gicv3_internal.h" /* The GICD_NSACR registers contain a two bit field for each interrupt which * allows the guest to give NonSecure code access to registers controlling * Secure interrupts: * 0b00: no access (NS accesses to bits for Secure interrupts will RAZ/WI) * 0b01: NS r/w accesses permitted to ISPENDR, SETSPI_NSR, SGIR * 0b10: as 0b01, and also r/w to ICPENDR, r/o to ISACTIVER/ICACTIVER, * and w/o to CLRSPI_NSR * 0b11: as 0b10, and also r/w to IROUTER and ITARGETSR * * Given a (multiple-of-32) interrupt number, these mask functions return * a mask word where each bit is 1 if the NSACR settings permit access * to the interrupt. The mask returned can then be ORed with the GICD_GROUP * word for this set of interrupts to give an overall mask. */ typedef uint32_t maskfn(GICv3State *s, int irq); static uint32_t mask_nsacr_ge1(GICv3State *s, int irq) { /* Return a mask where each bit is set if the NSACR field is >= 1 */ uint64_t raw_nsacr = s->gicd_nsacr[irq / 16 + 1]; raw_nsacr = raw_nsacr << 32 | s->gicd_nsacr[irq / 16]; raw_nsacr = (raw_nsacr >> 1) | raw_nsacr; return half_unshuffle64(raw_nsacr); } static uint32_t mask_nsacr_ge2(GICv3State *s, int irq) { /* Return a mask where each bit is set if the NSACR field is >= 2 */ uint64_t raw_nsacr = s->gicd_nsacr[irq / 16 + 1]; raw_nsacr = raw_nsacr << 32 | s->gicd_nsacr[irq / 16]; raw_nsacr = raw_nsacr >> 1; return half_unshuffle64(raw_nsacr); } /* We don't need a mask_nsacr_ge3() because IROUTER isn't a bitmap register, * but it would be implemented using: * raw_nsacr = (raw_nsacr >> 1) & raw_nsacr; */ static uint32_t mask_group_and_nsacr(GICv3State *s, MemTxAttrs attrs, maskfn *maskfn, int irq) { /* Return a 32-bit mask which should be applied for this set of 32 * interrupts; each bit is 1 if access is permitted by the * combination of attrs.secure, GICD_GROUPR and GICD_NSACR. */ uint32_t mask; if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI * unless the NSACR bits permit access. */ mask = *gic_bmp_ptr32(s->group, irq); if (maskfn) { mask |= maskfn(s, irq); } return mask; } return 0xFFFFFFFFU; } static int gicd_ns_access(GICv3State *s, int irq) { /* Return the 2 bit NS_access field from GICD_NSACR for the * specified interrupt. */ if (irq < GIC_INTERNAL || irq >= s->num_irq) { return 0; } return extract32(s->gicd_nsacr[irq / 16], (irq % 16) * 2, 2); } static void gicd_write_set_bitmap_reg(GICv3State *s, MemTxAttrs attrs, uint32_t *bmp, maskfn *maskfn, int offset, uint32_t val) { /* Helper routine to implement writing to a "set-bitmap" register * (GICD_ISENABLER, GICD_ISPENDR, etc). * Semantics implemented here: * RAZ/WI for SGIs, PPIs, unimplemented IRQs * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI. * Writing 1 means "set bit in bitmap"; writing 0 is ignored. * offset should be the offset in bytes of the register from the start * of its group. */ int irq = offset * 8; if (irq < GIC_INTERNAL || irq >= s->num_irq) { return; } val &= mask_group_and_nsacr(s, attrs, maskfn, irq); *gic_bmp_ptr32(bmp, irq) |= val; gicv3_update(s, irq, 32); } static void gicd_write_clear_bitmap_reg(GICv3State *s, MemTxAttrs attrs, uint32_t *bmp, maskfn *maskfn, int offset, uint32_t val) { /* Helper routine to implement writing to a "clear-bitmap" register * (GICD_ICENABLER, GICD_ICPENDR, etc). * Semantics implemented here: * RAZ/WI for SGIs, PPIs, unimplemented IRQs * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI. * Writing 1 means "clear bit in bitmap"; writing 0 is ignored. * offset should be the offset in bytes of the register from the start * of its group. */ int irq = offset * 8; if (irq < GIC_INTERNAL || irq >= s->num_irq) { return; } val &= mask_group_and_nsacr(s, attrs, maskfn, irq); *gic_bmp_ptr32(bmp, irq) &= ~val; gicv3_update(s, irq, 32); } static uint32_t gicd_read_bitmap_reg(GICv3State *s, MemTxAttrs attrs, uint32_t *bmp, maskfn *maskfn, int offset) { /* Helper routine to implement reading a "set/clear-bitmap" register * (GICD_ICENABLER, GICD_ISENABLER, GICD_ICPENDR, etc). * Semantics implemented here: * RAZ/WI for