/* * QEMU System Emulator * * Copyright (c) 2003-2008 Fabrice Bellard * Copyright (c) 2014 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qemu-common.h" #include "sysemu/tcg.h" #include "sysemu/replay.h" #include "qemu/main-loop.h" #include "qemu/guest-random.h" #include "exec/exec-all.h" #include "hw/boards.h" #include "tcg-cpus.h" /* Kick all RR vCPUs */ static void qemu_cpu_kick_rr_cpus(void) { CPUState *cpu; CPU_FOREACH(cpu) { cpu_exit(cpu); }; } static void tcg_kick_vcpu_thread(CPUState *cpu) { if (qemu_tcg_mttcg_enabled()) { cpu_exit(cpu); } else { qemu_cpu_kick_rr_cpus(); } } /* * TCG vCPU kick timer * * The kick timer is responsible for moving single threaded vCPU * emulation on to the next vCPU. If more than one vCPU is running a * timer event with force a cpu->exit so the next vCPU can get * scheduled. * * The timer is removed if all vCPUs are idle and restarted again once * idleness is complete. */ static QEMUTimer *tcg_kick_vcpu_timer; static CPUState *tcg_current_rr_cpu; #define TCG_KICK_PERIOD (NANOSECONDS_PER_SECOND / 10) static inline int64_t qemu_tcg_next_kick(void) { return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + TCG_KICK_PERIOD; } /* Kick the currently round-robin scheduled vCPU to next */ static void qemu_cpu_kick_rr_next_cpu(void) { CPUState *cpu; do { cpu = qatomic_mb_read(&tcg_current_rr_cpu); if (cpu) { cpu_exit(cpu); } } while (cpu != qatomic_mb_read(&tcg_current_rr_cpu)); } static void kick_tcg_thread(void *opaque) { timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick()); qemu_cpu_kick_rr_next_cpu(); } static void start_tcg_kick_timer(void) { assert(!mttcg_enabled); if (!tcg_kick_vcpu_timer && CPU_NEXT(first_cpu)) { tcg_kick_vcpu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, kick_tcg_thread, NULL); } if (tcg_kick_vcpu_timer && !timer_pending(tcg_kick_vcpu_timer)) { timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick()); } } static void stop_tcg_kick_timer(void) { assert(!mttcg_enabled); if (tcg_kick_vcpu_timer && timer_pending(tcg_kick_vcpu_timer)) { timer_del(tcg_kick_vcpu_timer); } } static void qemu_tcg_destroy_vcpu(CPUState *cpu) { } static void qemu_tcg_rr_wait_io_event(void) { CPUState *cpu; while (all_cpu_threads_idle()) { stop_tcg_kick_timer(); qemu_cond_wait_iothread(first_cpu->halt_cond); } start_tcg_kick_timer(); CPU_FOREACH(cpu) { qemu_wait_io_event_common(cpu); } } static int64_t tcg_get_icount_limit(void) { int64_t deadline; if (replay_mode != REPLAY_MODE_PLAY) { /* * Include all the timers, because they may need an attention. * Too long CPU execution may create unnecessary delay in UI. */ deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL, QEMU_TIMER_ATTR_ALL); /* Check realtime timers, because they help with input processing */ deadline = qemu_soonest_timeout(deadline, qemu_clock_deadline_ns_all(QEMU_CLOCK_REALTIME, QEMU_TIMER_ATTR_ALL)); /* * Maintain prior (possibly buggy) behaviour where if no deadline * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than * INT32_MAX nanoseconds ahead, we still use INT32_MAX * nanoseconds. */ if ((deadline < 0) || (deadline > INT32_MAX)) { deadline = INT32_MAX; } return icount_round(deadline); } else { return replay_get_instructions(); } } static void notify_aio_contexts(void) { /* Wake up other AioContexts. */ qemu_clock_notify(QEMU_CLOCK_VIRTUAL); qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL); } static void handle_icount_deadline(void) { assert(qemu_in_vcpu_thread()); if (icount_enabled()) { int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL, QEMU_TIMER_ATTR_ALL); if (deadline == 0) { notify_aio_contexts(); } } } static void prepare_icount_for_run(CPUState *cpu) { if (icount_enabled()) { int insns_left; /* * These should always be cleared by process_icount_data after * each vCPU execution. However u16.high can be raised * asynchronously by