SGIs, PPIs, unimplemented IRQs * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI. * offset should be the offset in bytes of the register from the start * of its group. */ int irq = offset * 8; uint32_t val; if (irq < GIC_INTERNAL || irq >= s->num_irq) { return 0; } val = *gic_bmp_ptr32(bmp, irq); if (bmp == s->pending) { /* The PENDING register is a special case -- for level triggered * interrupts, the PENDING state is the logical OR of the state of * the PENDING latch with the input line level. */ uint32_t edge = *gic_bmp_ptr32(s->edge_trigger, irq); uint32_t level = *gic_bmp_ptr32(s->level, irq); val |= (~edge & level); } val &= mask_group_and_nsacr(s, attrs, maskfn, irq); return val; } static uint8_t gicd_read_ipriorityr(GICv3State *s, MemTxAttrs attrs, int irq) { /* Read the value of GICD_IPRIORITYR for the specified interrupt, * honouring security state (these are RAZ/WI for Group 0 or Secure * Group 1 interrupts). */ uint32_t prio; if (irq < GIC_INTERNAL || irq >= s->num_irq) { return 0; } prio = s->gicd_ipriority[irq]; if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { if (!gicv3_gicd_group_test(s, irq)) { /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */ return 0; } /* NS view of the interrupt priority */ prio = (prio << 1) & 0xff; } return prio; } static void gicd_write_ipriorityr(GICv3State *s, MemTxAttrs attrs, int irq, uint8_t value) { /* Write the value of GICD_IPRIORITYR for the specified interrupt, * honouring security state (these are RAZ/WI for Group 0 or Secure * Group 1 interrupts). */ if (irq < GIC_INTERNAL || irq >= s->num_irq) { return; } if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { if (!gicv3_gicd_group_test(s, irq)) { /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */ return; } /* NS view of the interrupt priority */ value = 0x80 | (value >> 1); } s->gicd_ipriority[irq] = value; } static uint64_t gicd_read_irouter(GICv3State *s, MemTxAttrs attrs, int irq) { /* Read the value of GICD_IROUTER for the specified interrupt, * honouring security state. */ if (irq < GIC_INTERNAL || irq >= s->num_irq) { return 0; } if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { /* RAZ/WI for NS accesses to secure interrupts */ if (!gicv3_gicd_group_test(s, irq)) { if (gicd_ns_access(s, irq) != 3) { return 0; } } } return s->gicd_irouter[irq]; } static void gicd_write_irouter(GICv3State *s, MemTxAttrs attrs, int irq, uint64_t val) { /* Write the value of GICD_IROUTER for the specified interrupt, * honouring security state. */ if (irq < GIC_INTERNAL || irq >= s->num_irq) { return; } if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { /* RAZ/WI for NS accesses to secure interrupts */ if (!gicv3_gicd_group_test(s, irq)) { if (gicd_ns_access(s, irq) != 3) { return; } } } s->gicd_irouter[irq] = val; gicv3_cache_target_cpustate(s, irq); gicv3_update(s, irq, 1); } /** * gicd_readb * gicd_readw * gicd_readl * gicd_readq * gicd_writeb * gicd_writew * gicd_writel * gicd_writeq * * Return %true if the operation succeeded, %false otherwise. */ static bool gicd_readb(GICv3State *s, hwaddr offset, uint64_t *data, MemTxAttrs attrs) { /* Most GICv3 distributor registers do not support byte accesses. */ switch (offset) { case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf: case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf: case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff: /* This GIC implementation always has affinity routing enabled, * so these registers are all RAZ/WI. */ return true; case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff: *data = gicd_read_ipriorityr(s, attrs, offset - GICD_IPRIORITYR); return true; default: return false; } } static bool gicd_writeb(GICv3State *s, hwaddr offset, uint64_t value, MemTxAttrs attrs) { /* Most GICv3 distributor registers do not support byte accesses. */ switch (offset) { case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf: case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf: case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff: /* This GIC implementation always has affinity routing enabled, * so these registers are all RAZ/WI. */ return true; case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff: { int irq = offset - GICD_IPRIORITYR; if (irq < GIC_INTERNAL || irq >= s->num_irq) { return true; } gicd_write_ipriorityr(s, attrs, irq, value); gicv3_update(s, irq, 1); return true; } default: return false; } } static bool gicd_readw(GICv3State *s, hwaddr offset, uint64_t *data, MemTxAttrs attrs) { /* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR * support 16 bit accesses, and those registers are all part of the * optional message-based SPI feature which this GIC does not currently * implement (ie for us GICD_TYPER.MBIS == 0), so for us they are * reserved. */ return false; } static bool gicd_writew(GICv3State *s, hwaddr offset, uint64_t value, MemTxAttrs attrs) { /* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR * support 16 bit accesses, and those registers are all part of the * optional message-based SPI feature which this GIC does not currently * implement (ie for us GICD_TYPER.MBIS == 0), so for us they are * reserved. */ return false; } static bool gicd_readl(GICv3State *s, hwaddr offset, uint64_t *data, MemTxAttrs attrs) { /* Almost all GICv3 distributor registers are 32-bit. * Note that WO registers must return an UNKNOWN value on reads, * not an abort. */ switch (offset) { case GICD_CTLR: if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { /* The NS view of the GICD_CTLR sees only certain bits: * + bit [31] (RWP) is an alias of the Secure bit [31] * + bit [4] (ARE_NS) is an alias of Secure bit [5] * + bit [1] (EnableGrp1A) is an alias of Secure bit [1] if * NS affinity routing is enabled, otherwise RES0 * + bit [0] (EnableGrp1) is an alias of Secure bit [1] if * NS affinity routing is not enabled, otherwise RES0 * Since for QEMU affinity routing is always enabled * for both S and NS this means that bits [4] and [5] are * both always 1, and we can simply make the NS view * be bits 31, 4 and 1 of the S view. */ *data = s->gicd_ctlr & (GICD_CTLR_ARE_S | GICD_CTLR_EN_GRP1NS | GICD_CTLR_RWP); } else { *data = s->gicd_ctlr; } return true; case GICD_TYPER: { /* For this implementation: * No1N == 1 (1-of-N SPI interrupts not supported) * A3V == 1 (non-zero values of Affinity level 3 supported) * IDbits == 0xf (we support 16-bit interrupt identifiers) * DVIS == 1 (Direct virtual LPI injection supported) if GICv4 * LPIS == 1 (LPIs are supported if affinity routing is enabled) * num_LPIs == 0b00000 (bits [15:11],Number of LPIs as indicated * by GICD_TYPER.IDbits) * MBIS == 0 (message-based SPIs not supported) * SecurityExtn == 1 if security extns supported * CPUNumber == 0 since for us ARE is always 1 * ITLinesNumber == (num external irqs / 32) - 1 */ int itlinesnumber = ((s->num_irq - GIC_INTERNAL) / 32) - 1; /* * SecurityExtn must be RAZ if GICD_CTLR.DS == 1, and * "security extensions not supported" always implies DS == 1, * so we only need to check the DS bit. */ bool sec_extn = !(s->gicd_ctlr & GICD_CTLR_DS); bool dvis = s->revision >= 4; *data = (1 << 25) | (1 << 24) | (dvis << 18) | (sec_extn << 10) | (s->lpi_enable << GICD_TYPER_LPIS_SHIFT) | (0xf << 19) | itlinesnumber; return true; } case GICD_IIDR: /* We claim to be an ARM r0p0 with a zero ProductID. * This is the same as an r0p0 GIC-500. */ *data = gicv3_iidr(); return true; case GICD_STATUSR: /* RAZ/WI for us (this is an optional register and our implementation * does not track RO/WO/reserved violations to report them to the guest) */ *data = 0; return true; case GICD_IGROUPR ... GICD_IGROUPR + 0x7f: { int irq; if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { *data = 0; return true; } /* RAZ/WI for SGIs, PPIs, unimplemented irqs */ irq = (offset - GICD_IGROUPR) * 8; if (irq < GIC_INTERNAL || irq >= s->num_irq) { *data = 0; return true; } *data = *gic_bmp_ptr32(s->group, irq); return true; } case GICD_ISENABLER ... GICD_ISENABLER + 0x7f: *data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL, offset - GICD_ISENABLER); return