cpu_exit/cpu_interrupt/tcg_handle_interrupt */ g_assert(cpu_neg(cpu)->icount_decr.u16.low == 0); g_assert(cpu->icount_extra == 0); cpu->icount_budget = tcg_get_icount_limit(); insns_left = MIN(0xffff, cpu->icount_budget); cpu_neg(cpu)->icount_decr.u16.low = insns_left; cpu->icount_extra = cpu->icount_budget - insns_left; replay_mutex_lock(); if (cpu->icount_budget == 0 && replay_has_checkpoint()) { notify_aio_contexts(); } } } static void process_icount_data(CPUState *cpu) { if (icount_enabled()) { /* Account for executed instructions */ icount_update(cpu); /* Reset the counters */ cpu_neg(cpu)->icount_decr.u16.low = 0; cpu->icount_extra = 0; cpu->icount_budget = 0; replay_account_executed_instructions(); replay_mutex_unlock(); } } static int tcg_cpu_exec(CPUState *cpu) { int ret; #ifdef CONFIG_PROFILER int64_t ti; #endif assert(tcg_enabled()); #ifdef CONFIG_PROFILER ti = profile_getclock(); #endif cpu_exec_start(cpu); ret = cpu_exec(cpu); cpu_exec_end(cpu); #ifdef CONFIG_PROFILER qatomic_set(&tcg_ctx->prof.cpu_exec_time, tcg_ctx->prof.cpu_exec_time + profile_getclock() - ti); #endif return ret; } /* * Destroy any remaining vCPUs which have been unplugged and have * finished running */ static void deal_with_unplugged_cpus(void) { CPUState *cpu; CPU_FOREACH(cpu) { if (cpu->unplug && !cpu_can_run(cpu)) { qemu_tcg_destroy_vcpu(cpu); cpu_thread_signal_destroyed(cpu); break; } } } /* * Single-threaded TCG * * In the single-threaded case each vCPU is simulated in turn. If * there is more than a single vCPU we create a simple timer to kick * the vCPU and ensure we don't get stuck in a tight loop in one vCPU. * This is done explicitly rather than relying on side-effects * elsewhere. */ static void *tcg_rr_cpu_thread_fn(void *arg) { CPUState *cpu = arg; assert(tcg_enabled()); rcu_register_thread(); tcg_register_thread(); qemu_mutex_lock_iothread(); qemu_thread_get_self(cpu->thread); cpu->thread_id = qemu_get_thread_id(); cpu->can_do_io = 1; cpu_thread_signal_created(cpu); qemu_guest_random_seed_thread_part2(cpu->random_seed); /* wait for initial kick-off after machine start */ while (first_cpu->stopped) { qemu_cond_wait_iothread(first_cpu->halt_cond); /* process any pending work */ CPU_FOREACH(cpu) { current_cpu = cpu; qemu_wait_io_event_common(cpu); } } start_tcg_kick_timer(); cpu = first_cpu; /* process any pending work */ cpu->exit_request = 1; while (1) { qemu_mutex_unlock_iothread(); replay_mutex_lock(); qemu_mutex_lock_iothread(); /* Account partial waits to QEMU_CLOCK_VIRTUAL. */ icount_account_warp_timer(); /* * Run the timers here. This is much more efficient than * waking up the I/O thread and waiting for completion. */ handle_icount_deadline(); replay_mutex_unlock(); if (!cpu) { cpu = first_cpu; } while (cpu && cpu_work_list_empty(cpu) && !cpu->exit_request) { qatomic_mb_set(&tcg_current_rr_cpu, cpu); current_cpu = cpu; qemu_clock_enable(QEMU_CLOCK_VIRTUAL, (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0); if (cpu_can_run(cpu)) { int r; qemu_mutex_unlock_iothread(); prepare_icount_for_run(cpu); r = tcg_cpu_exec(cpu); process_icount_data(cpu); qemu_mutex_lock_iothread(); if (r == EXCP_DEBUG) { cpu_handle_guest_debug(cpu); break; } else if (r == EXCP_ATOMIC) { qemu_mutex_unlock_iothread(); cpu_exec_step_atomic(cpu); qemu_mutex_lock_iothread(); break; } } else if (cpu->stop) { if (cpu->unplug) { cpu = CPU_NEXT(cpu); } break; } cpu = CPU_NEXT(cpu); } /* while (cpu && !cpu->exit_request).. */ /* Does not need qatomic_mb_set because a spurious wakeup is okay. */ qatomic_set(&tcg_current_rr_cpu, NULL); if (cpu && cpu->exit_request) { qatomic_mb_set(&cpu->exit_request, 0); } if (icount_enabled() && all_cpu_threads_idle()) { /* * When all cpus are sleeping (e.g in WFI), to avoid a deadlock * in the main_loop, wake it up in order to start the warp timer. */ qemu_notify_event(); } qemu_tcg_rr_wait_io_event(); deal_with_unplugged_cpus(); } rcu_unregister_thread(); return NULL; } /* * Multi-threaded TCG * * In the multi-threaded case each vCPU has its own thread. The TLS * variable current_cpu can be used deep in the code to find the * current CPUState for a given thread. */ static void *tcg_cpu_thread_fn(void *arg) { CPUState *cpu = arg; assert(tcg_enabled()); g_assert(!icount_enabled()); rcu_register_thread(); tcg_register_thread(); qemu_mutex_lock_iothread(); qemu_thread_get_self(cpu->thread); cpu->thread_id = qemu_get_thread_id(); cpu->can_do_io = 1; current_cpu = cpu; cpu_thread_signal_created(cpu); qemu_guest_random_seed_thread_part2(cpu->random_seed); /* process any pending work */ cpu->exit_request = 1; do { if (cpu_can_run(cpu)) { int r; qemu_mutex_unlock_iothread(); r = tcg_cpu_exec(cpu); qemu_mutex_lock_iothread(); switch (r) { case EXCP_DEBUG: cpu_handle_guest_debug(cpu); break; case EXCP_HALTED: /* * during start-up the vCPU is reset and the thread is * kicked several times. If we don't ensure we go back * to sleep in the halted state we won't cleanly * start-up when the vCPU is enabled. * * cpu->halted should ensure we sleep in wait_io_event */ g_assert(cpu->halted); break; case EXCP_ATOMIC: qemu_mutex_unlock_iothread(); cpu_exec_step_atomic(cpu); qemu_mutex_lock_iothread(); default: /* Ignore everything else? */ break; } } qatomic_mb_set(&cpu->exit_request, 0); qemu_wait_io_event(cpu); } while (!cpu->unplug || cpu_can_run(cpu)); qemu_tcg_destroy_vcpu(cpu); cpu_thread_signal_destroyed(cpu); qemu_mutex_unlock_iothread(); rcu_unregister_thread(); return NULL; } static void tcg_start_vcpu_thread(CPUState *cpu) { char thread_name[VCPU_THREAD_NAME_SIZE]; static QemuCond *single_tcg_halt_cond; static QemuThread *single_tcg_cpu_thread; static int tcg_region_inited; assert(tcg_enabled()); /* * Initialize TCG regions--once. Now is a good time, because: * (1) TCG's init context, prologue and target globals have been set up. * (2) qemu_tcg_mttcg_enabled() works now (TCG init code runs before the * -accel flag is processed, so the check doesn't work then). */ if (!tcg_region_inited) { tcg_region_inited = 1; tcg_region_init(); /* * If MTTCG, and we will create multiple cpus, * then we will have cpus running in parallel. */ if (qemu_tcg_mttcg_enabled()) { MachineState *ms = MACHINE(qdev_get_machine()); if (ms->smp.max_cpus > 1) { parallel_cpus = true; } } } if (qemu_tcg_mttcg_enabled() || !single_tcg_cpu_thread) { cpu->thread = g_malloc0(sizeof(QemuThread)); cpu->halt_cond = g_malloc0(sizeof(QemuCond)); qemu_cond_init(cpu->halt_cond); if (qemu_tcg_mttcg_enabled()) { /* create a thread per vCPU with TCG (MTTCG) */ snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG", cpu->cpu_index); qemu_thread_create(cpu->thread, thread_name, tcg_cpu_thread_fn, cpu, QEMU_THREAD_JOINABLE); } else { /* share a single thread for all cpus with TCG */ snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "ALL CPUs/TCG"); qemu_thread_create(cpu->thread, thread_name, tcg_rr_cpu_thread_fn, cpu, QEMU_THREAD_JOINABLE); single_tcg_halt_cond = cpu->halt_cond; single_tcg_cpu_thread = cpu->thread; } #ifdef _WIN32 cpu->hThread = qemu_thread_get_handle(cpu->thread); #endif } else { /* For non-MTTCG cases we share the thread */ cpu->thread = single_tcg_cpu_thread; cpu->halt_cond = single_tcg_halt_cond; cpu->thread_id = first_cpu->thread_id; cpu->can_do_io = 1; cpu->created = true; } } static int64_t tcg_get_virtual_clock(void) { if (icount_enabled()) { return icount_get(); } return cpu_get_clock(); } static int64_t tcg_get_elapsed_ticks(void) { if (icount_enabled()) { return icount_get(); } return cpu_get_ticks(); } const CpusAccel tcg_cpus = { .create_vcpu_thread = tcg_start_vcpu_thread, .kick_vcpu_thread = tcg_kick_vcpu_thread, .get_virtual_clock = tcg_get_virtual_clock, .get_elapsed_ticks = tcg_get_elapsed_ticks, };