true; case GICD_ICENABLER ... GICD_ICENABLER + 0x7f: *data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL, offset - GICD_ICENABLER); return true; case GICD_ISPENDR ... GICD_ISPENDR + 0x7f: *data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1, offset - GICD_ISPENDR); return true; case GICD_ICPENDR ... GICD_ICPENDR + 0x7f: *data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2, offset - GICD_ICPENDR); return true; case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f: *data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2, offset - GICD_ISACTIVER); return true; case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f: *data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2, offset - GICD_ICACTIVER); return true; case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff: { int i, irq = offset - GICD_IPRIORITYR; uint32_t value = 0; for (i = irq + 3; i >= irq; i--) { value <<= 8; value |= gicd_read_ipriorityr(s, attrs, i); } *data = value; return true; } case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff: /* RAZ/WI since affinity routing is always enabled */ *data = 0; return true; case GICD_ICFGR ... GICD_ICFGR + 0xff: { /* Here only the even bits are used; odd bits are RES0 */ int irq = (offset - GICD_ICFGR) * 4; uint32_t value = 0; if (irq < GIC_INTERNAL || irq >= s->num_irq) { *data = 0; return true; } /* Since our edge_trigger bitmap is one bit per irq, we only need * half of the 32-bit word, which we can then spread out * into the odd bits. */ value = *gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f); value &= mask_group_and_nsacr(s, attrs, NULL, irq & ~0x1f); value = extract32(value, (irq & 0x1f) ? 16 : 0, 16); value = half_shuffle32(value) << 1; *data = value; return true; } case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff: { int irq; if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { /* RAZ/WI if security disabled, or if * security enabled and this is an NS access */ *data = 0; return true; } /* RAZ/WI for SGIs, PPIs, unimplemented irqs */ irq = (offset - GICD_IGRPMODR) * 8; if (irq < GIC_INTERNAL || irq >= s->num_irq) { *data = 0; return true; } *data = *gic_bmp_ptr32(s->grpmod, irq); return true; } case GICD_NSACR ... GICD_NSACR + 0xff: { /* Two bits per interrupt */ int irq = (offset - GICD_NSACR) * 4; if (irq < GIC_INTERNAL || irq >= s->num_irq) { *data = 0; return true; } if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { /* RAZ/WI if security disabled, or if * security enabled and this is an NS access */ *data = 0; return true; } *data = s->gicd_nsacr[irq / 16]; return true; } case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf: case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf: /* RAZ/WI since affinity routing is always enabled */ *data = 0; return true; case GICD_IROUTER ... GICD_IROUTER + 0x1fdf: { uint64_t r; int irq = (offset - GICD_IROUTER) / 8; r = gicd_read_irouter(s, attrs, irq); if (offset & 7) { *data = r >> 32; } else { *data = (uint32_t)r; } return true; } case GICD_IDREGS ... GICD_IDREGS + 0x2f: /* ID registers */ *data = gicv3_idreg(s, offset - GICD_IDREGS, GICV3_PIDR0_DIST); return true; case GICD_SGIR: /* WO registers, return unknown value */ qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid guest read from WO register at offset " TARGET_FMT_plx "\n", __func__, offset); *data = 0; return true; default: return false; } } static bool gicd_writel(GICv3State *s, hwaddr offset, uint64_t value, MemTxAttrs attrs) { /* Almost all GICv3 distributor registers are 32-bit. Note that * RO registers must ignore writes, not abort. */ switch (offset) { case GICD_CTLR: { uint32_t mask; /* GICv3 5.3.20 */ if (s->gicd_ctlr & GICD_CTLR_DS) { /* With only one security state, E1NWF is RAZ/WI, DS is RAO/WI, * ARE is RAO/WI (affinity routing always on), and only * bits 0 and 1 (group enables) are writable. */ mask = GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1NS; } else { if (attrs.secure) { /* for secure access: * ARE_NS and ARE_S are RAO/WI (affinity routing always on) * E1NWF is RAZ/WI (we don't support enable-1-of-n-wakeup) * * We can only modify bits[2:0] (the group enables). */ mask = GICD_CTLR_DS | GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1_ALL; } else { /* For non secure access ARE_NS is RAO/WI and EnableGrp1 * is RES0. The only writable bit is [1] (EnableGrp1A), which * is an alias of the Secure bit [1]. */ mask = GICD_CTLR_EN_GRP1NS; } } s->gicd_ctlr = (s->gicd_ctlr & ~mask) | (value & mask); if (value & mask & GICD_CTLR_DS) { /* We just set DS, so the ARE_NS and EnG1S bits are now RES0. * Note that this is a one-way transition because if DS is set * then it's not writable, so it can only go back to 0 with a * hardware reset. */ s->gicd_ctlr &= ~(GICD_CTLR_EN_GRP1S | GICD_CTLR_ARE_NS); } gicv3_full_update(s); return true; } case GICD_STATUSR: /* RAZ/WI for our implementation */ return true; case GICD_IGROUPR ... GICD_IGROUPR + 0x7f: { int irq; if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { return true; } /* RAZ/WI for SGIs, PPIs, unimplemented irqs */ irq = (offset - GICD_IGROUPR) * 8; if (irq < GIC_INTERNAL || irq >= s->num_irq) { return true; } *gic_bmp_ptr32(s->group, irq) = value; gicv3_update(s, irq, 32); return true; } case GICD_ISENABLER ... GICD_ISENABLER + 0x7f: gicd_write_set_bitmap_reg(s, attrs, s->enabled, NULL, offset - GICD_ISENABLER, value); return true; case GICD_ICENABLER ... GICD_ICENABLER + 0x7f: gicd_write_clear_bitmap_reg(s, attrs, s->enabled, NULL, offset - GICD_ICENABLER, value); return true; case GICD_ISPENDR ... GICD_ISPENDR + 0x7f: gicd_write_set_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1, offset - GICD_ISPENDR, value); return true; case GICD_ICPENDR ... GICD_ICPENDR + 0x7f: gicd_write_clear_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2, offset - GICD_ICPENDR, value); return true; case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f: gicd_write_set_bitmap_reg(s, attrs, s->active, NULL, offset - GICD_ISACTIVER, value); return true; case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f: gicd_write_clear_bitmap_reg(s, attrs, s->active, NULL, offset - GICD_ICACTIVER, value); return true; case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff: { int i, irq = offset - GICD_IPRIORITYR; if (irq < GIC_INTERNAL || irq + 3 >= s->num_irq) { return true; } for (i = irq; i < irq + 4; i++, value >>= 8) { gicd_write_ipriorityr(s, attrs, i, value); } gicv3_update(s, irq, 4); return true; } case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff: /* RAZ/WI since affinity routing is always enabled */ return true; case GICD_ICFGR ... GICD_ICFGR + 0xff: { /* Here only the odd bits are used; even bits are RES0 */ int irq = (offset - GICD_ICFGR) * 4; uint32_t mask, oldval; if (irq < GIC_INTERNAL || irq >= s->num_irq) { return true; } /* Since our edge_trigger bitmap is one bit per irq, our input * 32-bits will compress down into 16 bits which we need * to write into the bitmap. */ value = half_unshuffle32(value >> 1); mask = mask_group_and_nsacr(s, attrs, NULL, irq & ~0x1f); if (irq & 0x1f) { value <<= 16; mask &= 0xffff0000U; } else { mask &= 0xffff; } oldval = *gic_bmp_ptr32(s->edge_trigger, (irq & ~0x1f)); value = (oldval & ~mask) | (value & mask); *gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f) = value; return true; } case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff: { int irq; if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { /* RAZ/WI if security disabled, or if * security enabled and this is an NS access */ return true; } /* RAZ/WI for SGIs, PPIs, unimplemented irqs */ irq = (offset - GICD_IGRPMODR) * 8; if (irq < GIC_INTERNAL || irq >= s->num_irq) { return true; } *gic_bmp_ptr32(s->grpmod, irq) = value; gicv3_update(s, irq, 32); return true; } case GICD_NSACR ... GICD_NSACR + 0xff: { /* Two bits per interrupt */ int irq = (offset - GICD_NSACR) * 4; if (irq < GIC_INTERNAL || irq >= s->num_irq) { return true; } if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { /* RAZ/WI if security disabled, or if * security enabled and this is an NS access */ return true; } s->gicd_nsacr[irq / 16] = value; /* No update required as this only affects access permission checks */ return true; } case GICD_SGIR: /* RES0 if affinity routing is enabled */ return true; case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf: case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf: /* RAZ/WI since affinity routing is always enabled */ return true; case GICD_IROUTER ... GICD_IROUTER + 0x1fdf: { uint64_t r; int irq = (offset - GICD_IROUTER) / 8; if (irq < GIC_INTERNAL || irq >= s->num_irq) { return true; } /* Write half of the 64-bit register */ r = gicd_read_irouter(s, attrs, irq); r = deposit64(r, (offset & 7) ? 32 : 0, 32, value); gicd_write_irouter(s, attrs, irq, r); return true; } case GICD_IDREGS ... GICD_IDREGS + 0x2f: case GICD_TYPER: case GICD_IIDR: /* RO registers, ignore the write */ qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid guest write to RO register at offset " TARGET_FMT_plx "\n", __func__, offset); return true; default: return false; } } static bool gicd_writeq(GICv3State *s, hwaddr offset, uint64_t value, MemTxAttrs attrs) { /* Our only 64-bit registers are GICD_IROUTER */ int irq; switch (offset) { case GICD_IROUTER ... GICD_IROUTER + 0x1fdf: irq = (offset - GICD_IROUTER) / 8; gicd_write_irouter(s, attrs, irq, value); return true; default: return false; } } static bool gicd_readq(GICv3State *s, hwaddr offset, uint64_t *data, MemTxAttrs attrs) { /* Our only 64-bit registers are GICD_IROUTER */ int irq; switch (offset) { case GICD_IROUTER ... GICD_IROUTER + 0x1fdf: irq = (offset - GICD_IROUTER) / 8; *data = gicd_read_irouter(s, attrs, irq); return true; default: return false; } } MemTxResult gicv3_dist_read(void *opaque, hwaddr offset, uint64_t *data, unsigned size, MemTxAttrs attrs) { GICv3State *s = (GICv3State *)opaque; bool r; switch (size) { case 1: r = gicd_readb(s, offset, data, attrs); break; case 2: r = gicd_readw(s, offset, data, attrs); break; case 4: r = gicd_readl(s, offset, data, attrs); break; case 8: r = gicd_readq(s, offset, data, attrs); break; default: r = false; break; } if (!r) { qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid guest read at offset " TARGET_FMT_plx " size %u\n", __func__, offset, size); trace_gicv3_dist_badread(offset, size, attrs.secure); /* The spec requires that reserved registers are RAZ/WI; * so use MEMTX_ERROR returns from leaf functions as a way to * trigger the guest-error logging but don't return it to * the caller, or we'll cause a spurious guest data abort. */ *data = 0; } else { trace_gicv3_dist_read(offset, *data, size, attrs.secure); } return MEMTX_OK; } MemTxResult gicv3_dist_write(void *opaque, hwaddr offset, uint64_t data, unsigned size, MemTxAttrs attrs) { GICv3State *s = (GICv3State *)opaque; bool r; switch (size) { case 1: r = gicd_writeb(s, offset, data, attrs); break; case 2: r = gicd_writew(s, offset, data, attrs); break; case 4: r = gicd_writel(s, offset, data, attrs); break; case 8: r = gicd_writeq(s, offset, data, attrs); break; default: r = false; break; } if (!r) { qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid guest write at offset " TARGET_FMT_plx " size %u\n", __func__, offset, size); trace_gicv3_dist_badwrite(offset, data, size, attrs.secure); /* The spec requires that reserved registers are RAZ/WI; * so use MEMTX_ERROR returns from leaf functions as a way to * trigger the guest-error logging but don't return it to * the caller, or we'll cause a spurious guest data abort. */ } else { trace_gicv3_dist_write(offset, data, size, attrs.secure); } return MEMTX_OK; } void gicv3_dist_set_irq(GICv3State *s, int irq, int level) { /* Update distributor state for a change in an external SPI input line */ if (level == gicv3_gicd_level_test(s, irq)) { return; } trace_gicv3_dist_set_irq(irq, level); gicv3_gicd_level_replace(s, irq, level); if (level) { /* 0->1 edges latch the pending bit for edge-triggered interrupts */ if (gicv3_gicd_edge_trigger_test(s, irq)) { gicv3_gicd_pending_set(s, irq); } } gicv3_update(s, irq, 1); }